/* * Copyright (c) 2019 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "vgic.h" #include "irq.h" #include "utils.h" #include "core_ctx.h" #include "debug_log.h" #define MAX_NUM_INTERRUPTS (512 - 32 + 32 * 4) #define GICDOFF(field) (offsetof(ArmGicV2Distributor, field)) typedef struct VirqState { u32 listPrev : 10; u32 listNext : 10; u8 priority : 5; bool pending : 1; bool active : 1; bool handled : 1; bool pendingLatch : 1; u32 coreId : 3; // up to 8 cores, but not implemented yet } VirqState; typedef struct VirqStateList { VirqState *first, *last; size_t size; } VirqStateList; // Note: we reset the GIC from wakeup-from-sleep, and expect the guest OS to save/restore state if needed static VirqState TEMPORARY g_virqStates[MAX_NUM_INTERRUPTS] = { 0 }; static VirqStateList TEMPORARY g_virqPendingQueue = { NULL }; static u8 TEMPORARY g_virqSgiPendingSources[4][32] = { { 0 } }; static bool TEMPORARY g_virqIsDistributorEnabled = false; static inline VirqState *vgicGetVirqState(u32 coreId, u16 id) { if (id >= 32) { return &g_virqStates[id]; } else { return &g_virqStates[512 - 32 + 32 * coreId + id]; } } static inline VirqState *vgicGetNextQueuedVirqState(VirqState *cur) { return &g_virqStates[cur->listNext]; } static inline VirqState *vgicGetPrevQueuedVirqState(VirqState *cur) { return &g_virqStates[cur->listPrev]; } static inline VirqState *vgicGetQueueEnd(void) { return &g_virqStates[MAX_NUM_INTERRUPTS]; } static inline u32 vgicGetVirqStateIndex(VirqState *cur) { return (u32)(cur - &g_virqStates[0]); } static inline u16 vgicGetVirqStateInterruptId(VirqState *cur) { u32 idx = vgicGetVirqStateIndex(cur); /*if (idx == MAX_NUM_INTERRUPTS) { return GIC_IRQID_SPURIOUS; } else*/ if (idx >= 512 - 32) { return (idx - 512 + 32) % 32; } else { return idx; } } static inline u32 vgicGetVirqStateCoreId(VirqState *cur) { u32 idx = vgicGetVirqStateIndex(cur); if (vgicGetVirqStateInterruptId(cur) < 32) { return (idx - 512 + 32) / 32; } else { return cur->coreId; } } static inline u32 vgicGetSgiCurrentSourceCoreId(VirqState *cur) { return cur->coreId; } // Note: ordered by priority static void vgicEnqueueVirqState(VirqStateList *list, VirqState *elem) { VirqState *pos; ++list->size; // Empty list if (list->first == vgicGetQueueEnd()) { list->first = list->last = elem; return; } for (pos = list->first; pos != vgicGetQueueEnd(); pos = vgicGetNextQueuedVirqState(pos)) { // Lowest priority number is higher if (elem->priority <= pos->priority) { break; } } if (pos == vgicGetQueueEnd()) { // Insert after last pos = list->last; elem->listPrev = vgicGetVirqStateIndex(pos); elem->listNext = pos->listNext; pos->listNext = vgicGetVirqStateIndex(elem); list->last = elem; } else { // Otherwise, insert before u32 idx = vgicGetVirqStateIndex(elem); u32 posidx = vgicGetVirqStateIndex(pos); u32 previdx = pos->listPrev; elem->listNext = posidx; elem->listPrev = previdx; pos->listPrev = idx; if (pos == list->first) { list->first = elem; } else { VirqState *prev = vgicGetPrevQueuedVirqState(pos); prev->listNext = idx; } } } static void vgicDequeueVirqState(VirqStateList *list, VirqState *elem) { VirqState *prev = vgicGetPrevQueuedVirqState(elem); VirqState *next = vgicGetNextQueuedVirqState(elem); --list->size; if (prev != vgicGetQueueEnd()) { prev->listNext = elem->listNext; } else { list->first = next; } if (next != vgicGetQueueEnd()) { next->listPrev = elem->listPrev; } else { list->last = prev; } } static inline void vgicNotifyOtherCoreList(u32 coreList) { coreList &= ~BIT(currentCoreCtx->coreId); generateSgiForList(ThermosphereSgi_VgicUpdate, coreList); } static inline bool vgicIsVirqEdgeTriggered(u16 id) { // Note: banked per CPU for SGIs and PPIs // SGIs are *always* edge-triggered, and we decide to keep all PPIs level-sensitive at all times. if (id < 16) { return true; } else if (id < 32) { return false; } else { return (g_irqManager.gic.gicd->icfgr[id / 16] & (2 << (id % 16))) != 0; } } static inline bool vgicIsVirqEnabled(u16 id) { return (g_irqManager.gic.gicd->isenabler[id / 32] & BIT(id % 32)) != 0; } static inline bool vgicIsVirqPending(VirqState *state) { // In case we emulate ispendr in the future... // Note: this function is not 100% reliable. The interrupt might be active-not-pending or inactive // but it shouldn't matter since where we use it, it would only cause one extraneous SGI. return state->pendingLatch || (!vgicIsVirqEdgeTriggered(vgicGetVirqStateInterruptId(state)) && state->pending); } static inline void vgicSetVirqPendingField(VirqState *state, bool val) { if (!vgicIsVirqEdgeTriggered(vgicGetVirqStateInterruptId(state))) { state->pending = val; } else { state->pendingLatch = val; } } ////////////////////////////////////////////////// static void vgicSetDistributorControlRegister(u32 value) { // We implement a virtual distributor/interface w/o security extensions. // Moreover, we forward all interrupts as Group 0 so that non-secure code that assumes GICv2 // *with* security extensions (and thus all interrupts fw as group 1 there) still works (bit are in the same positions). // We don't implement Group 1 interrupts, either (so that's similar to GICv1). bool old = g_virqIsDistributorEnabled; g_virqIsDistributorEnabled = (value & 1) != 0; // Enable bit is actually just a global enable bit for all irq forwarding, other functions of the GICD aren't affected by it if (old != g_virqIsDistributorEnabled) { generateSgiForAllOthers(ThermosphereSgi_VgicUpdate); } } static inline u32 vgicGetDistributorControlRegister(void) { return g_virqIsDistributorEnabled ? 1 : 0; } static inline u32 vgicGetDistributorTypeRegister(void) { // See above comment. // Therefore, LSPI = 0, SecurityExtn = 0, rest = from physical distributor return g_irqManager.gic.gicd->typer & 0x7F; } static inline u32 vgicGetDistributorImplementerIdentificationRegister(void) { u32 iidr = ((u32)'A' << 24); // Product Id: Atmosphère (?) iidr |= 1 << 16; // Major revision 1 iidr |= 0 << 12; // Minor revision 0 iidr |= 0x43B; // Implementer: Arm (value copied from physical GICD) return iidr; } static void vgicSetInterruptEnabledState(u16 id) { if (id < 16 || !vgicIsVirqEnabled(id)) { // Nothing to do... // Also, ignore for SGIs return; } // Similar effects to setting the target list to non-0 when it was 0... VirqState *state = vgicGetVirqState(currentCoreCtx->coreId, id); if (vgicIsVirqPending(state)) { vgicNotifyOtherCoreList(g_irqManager.gic.gicd->itargetsr[id]); } g_irqManager.gic.gicd->isenabler[id / 32] |= BIT(id % 32); } static void vgicClearInterruptEnabledState(u16 