/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <exosphere.hpp> #include "se_execute.hpp" namespace ams::se { namespace { struct RsaKeyInfo { int modulus_size_val; int exponent_size_val; }; constinit RsaKeyInfo g_rsa_key_infos[RsaKeySlotCount] = {}; void ClearRsaKeySlot(volatile SecurityEngineRegisters *SE, int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod) { constexpr int NumWords = se::RsaSize / sizeof(u32); for (int i = 0; i < NumWords; ++i) { /* Select the keyslot word. */ reg::Write(SE->SE_RSA_KEYTABLE_ADDR, SE_REG_BITS_ENUM (RSA_KEYTABLE_ADDR_INPUT_MODE, REGISTER), SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_KEY_SLOT, slot), SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_EXPMOD_SEL, expmod), SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_WORD_ADDR, i)); /* Clear the keyslot word. */ SE->SE_RSA_KEYTABLE_DATA = 0; } } void SetRsaKey(volatile SecurityEngineRegisters *SE, int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod, const void *key, size_t key_size) { const int num_words = key_size / sizeof(u32); for (int i = 0; i < num_words; ++i) { /* Select the keyslot word. */ reg::Write(SE->SE_RSA_KEYTABLE_ADDR, SE_REG_BITS_ENUM (RSA_KEYTABLE_ADDR_INPUT_MODE, REGISTER), SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_KEY_SLOT, slot), SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_EXPMOD_SEL, expmod), SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_WORD_ADDR, i)); /* Get the word. */ const u32 word = util::LoadBigEndian(static_cast<const u32 *>(key) + (num_words - 1 - i)); /* Write the keyslot word. */ SE->SE_RSA_KEYTABLE_DATA = word; } } void GetRsaResult(volatile SecurityEngineRegisters *SE, void *dst, size_t size) { /* Copy out the words. */ const int num_words = size / sizeof(u32); for (int i = 0; i < num_words; ++i) { const u32 word = reg::Read(SE->SE_RSA_OUTPUT[i]); util::StoreBigEndian(static_cast<u32 *>(dst) + num_words - 1 - i, word); } } void WaitForInputReadComplete(volatile SecurityEngineRegisters *SE) { while (reg::HasValue(SE->SE_INT_STATUS, SE_REG_BITS_ENUM(INT_STATUS_IN_DONE, CLEAR))) { /* ... */ } } } void ClearRsaKeySlot(int slot) { /* Validate the key slot. */ AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount); /* Clear the info. */ g_rsa_key_infos[slot] = {}; /* Get the engine. */ auto *SE = GetRegisters(); /* Clear the modulus. */ ClearRsaKeySlot(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS); /* Clear the exponent. */ ClearRsaKeySlot(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT); } void LockRsaKeySlot(int slot, u32 flags) { /* Validate the key slot. */ AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount); /* Get the engine. */ auto *SE = GetRegisters(); /* Set non per-key flags. */ if ((flags & ~KeySlotLockFlags_PerKey) != 0) { /* Pack the flags into the expected format. */ u32 value = 0; value |= ((flags & KeySlotLockFlags_KeyRead) == 0) ? (1u << 0) : 0; value |= ((flags & KeySlotLockFlags_KeyRead) == 0) ? (1u << 1) : 0; value |= ((flags & KeySlotLockFlags_KeyRead) == 0) ? (1u << 2) : 0; reg::Write(SE->SE_RSA_KEYTABLE_ACCESS[slot], SE_REG_BITS_ENUM_SEL(RSA_KEYTABLE_ACCESS_KEYREAD, (flags & KeySlotLockFlags_KeyRead) != 0, DISABLE, ENABLE), SE_REG_BITS_ENUM_SEL(RSA_KEYTABLE_ACCESS_KEYUPDATE, (flags & KeySlotLockFlags_KeyWrite) != 0, DISABLE, ENABLE), SE_REG_BITS_ENUM_SEL(RSA_KEYTABLE_ACCESS_KEYUSE, (flags & KeySlotLockFlags_KeyUse) != 0, DISABLE, ENABLE)); } /* Set per-key flag. */ if ((flags & KeySlotLockFlags_PerKey) != 0) { reg::ReadWrite(SE->SE_RSA_SECURITY_PERKEY, REG_BITS_VALUE(slot, 1, 0)); } } void SetRsaKey(int slot, const void *mod, size_t mod_size, const void *exp, size_t exp_size) { /* Validate the key slot and sizes. */ AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount); AMS_ABORT_UNLESS(mod_size <= RsaSize); AMS_ABORT_UNLESS(exp_size <= RsaSize); /* Set the sizes in the info. */ auto &info = g_rsa_key_infos[slot]; info.modulus_size_val = (mod_size / 64) - 1; info.exponent_size_val = (exp_size / 4); /* Get the engine. */ auto *SE = GetRegisters(); /* Set the modulus and exponent. */ SetRsaKey(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS, mod, mod_size); SetRsaKey(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT, exp, exp_size); } void ModularExponentiate(void *dst, size_t dst_size, int slot, const void *src, size_t src_size) { /* Validate the slot and sizes. */ AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount); AMS_ABORT_UNLESS(src_size <= RsaSize); AMS_ABORT_UNLESS(dst_size <= RsaSize); /* Get the engine. */ auto *SE = GetRegisters(); /* Create a work buffer. */ u8 work[RsaSize]; util::ClearMemory(work, sizeof(work)); /* Copy the input into the work buffer (reversing endianness). */ const u8 *src_u8 = static_cast<const u8 *>(src); for (size_t i = 0; i < src_size; ++i) { work[src_size - 1 - i] = src_u8[i]; } /* Flush the work buffer to ensure the SE sees correct results. */ hw::FlushDataCache(work, sizeof(work)); hw::DataSynchronizationBarrierInnerShareable(); /* Configure the engine to perform RSA encryption. */ reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128), SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128), SE_REG_BITS_ENUM(CONFIG_ENC_ALG, RSA), SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP), SE_REG_BITS_ENUM(CONFIG_DST, RSA_REG)); /* Configure the engine to use the keyslot and correct modulus/exp sizes. */ const auto &info = g_rsa_key_infos[slot]; reg::Write(SE->SE_RSA_CONFIG, SE_REG_BITS_VALUE(RSA_CONFIG_KEY_SLOT, slot)); reg::Write(SE->SE_RSA_KEY_SIZE, info.modulus_size_val); reg::Write(SE->SE_RSA_EXP_SIZE, info.exponent_size_val); /* Execute the operation. */ ExecuteOperation(SE, SE_OPERATION_OP_START, nullptr, 0, work, src_size); /* Copy out the result. */ GetRsaResult(SE, dst, dst_size); } void ModularExponentiateAsync(int slot, const void *src, size_t src_size, DoneHandler handler) { /* Validate the slot and size. */ AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount); AMS_ABORT_UNLESS(src_size <= RsaSize); /* Get the engine. */ auto *SE = GetRegisters(); /* Create a work buffer. */ u8 work[RsaSize]; util::ClearMemory(work, sizeof(work)); /* Copy the input into the work buffer (reversing endianness). */ const u8 *src_u8 = static_cast<const u8 *>(src); for (size_t i = 0; i < src_size; ++i) { work[src_size - 1 - i] = src_u8[i]; } /* Flush the work buffer to ensure the SE sees correct results. */ hw::FlushDataCache(work, sizeof(work)); hw::DataSynchronizationBarrierInnerShareable(); /* Configure the engine to perform RSA encryption. */ reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128), SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128), SE_REG_BITS_ENUM(CONFIG_ENC_ALG, RSA), SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP), SE_REG_BITS_ENUM(CONFIG_DST, RSA_REG)); /* Configure the engine to use the keyslot and correct modulus/exp sizes. */ const auto &info = g_rsa_key_infos[slot]; reg::Write(SE->SE_RSA_CONFIG, SE_REG_BITS_VALUE(RSA_CONFIG_KEY_SLOT, slot)); reg::Write(SE->SE_RSA_KEY_SIZE, info.modulus_size_val); reg::Write(SE->SE_RSA_EXP_SIZE, info.exponent_size_val); /* Set the done handler. */ SetDoneHandler(SE, handler); /* Trigger the input operation. */ StartInputOperation(SE, work, src_size); /* Wait for input to be read by the se. */ WaitForInputReadComplete(SE); } void GetRsaResult(void *dst, size_t dst_size) { GetRsaResult(GetRegisters(), dst, dst_size); } }