/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stratosphere.hpp> namespace ams::fssystem { namespace { constexpr inline u32 SdkAddonVersionMin = 0x000B0000; constexpr Result CheckNcaMagic(u32 magic) { /* Verify the magic is not a deprecated one. */ R_UNLESS(magic != NcaHeader::Magic0, fs::ResultUnsupportedSdkVersion()); R_UNLESS(magic != NcaHeader::Magic1, fs::ResultUnsupportedSdkVersion()); R_UNLESS(magic != NcaHeader::Magic2, fs::ResultUnsupportedSdkVersion()); /* Verify the magic is the current one. */ R_UNLESS(magic == NcaHeader::Magic3, fs::ResultInvalidNcaSignature()); return ResultSuccess(); } } NcaReader::NcaReader() : shared_base_storage(), header_storage(), body_storage(), decrypt_aes_ctr(), decrypt_aes_ctr_external(), is_software_aes_prioritized(false), header_encryption_type(NcaHeader::EncryptionType::Auto) { std::memset(std::addressof(this->header), 0, sizeof(this->header)); std::memset(std::addressof(this->decryption_keys), 0, sizeof(this->decryption_keys)); std::memset(std::addressof(this->external_decryption_key), 0, sizeof(this->external_decryption_key)); } NcaReader::~NcaReader() { /* ... */ } Result NcaReader::Initialize(std::shared_ptr<fs::IStorage> base_storage, const NcaCryptoConfiguration &crypto_cfg) { this->shared_base_storage = base_storage; return this->Initialize(this->shared_base_storage.get(), crypto_cfg); } Result NcaReader::Initialize(fs::IStorage *base_storage, const NcaCryptoConfiguration &crypto_cfg) { /* Validate preconditions. */ AMS_ASSERT(base_storage != nullptr); AMS_ASSERT(this->body_storage == nullptr); R_UNLESS(crypto_cfg.generate_key != nullptr, fs::ResultInvalidArgument()); /* Generate keys for header. */ u8 header_decryption_keys[NcaCryptoConfiguration::HeaderEncryptionKeyCount][NcaCryptoConfiguration::Aes128KeySize]; for (size_t i = 0; i < NcaCryptoConfiguration::HeaderEncryptionKeyCount; i++) { crypto_cfg.generate_key(header_decryption_keys[i], AesXtsStorage::KeySize, crypto_cfg.header_encrypted_encryption_keys[i], AesXtsStorage::KeySize, static_cast<s32>(KeyType::NcaHeaderKey), crypto_cfg); } /* Create the header storage. */ const u8 header_iv[AesXtsStorage::IvSize] = {}; std::unique_ptr<fs::IStorage> work_header_storage = std::make_unique<AesXtsStorage>(base_storage, header_decryption_keys[0], header_decryption_keys[1], AesXtsStorage::KeySize, header_iv, AesXtsStorage::IvSize, NcaHeader::XtsBlockSize); R_UNLESS(work_header_storage != nullptr, fs::ResultAllocationFailureInNcaReaderA()); /* Read the header. */ R_TRY(work_header_storage->Read(0, std::addressof(this->header), sizeof(this->header))); /* Validate the magic. */ if (Result magic_result = CheckNcaMagic(this->header.magic); R_FAILED(magic_result)) { /* If we're not allowed to use plaintext headers, stop here. */ R_UNLESS(crypto_cfg.is_plaintext_header_available, magic_result); /* Try to use a plaintext header. */ R_TRY(base_storage->Read(0, std::addressof(this->header), sizeof(this->header))); R_UNLESS(R_SUCCEEDED(CheckNcaMagic(this->header.magic)), magic_result); /* Configure to use the plaintext header. */ s64 base_storage_size; R_TRY(base_storage->GetSize(std::addressof(base_storage_size))); work_header_storage.reset(new fs::SubStorage(base_storage, 0, base_storage_size)); R_UNLESS(work_header_storage != nullptr, fs::ResultAllocationFailureInNcaReaderA()); this->header_encryption_type = NcaHeader::EncryptionType::None; } /* Validate the fixed key signature. */ R_UNLESS(this->header.header1_signature_key_generation <= NcaCryptoConfiguration::Header1SignatureKeyGenerationMax, fs::ResultInvalidNcaHeader1SignatureKeyGeneration()); const u8 *header_1_sign_key_modulus = crypto_cfg.header_1_sign_key_moduli[this->header.header1_signature_key_generation]; AMS_ABORT_UNLESS(header_1_sign_key_modulus != nullptr); { const u8 *sig = this->header.header_sign_1; const size_t sig_size = NcaHeader::HeaderSignSize; const u8 *mod = header_1_sign_key_modulus; const size_t mod_size = NcaCryptoConfiguration::Rsa2048KeyModulusSize; const u8 *exp = crypto_cfg.header_1_sign_key_public_exponent; const size_t exp_size = NcaCryptoConfiguration::Rsa2048KeyPublicExponentSize; const u8 *msg = static_cast<const u8 *>(static_cast<const void *>(std::addressof(this->header.magic))); const size_t msg_size = NcaHeader::Size - NcaHeader::HeaderSignSize * NcaHeader::HeaderSignCount; const bool is_signature_valid = crypto::VerifyRsa2048PssSha256(sig, sig_size, mod, mod_size, exp, exp_size, msg, msg_size); R_UNLESS(is_signature_valid, fs::ResultNcaHeaderSignature1VerificationFailed()); } /* Validate the sdk version. */ R_UNLESS(this->header.sdk_addon_version >= SdkAddonVersionMin, fs::ResultUnsupportedSdkVersion()); /* Validate the key index. */ R_UNLESS(this->header.key_index < NcaCryptoConfiguration::KeyAreaEncryptionKeyIndexCount, fs::ResultInvalidNcaKeyIndex()); /* Check if we have a rights id. */ constexpr const u8 ZeroRightsId[NcaHeader::RightsIdSize] = {}; if (crypto::IsSameBytes(ZeroRightsId, this->header.rights_id, NcaHeader::RightsIdSize)) { /* If we do, then we don't have an external key, so we need to generate decryption keys. */ crypto_cfg.generate_key(this->decryption_keys[NcaHeader::DecryptionKey_AesCtr], crypto::AesDecryptor128::KeySize, this->header.encrypted_key_area + NcaHeader::DecryptionKey_AesCtr * crypto::AesDecryptor128::KeySize, crypto::AesDecryptor128::KeySize, GetKeyTypeValue(this->header.key_index, this->header.GetProperKeyGeneration()), crypto_cfg); /* Copy the hardware speed emulation key. */ std::memcpy(this->decryption_keys[NcaHeader::DecryptionKey_AesCtrHw], this->header.encrypted_key_area + NcaHeader::DecryptionKey_AesCtrHw * crypto::AesDecryptor128::KeySize, crypto::AesDecryptor128::KeySize); } /* Clear the external decryption key. */ std::memset(this->external_decryption_key, 0, sizeof(this->external_decryption_key)); /* Set our decryptor functions. */ this->decrypt_aes_ctr = crypto_cfg.decrypt_aes_ctr; this->decrypt_aes_ctr_external = crypto_cfg.decrypt_aes_ctr_external; /* Set our storages. */ this->header_storage = std::move(work_header_storage); this->body_storage = base_storage; return ResultSuccess(); } fs::IStorage *NcaReader::GetBodyStorage() { return this->body_storage; } u32 NcaReader::GetMagic() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.magic; } NcaHeader::DistributionType NcaReader::GetDistributionType() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.distribution_type; } NcaHeader::ContentType NcaReader::GetContentType() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.content_type; } u8 NcaReader::GetKeyGeneration() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.GetProperKeyGeneration(); } u8 NcaReader::GetKeyIndex() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.key_index; } u64 NcaReader::GetContentSize() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.content_size; } u64 NcaReader::GetProgramId() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.program_id; } u32 NcaReader::GetContentIndex() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.content_index; } u32 NcaReader::GetSdkAddonVersion() const { AMS_ASSERT(this->body_storage != nullptr); return this->header.sdk_addon_version; } void NcaReader::GetRightsId(u8 *dst, size_t dst_size) const { AMS_ASSERT(dst != nullptr); AMS_ASSERT(dst_size >= NcaHeader::RightsIdSize); std::memcpy(dst, this->header.rights_id, NcaHeader::RightsIdSize); } bool NcaReader::HasFsInfo(s32 index) const { AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); return this->header.fs_info[index].start_sector != 0 || this->header.fs_info[index].end_sector != 0; } s32 NcaReader::GetFsCount() const { AMS_ASSERT(this->body_storage != nullptr); for (s32 i = 0; i < NcaHeader::FsCountMax; i++) { if (!this->HasFsInfo(i)) { return i; } } return NcaHeader::FsCountMax; } const Hash &NcaReader::GetFsHeaderHash(s32 index) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); return this->header.fs_header_hash[index]; } void NcaReader::GetFsHeaderHash(Hash *dst, s32 index) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); AMS_ASSERT(dst != nullptr); std::memcpy(dst, std::addressof(this->header.fs_header_hash[index]), sizeof(*dst)); } void NcaReader::GetFsInfo(NcaHeader::FsInfo *dst, s32 index) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); AMS_ASSERT(dst != nullptr); std::memcpy(dst, std::addressof(this->header.fs_info[index]), sizeof(*dst)); } u64 NcaReader::GetFsOffset(s32 index) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); return NcaHeader::SectorToByte(this->header.fs_info[index].start_sector); } u64 NcaReader::GetFsEndOffset(s32 index) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); return NcaHeader::SectorToByte(this->header.fs_info[index].end_sector); } u64 NcaReader::GetFsSize(s32 index) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); return NcaHeader::SectorToByte(this->header.fs_info[index].end_sector - this->header.fs_info[index].start_sector); } void NcaReader::GetEncryptedKey(void *dst, size_t size) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(dst != nullptr); AMS_ASSERT(size >= NcaHeader::EncryptedKeyAreaSize); std::memcpy(dst, this->header.encrypted_key_area, NcaHeader::EncryptedKeyAreaSize); } const void *NcaReader::GetDecryptionKey(s32 index) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::DecryptionKey_Count); return this->decryption_keys[index]; } bool NcaReader::HasValidInternalKey() const { constexpr const u8 ZeroKey[crypto::AesDecryptor128::KeySize] = {}; for (s32 i = 0; i < NcaHeader::DecryptionKey_Count; i++) { if (!crypto::IsSameBytes(ZeroKey, this->header.encrypted_key_area + i * crypto::AesDecryptor128::KeySize, crypto::AesDecryptor128::KeySize)) { return true; } } return false; } bool NcaReader::HasInternalDecryptionKeyForAesHardwareSpeedEmulation() const { constexpr const u8 ZeroKey[crypto::AesDecryptor128::KeySize] = {}; return !crypto::IsSameBytes(ZeroKey, this->GetDecryptionKey(NcaHeader::DecryptionKey_AesCtrHw), crypto::AesDecryptor128::KeySize); } bool NcaReader::IsSoftwareAesPrioritized() const { return this->is_software_aes_prioritized; } void NcaReader::PrioritizeSoftwareAes() { this->is_software_aes_prioritized = true; } bool NcaReader::HasExternalDecryptionKey() const { constexpr const u8 ZeroKey[crypto::AesDecryptor128::KeySize] = {}; return !crypto::IsSameBytes(ZeroKey, this->GetExternalDecryptionKey(), crypto::AesDecryptor128::KeySize); } const void *NcaReader::GetExternalDecryptionKey() const { return this->external_decryption_key; } void NcaReader::SetExternalDecryptionKey(const void *src, size_t size) { AMS_ASSERT(src != nullptr); AMS_ASSERT(size == sizeof(this->external_decryption_key)); std::memcpy(this->external_decryption_key, src, sizeof(this->external_decryption_key)); } void NcaReader::GetRawData(void *dst, size_t dst_size) const { AMS_ASSERT(this->body_storage != nullptr); AMS_ASSERT(dst != nullptr); AMS_ASSERT(dst_size >= sizeof(NcaHeader)); std::memcpy(dst, std::addressof(this->header), sizeof(NcaHeader)); } DecryptAesCtrFunction NcaReader::GetExternalDecryptAesCtrFunction() const { AMS_ASSERT(this->decrypt_aes_ctr != nullptr); return this->decrypt_aes_ctr; } DecryptAesCtrFunction NcaReader::GetExternalDecryptAesCtrFunctionForExternalKey() const { AMS_ASSERT(this->decrypt_aes_ctr_external != nullptr); return