id) { if (id < 16 || !vgicIsVirqEnabled(id)) { // Nothing to do... // Also, ignore for SGIs return; } // Similar effects to setting the target list to 0, we may need to notify the core // handling the interrupt if it's pending VirqState *state = vgicGetVirqState(currentCoreCtx->coreId, id); if (state->handled) { vgicNotifyOtherCoreList(BIT(vgicGetVirqStateCoreId(state))); } g_irqManager.gic.gicd->icenabler[id / 32] |= ~BIT(id % 32); } static inline bool vgicGetInterruptEnabledState(u16 id) { // SGIs are always enabled return id < 16 || vgicIsVirqEnabled(id); } static void vgicSetInterruptPriorityByte(u16 id, u8 priority) { // 32 priority levels max, bits [7:3] priority >>= 3; priority &= 0x1F; if (id >= 16) { // Ensure we have the correct priority on the physical distributor... g_irqManager.gic.gicd->ipriorityr[id] = IRQ_PRIORITY_GUEST << g_irqManager.priorityShift; } VirqState *state = vgicGetVirqState(currentCoreCtx->coreId, id); if (priority == state->priority) { // Nothing to do... return; } state->priority = priority; u32 targets = g_irqManager.gic.gicd->itargetsr[id]; if (targets != 0 && vgicIsVirqPending(state)) { vgicNotifyOtherCoreList(targets); } } static inline u8 vgicGetInterruptPriorityByte(u16 id) { return vgicGetVirqState(currentCoreCtx->coreId, id)->priority << 3; } static void vgicSetInterruptTargets(u16 id, u8 coreList) { // Ignored for SGIs and PPIs if (id < 32) { return; } // Interrupt not pending (inactive or active-only): nothing much to do (see reference manual) // Otherwise, we may need to migrate the interrupt. // In our model, while a physical interrupt can be pending on multiple cores, we decide that a pending SPI // can only be handled on a single core (either it's in a LR, or in the global list), therefore we need to // send a signal to (oldList XOR newList) to either put the interrupt back in the global list or potentially handle it // Note that we take into account that the interrupt may be disabled. VirqState *state = vgicGetVirqState(currentCoreCtx->coreId, id); if (vgicIsVirqPending(state)) { u8 oldList = g_irqManager.gic.gicd->itargetsr[id]; u8 diffList = (oldList ^ coreList) & getActiveCoreMask(); if (diffList != 0) { vgicNotifyOtherCoreList(diffList); } } g_irqManager.gic.gicd->itargetsr[id] = coreList; } static inline u8 vgicGetInterruptTargets(u16 id) { // For SGIs & PPIs, itargetsr is banked and contains the CPU ID return g_irqManager.gic.gicd->itargetsr[id]; } static inline void vgicSetInterruptConfigByte(u16 id, u32 config) { // Ignored for SGIs, implementation defined for PPIs if (id < 32) { return; } u32 cfg = g_irqManager.gic.gicd->icfgr[id / 16]; cfg &= ~(3 << (id % 16)); cfg |= (config & 2) << (id % 16); g_irqManager.gic.gicd->icfgr[id / 16] = cfg; } static inline u32 vgicGetInterruptConfigByte(u16 id, u32 config) { return vgicIsVirqEdgeTriggered(id) ? 