/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
namespace ams::rnd {
namespace {
/* Generator type. */
/* Official HOS uses TinyMT. This is high effort. Let's just use XorShift. */
/* https://en.wikipedia.org/wiki/Xorshift */
class XorShiftGenerator {
public:
using ResultType = uint32_t;
using result_type = ResultType;
static constexpr ResultType (min)() { return std::numeric_limits::min(); }
static constexpr ResultType (max)() { return std::numeric_limits::max(); }
static constexpr size_t SeedSize = 4;
private:
ResultType random_state[SeedSize];
public:
explicit XorShiftGenerator() {
/* Seed using process entropy. */
u64 val = 0;
for (size_t i = 0; i < SeedSize; i++) {
R_ASSERT(svcGetInfo(&val, InfoType_RandomEntropy, INVALID_HANDLE, i));
this->random_state[i] = ResultType(val);
}
}
explicit XorShiftGenerator(std::random_device &rd) {
for (size_t i = 0; i < SeedSize; i++) {
this->random_state[i] = ResultType(rd());
}
}
ResultType operator()() {
ResultType s, t = this->random_state[3];
t ^= t << 11;
t ^= t >> 8;
this->random_state[3] = this->random_state[2]; this->random_state[2] = this->random_state[1]; this->random_state[1] = (s = this->random_state[0]);
t ^= s;
t ^= s >> 19;
this->random_state[0] = t;
return t;
}
void discard(size_t n) {
for (size_t i = 0; i < n; i++) {
operator()();
}
}
};
/* Generator global. */
XorShiftGenerator g_rnd_generator;
/* Templated helpers. */
template
T GenerateRandom(T max = std::numeric_limits::max()) {
std::uniform_int_distribution rnd(std::numeric_limits::min(), max);
return rnd(g_rnd_generator);
}
}
void GenerateRandomBytes(void* _out, size_t size) {
uintptr_t out = reinterpret_cast(_out);
uintptr_t end = out + size;
/* Force alignment. */
if (out % sizeof(u16) && out < end) {
*reinterpret_cast(out) = GenerateRandom();
out += sizeof(u8);
}
if (out % sizeof(u32) && out < end) {
*reinterpret_cast(out) = GenerateRandom();
out += sizeof(u16);
}
if (out % sizeof(u64) && out < end) {
*reinterpret_cast(out) = GenerateRandom();
out += sizeof(u32);
}
/* Perform as many aligned writes as possible. */
while (out + sizeof(u64) <= end) {
*reinterpret_cast(out) = GenerateRandom();
out += sizeof(u64);
}
/* Do remainder writes. */
if (out + sizeof(u32) <= end) {
*reinterpret_cast(out) = GenerateRandom();
out += sizeof(u32);
}
if (out + sizeof(u16) <= end) {
*reinterpret_cast(out) = GenerateRandom();
out += sizeof(u16);
}
if (out + sizeof(u8) <= end) {
*reinterpret_cast(out) = GenerateRandom();
out += sizeof(u8);
}
}
u32 GenerateRandomU32(u32 max) {
return GenerateRandom(max);
}
u64 GenerateRandomU64(u64 max) {
return GenerateRandom(max);
}
}