this->decrypt_aes_ctr_external; } NcaHeader::EncryptionType NcaReader::GetEncryptionType() const { return this->header_encryption_type; } Result NcaReader::ReadHeader(NcaFsHeader *dst, s32 index) const { AMS_ASSERT(dst != nullptr); AMS_ASSERT(0 <= index && index < NcaHeader::FsCountMax); const s64 offset = sizeof(NcaHeader) + sizeof(NcaFsHeader) * index; return this->header_storage->Read(offset, dst, sizeof(NcaFsHeader)); } Result NcaReader::VerifyHeaderSign2(const void *mod, size_t mod_size) { AMS_ASSERT(this->body_storage != nullptr); constexpr const u8 HeaderSign2KeyPublicExponent[] = { 0x01, 0x00, 0x01 }; const u8 *sig = this->header.header_sign_2; const size_t sig_size = NcaHeader::HeaderSignSize; const u8 *exp = HeaderSign2KeyPublicExponent; const size_t exp_size = sizeof(HeaderSign2KeyPublicExponent); const u8 *msg = static_cast<const u8 *>(static_cast<const void *>(std::addressof(this->header.magic))); const size_t msg_size = NcaHeader::Size - NcaHeader::HeaderSignSize * NcaHeader::HeaderSignCount; const bool is_signature_valid = crypto::VerifyRsa2048PssSha256(sig, sig_size, mod, mod_size, exp, exp_size, msg, msg_size); R_UNLESS(is_signature_valid, fs::ResultNcaHeaderSignature2VerificationFailed()); return ResultSuccess(); } Result NcaFsHeaderReader::Initialize(const NcaReader &reader, s32 index) { /* Reset ourselves to uninitialized. */ this->fs_index = -1; /* Read the header. */ R_TRY(reader.ReadHeader(std::addressof(this->data), index)); /* Generate the hash. */ Hash hash; crypto::GenerateSha256Hash(std::addressof(hash), sizeof(hash), std::addressof(this->data), sizeof(NcaFsHeader)); /* Validate the hash. */ R_UNLESS(crypto::IsSameBytes(std::addressof(reader.GetFsHeaderHash(index)), std::addressof(hash), sizeof(Hash)), fs::ResultNcaFsHeaderHashVerificationFailed()); /* Set our index. */ this->fs_index = index; return ResultSuccess(); } void NcaFsHeaderReader::GetRawData(void *dst, size_t dst_size) const { AMS_ASSERT(this->IsInitialized()); AMS_ASSERT(dst != nullptr); AMS_ASSERT(dst_size >= sizeof(NcaFsHeader)); std::memcpy(dst, std::addressof(this->data), sizeof(NcaFsHeader)); } NcaFsHeader::HashData &NcaFsHeaderReader::GetHashData() { AMS_ASSERT(this->IsInitialized()); return this->data.hash_data; } const NcaFsHeader::HashData &NcaFsHeaderReader::GetHashData() const { AMS_ASSERT(this->IsInitialized()); return this->data.hash_data; } u16 NcaFsHeaderReader::GetVersion() const { AMS_ASSERT(this->IsInitialized()); return this->data.version; } s32 NcaFsHeaderReader::GetFsIndex() const { AMS_ASSERT(this->IsInitialized()); return this->fs_index; } NcaFsHeader::FsType NcaFsHeaderReader::GetFsType() const { AMS_ASSERT(this->IsInitialized()); return this->data.fs_type; } NcaFsHeader::HashType NcaFsHeaderReader::GetHashType() const { AMS_ASSERT(this->IsInitialized()); return this->data.hash_type; } NcaFsHeader::EncryptionType NcaFsHeaderReader::GetEncryptionType() const { AMS_ASSERT(this->IsInitialized()); return this->data.encryption_type; } NcaPatchInfo &NcaFsHeaderReader::GetPatchInfo() { AMS_ASSERT(this->IsInitialized()); return this->data.patch_info; } const NcaPatchInfo &NcaFsHeaderReader::GetPatchInfo() const { AMS_ASSERT(this->IsInitialized()); return this->data.patch_info; } const NcaAesCtrUpperIv NcaFsHeaderReader::GetAesCtrUpperIv() const { AMS_ASSERT(this->IsInitialized()); return this->data.aes_ctr_upper_iv; } bool NcaFsHeaderReader::ExistsSparseLayer() const { AMS_ASSERT(this->IsInitialized()); return this->data.sparse_info.generation != 0; } NcaSparseInfo &NcaFsHeaderReader::GetSparseInfo() { AMS_ASSERT(this->IsInitialized()); return this->data.sparse_info; } const NcaSparseInfo &NcaFsHeaderReader::GetSparseInfo() const { AMS_ASSERT(this->IsInitialized()); return this->data.sparse_info; } }