#include #include "utils.h" #include "se.h" void trigger_se_rsa_op(void *buf, unsigned int size); void trigger_se_aes_op(unsigned int op, char *dst, unsigned int dst_size, const unsigned char *src, unsigned int src_size); /* Globals for driver. */ volatile security_engine_t *g_security_engine; unsigned int (*g_se_callback)(void); unsigned int g_se_modulus_sizes[KEYSLOT_RSA_MAX]; unsigned int g_se_exp_sizes[KEYSLOT_RSA_MAX]; /* Set the global security engine pointer. */ void set_security_engine_address(security_engine_t *security_engine) { g_security_engine = security_engine; } /* Get the global security engine pointer. */ security_engine_t *get_security_engine_address(void) { return g_security_engine; } void set_security_engine_callback(unsigned int (*callback)(void)) { if (callback == NULL || g_se_callback != NULL) { panic(); } g_se_callback = callback; } /* Set the flags for an AES keyslot. */ void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags) { if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX) { panic(); } /* Misc flags. */ if (flags & ~0x80) { g_security_engine->AES_KEYSLOT_FLAGS[keyslot] = ~flags; } /* Disable keyslot reads. */ if (flags & 0x80) { g_security_engine->AES_KEY_READ_DISABLE_REG &= ~(1 << keyslot); } } /* Set the flags for an RSA keyslot. */ void set_rsa_keyslot_flags(unsigned int keyslot, unsigned int flags) { if (g_security_engine == NULL || keyslot >= KEYSLOT_RSA_MAX) { panic(); } /* Misc flags. */ if (flags & ~0x80) { /* TODO: Why are flags assigned this way? */ g_security_engine->RSA_KEYSLOT_FLAGS[keyslot] = (((flags >> 4) & 4) | (flags & 3)) ^ 7; } /* Disable keyslot reads. */ if (flags & 0x80) { g_security_engine->RSA_KEY_READ_DISABLE_REG &= ~(1 << keyslot); } } void clear_aes_keyslot(unsigned int keyslot) { if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX) { panic(); } /* Zero out the whole keyslot and IV. */ for (unsigned int i = 0; i < 0x10; i++) { g_security_engine->AES_KEYTABLE_ADDR = (keyslot << 4) | i; g_security_engine->AES_KEYTABLE_DATA = 0; } } void clear_rsa_keyslot(unsigned int keyslot) { if (g_security_engine == NULL || keyslot >= KEYSLOT_RSA_MAX) { panic(); } /* Zero out the whole keyslot. */ for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Modulus[i] */ g_security_engine->RSA_KEYTABLE_ADDR = (keyslot << 7) | i | 0x40; g_security_engine->RSA_KEYTABLE_DATA = 0; } for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Expontent[i] */ g_security_engine->RSA_KEYTABLE_ADDR = (keyslot << 7) | i; g_security_engine->RSA_KEYTABLE_DATA = 0; } } void set_aes_keyslot(unsigned int keyslot, const unsigned char *key, unsigned int key_size) { if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX || key_size > KEYSIZE_AES_MAX) { panic(); } for (unsigned int i = 0; i < (key_size >> 2); i++) { g_security_engine->AES_KEYTABLE_ADDR = (keyslot << 4) | i; g_security_engine->AES_KEYTABLE_DATA = read32le(key, 4 * i); } } void set_rsa_keyslot(unsigned int keyslot, const unsigned char *modulus, unsigned int modulus_size, const unsigned char *exp, unsigned int exp_size) { if (g_security_engine == NULL || keyslot >= KEYSLOT_RSA_MAX || modulus_size > KEYSIZE_RSA_MAX || exp_size > KEYSIZE_RSA_MAX) { panic(); } for (unsigned int i = 0; i < (modulus_size >> 2); i++) { g_security_engine->RSA_KEYTABLE_ADDR = (keyslot << 7) | 0x40 | i; g_security_engine->RSA_KEYTABLE_DATA = read32be(modulus, 4 * i); } for (unsigned int i = 0; i < (exp_size >> 2); i++) { g_security_engine->RSA_KEYTABLE_ADDR = (keyslot << 7) | i; g_security_engine->RSA_KEYTABLE_DATA = read32be(exp, 4 * i); } g_se_modulus_sizes[keyslot] = modulus_size; g_se_exp_sizes[keyslot] = exp_size; } void set_aes_keyslot_iv(unsigned int keyslot, const unsigned char *iv, unsigned int iv_size) { if (g_security_engine == NULL || keyslot >= KEYSLOT_AES_MAX || iv_size > 0x10) { panic(); } for (unsigned int i = 0; i < (iv_size >> 2); i++) { g_security_engine->AES_KEYTABLE_ADDR = (keyslot << 4) | 8 | i; g_security_engine->AES_KEYTABLE_DATA = read32le(iv, 4 * i); } } void set_se_ctr(const char *ctr) { if (g_security_engine == NULL) { panic(); } for (unsigned int i = 0; i < 4; i++) { g_security_engine->CRYPTO_CTR_REG[i] = read32le(ctr, i * 4); } } void decrypt_data_into_keyslot(unsigned int keyslot_dst, unsigned int keyslot_src, const unsigned char *wrapped_key, unsigned int wrapped_key_size) { if (g_security_engine == NULL || keyslot_dst >= KEYSLOT_AES_MAX || keyslot_src >= KEYSIZE_AES_MAX || wrapped_key_size > KEYSIZE_AES_MAX) { panic(); } g_security_engine->CONFIG_REG = (ALG_AES_DEC | DST_KEYTAB); g_security_engine->CRYPTO_REG = keyslot_src << 24; g_security_engine->BLOCK_COUNT_REG = 0; g_se_callback->CRYPTO_KEYTABLE_DST_REG = keyslot_dst << 8; /* TODO: Cache flush the wrapped key. */ trigger_se_aes_op(OP_START, NULL, 0, wrapped_key, wrapped_key_size); } void se_crypt_aes(unsigned int keyslot, unsigned char *dst, unsigned int dst_size, const unsigned char *src, unsigned int src_size, unsigned int config, unsigned int mode, unsigned int (*callback)(void)); void se_exp_mod(unsigned int keyslot, unsigned char *buf, unsigned int size, unsigned int (*callback)(void)) { unsigned char stack_buf[KEYSIZE_RSA_MAX]; if (g_security_engine == NULL || keyslot >= KEYSLOT_RSA_MAX || size > KEYSIZE_RSA_MAX) { panic(); } /* Endian swap the input. */ for (unsigned int i = size; i > 0; i--) { stack_buf[i] = buf[size - i]; } /* TODO: Flush cache for stack copy. */ g_security_engine->CONFIG_REG = (ALG_RSA | DST_RSAREG); g_security_engine->RSA_CONFIG = keyslot << 24; g_security_engine->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1; g_security_engine->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2; set_security_engine_callback(callback); trigger_se_rsa_op(stack_buf, size); while (!(g_security_engine->INT_STATUS_REG & 2)) { /* Wait a while */ } }