/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #pragma once #include <vapours/common.hpp> #include <vapours/assert.hpp> namespace ams::util { /* Implementation of TinyMT (mersenne twister RNG). */ /* Like Nintendo, we will use the sample parameters. */ class TinyMT { public: static constexpr size_t NumStateWords = 4; struct State { u32 data[NumStateWords]; }; private: static constexpr u32 ParamMat1 = 0x8F7011EE; static constexpr u32 ParamMat2 = 0xFC78FF1F; static constexpr u32 ParamTmat = 0x3793FDFF; static constexpr u32 ParamMult = 0x6C078965; static constexpr u32 ParamPlus = 0x0019660D; static constexpr u32 ParamXor = 0x5D588B65; static constexpr u32 TopBitmask = 0x7FFFFFFF; static constexpr int MinimumInitIterations = 8; static constexpr int NumDiscardedInitOutputs = 8; static constexpr inline u32 XorByShifted27(u32 value) { return value ^ (value >> 27); } static constexpr inline u32 XorByShifted30(u32 value) { return value ^ (value >> 30); } private: State m_state; private: /* Internal API. */ void FinalizeInitialization() { const u32 state0 = m_state.data[0] & TopBitmask; const u32 state1 = m_state.data[1]; const u32 state2 = m_state.data[2]; const u32 state3 = m_state.data[3]; if (state0 == 0 && state1 == 0 && state2 == 0 && state3 == 0) { m_state.data[0] = 'T'; m_state.data[1] = 'I'; m_state.data[2] = 'N'; m_state.data[3] = 'Y'; } for (int i = 0; i < NumDiscardedInitOutputs; i++) { this->GenerateRandomU32(); } } u32 GenerateRandomU24() { return (this->GenerateRandomU32() >> 8); } static void GenerateInitialValuePlus(TinyMT::State *state, int index, u32 value) { u32 &state0 = state->data[(index + 0) % NumStateWords]; u32 &state1 = state->data[(index + 1) % NumStateWords]; u32 &state2 = state->data[(index + 2) % NumStateWords]; u32 &state3 = state->data[(index + 3) % NumStateWords]; const u32 x = XorByShifted27(state0 ^ state1 ^ state3) * ParamPlus; const u32 y = x + index + value; state0 = y; state1 += x; state2 += y; } static void GenerateInitialValueXor(TinyMT::State *state, int index) { u32 &state0 = state->data[(index + 0) % NumStateWords]; u32 &state1 = state->data[(index + 1) % NumStateWords]; u32 &state2 = state->data[(index + 2) % NumStateWords]; u32 &state3 = state->data[(index + 3) % NumStateWords]; const u32 x = XorByShifted27(state0 + state1 + state3) * ParamXor; const u32 y = x - index; state0 = y; state1 ^= x; state2 ^= y; } public: constexpr explicit TinyMT(util::ConstantInitializeTag) : m_state() { /* ... */ } explicit TinyMT() { /* ... */ } /* Initialization. */ void Initialize(u32 seed) { m_state.data[0] = seed; m_state.data[1] = ParamMat1; m_state.data[2] = ParamMat2; m_state.data[3] = ParamTmat; for (int i = 1; i < MinimumInitIterations; i++) { const u32 mixed = XorByShifted30(m_state.data[(i - 1) % NumStateWords]); m_state.data[i % NumStateWords] ^= mixed * ParamMult + i; } this->FinalizeInitialization(); } void Initialize(const u32 *seed, int seed_count) { m_state.data[0] = 0; m_state.data[1] = ParamMat1; m_state.data[2] = ParamMat2; m_state.data[3] = ParamTmat; { const int num_init_iterations = std::max(seed_count + 1, MinimumInitIterations) - 1; GenerateInitialValuePlus(std::addressof(m_state), 0, seed_count); for (int i = 0; i < num_init_iterations; i++) { GenerateInitialValuePlus(std::addressof(m_state), (i + 1) % NumStateWords, (i < seed_count) ? seed[i] : 0); } for (int i = 0; i < static_cast<int>(NumStateWords); i++) { GenerateInitialValueXor(std::addressof(m_state), (i + 1 + num_init_iterations) % NumStateWords); } } this->FinalizeInitialization(); } /* State management. */ void GetState(TinyMT::State *out) const { std::memcpy(out->data, m_state.data, sizeof(m_state)); } void SetState(const TinyMT::State *state) { std::memcpy(m_state.data, state->data, sizeof(m_state)); } /* Random generation. */ NOINLINE void GenerateRandomBytes(void *dst, size_t size) { const uintptr_t start = reinterpret_cast<uintptr_t>(dst); const uintptr_t end = start + size; const uintptr_t aligned_start = util::AlignUp(start, 4); const uintptr_t aligned_end = util::AlignDown(end, 4); /* Make sure we're aligned. */ if (start < aligned_start) { const u32 rnd = this->GenerateRandomU32(); std::memcpy(dst, std::addressof(rnd), aligned_start - start); } /* Write as many aligned u32s as we can. */ { u32 * cur_dst = reinterpret_cast<u32 *>(aligned_start); u32 * const end_dst = reinterpret_cast<u32 *>(aligned_end); while (cur_dst < end_dst) { *(cur_dst++) = this->GenerateRandomU32(); } } /* Handle any leftover unaligned data. */ if (aligned_end < end) { const u32 rnd = this->GenerateRandomU32(); std::memcpy(reinterpret_cast<void *>(aligned_end), std::addressof(rnd), end - aligned_end); } } NOINLINE u32 GenerateRandomU32() { /* Advance state. */ const u32 x0 = (m_state.data[0] & TopBitmask) ^ m_state.data[1] ^ m_state.data[2]; const u32 y0 = m_state.data[3]; const u32 x1 = x0 ^ (x0 << 1); const u32 y1 = y0 ^ (y0 >> 1) ^ x1; const u32 state0 = m_state.data[1]; u32 state1 = m_state.data[2]; u32 state2 = x1 ^ (y1 << 10); const u32 state3 = y1; if ((y1 & 1) != 0) { state1 ^= ParamMat1; state2 ^= ParamMat2; } m_state.data[0] = state0; m_state.data[1] = state1; m_state.data[2] = state2; m_state.data[3] = state3; /* Temper. */ const u32 t1 = state0 + (state2 >> 8); u32 t0 = state3 ^ t1; if ((t1 & 1) != 0) { t0 ^= ParamTmat; } return t0; } inline u64 GenerateRandomU64() { const u32 lo = this->GenerateRandomU32(); const u32 hi = this->GenerateRandomU32(); return (static_cast<u64>(hi) << 32) | static_cast<u64>(lo); } inline float GenerateRandomF32() { /* Floats have 24 bits of mantissa. */ constexpr int MantissaBits = 24; return GenerateRandomU24() * (1.0f / (1ul << MantissaBits)); } inline double GenerateRandomF64() { /* Doubles have 53 bits of mantissa. */ /* The smart way to generate 53 bits of random would be to use 32 bits */ /* from the first rnd32() call, and then 21 from the second. */ /* Nintendo does not. They use (32 - 5) = 27 bits from the first rnd32() */ /* call, and (32 - 6) bits from the second. We'll do what they do, but */ /* There's not a clear reason why. */ constexpr int MantissaBits = 53; constexpr int Shift1st = (64 - MantissaBits) / 2; constexpr int Shift2nd = (64 - MantissaBits) - Shift1st; const u32 first = (this->GenerateRandomU32() >> Shift1st); const u32 second = (this->GenerateRandomU32() >> Shift2nd); return (1.0 * first * (static_cast<u64>(1) << (32 - Shift2nd)) + second) * (1.0 / (static_cast<u64>(1) << MantissaBits)); } }; }