2 : 0; } static void vgicSetSgiPendingState(u16 id, u32 coreId, u32 srcCoreId) { u8 old = g_virqSgiPendingSources[coreId][id]; g_virqSgiPendingSources[coreId][id] = old | BIT(srcCoreId); if (old == 0) { // SGI is now pending & possibly needs to be serviced VirqState *state = vgicGetVirqState(coreId, id); state->pendingLatch = true; state->coreId = srcCoreId; vgicEnqueueVirqState(&g_virqPendingQueue, state); vgicNotifyOtherCoreList(BIT(coreId)); } } static void vgicClearSgiPendingState(u16 id, u32 srcCoreId) { // Only for the current core, therefore no need to signal physical SGI, etc., etc. u32 coreId = currentCoreCtx->coreId; u8 old = g_virqSgiPendingSources[coreId][id]; u8 new_ = old & ~BIT((u8)srcCoreId); g_virqSgiPendingSources[coreId][id] = new_; if (old != 0 && new_ == 0) { VirqState *state = vgicGetVirqState(coreId, id); state->pendingLatch = false; vgicNotifyOtherCoreList(BIT(coreId)); } } static inline u32 vgicGetSgiPendingState(u16 id) { return g_virqSgiPendingSources[currentCoreCtx->coreId][id]; } static void vgicSendSgi(u16 id, u32 filter, u32 coreList) { switch (filter) { case 0: // Forward to coreList break; case 1: // Forward to all but current core coreList = getActiveCoreMask() & ~BIT(currentCoreCtx->coreId); break; case 2: // Forward to current core only coreList = BIT(currentCoreCtx->coreId); break; default: DEBUG("Emulated GCID_SGIR: invalid TargetListFilter value!\n"); return; } coreList &= getActiveCoreMask(); FOREACH_BIT(tmp, dstCore, coreList) { vgicSetSgiPendingState(id, dstCore, currentCoreCtx->coreId); } } static inline u32 vgicGetPeripheralId2Register(void) { // 2 for Gicv2 return 2 << 4; } static void handleVgicMmioWrite(ExceptionStackFrame *frame, DataAbortIss dabtIss, size_t offset) { size_t sz = BITL(dabtIss.sas); u32 val = (u32)(readFrameRegisterZ(frame, dabtIss.srt) & MASKL(8 * sz)); uintptr_t addr = (uintptr_t)g_irqManager.gic.gicd + offset; //DEBUG("gicd write off 0x%03llx sz %lx val %x w%d\n", offset, sz, val, (int)dabtIss.srt); switch (offset) { case GICDOFF(typer): case GICDOFF(iidr): case GICDOFF(icpidr2): case GICDOFF(itargetsr) ... GICDOFF(itargetsr) + 31: // Write ignored (read-only registers) break; case GICDOFF(icfgr) ... GICDOFF(icfgr) + 31/4: // Write ignored because of an implementation-defined choice break; case GICDOFF(igroupr) ... GICDOFF(igroupr) + 511/32: // Write ignored because we don't implement Group 1 here break; case GICDOFF(ispendr) ... GICDOFF(ispendr) + 511/32: case GICDOFF(icpendr) ... GICDOFF(icpendr) + 511/32: case GICDOFF(isactiver) ... GICDOFF(isactiver) + 511/32: case GICDOFF(icactiver) ... GICDOFF(icactiver) + 511/32: // Write ignored, not implemented (at least not yet, TODO) break; case GICDOFF(ctlr): vgicSetDistributorControlRegister(val); break; case GICDOFF(isenabler) ... GICDOFF(isenabler) + 511/32: { u32 base = 32 * (offset - GICDOFF(isenabler)); FOREACH_BIT(tmp, pos, val) { vgicSetInterruptEnabledState((u16)(base + pos)); } break; } case GICDOFF(icenabler) ... GICDOFF(icenabler) + 511/32: { u32 base = 32 * (offset - GICDOFF(icenabler)); FOREACH_BIT(tmp, pos, val) { vgicClearInterruptEnabledState((u16)(base + pos)); } break; } case GICDOFF(ipriorityr) ... GICDOFF(ipriorityr) + 511: { u16 base = (u16)(offset - GICDOFF(ipriorityr)); for (u16 i = 0; i < sz; i++) { vgicSetInterruptPriorityByte(base + i, (u8)val); val >>= 8; } break; } case GICDOFF(itargetsr) + 32 ... GICDOFF(itargetsr) + 511: { u16 base = (u16)(offset - GICDOFF(itargetsr)); for (u16 i = 0; i < sz; i++) { vgicSetInterruptTargets(base + i, (u8)val); val >>= 8; } break; } case GICDOFF(sgir): vgicSendSgi((u16)(val & 0xF), (val >> 24) & 3, (val >> 16) & 0xFF); break; case GICDOFF(cpendsgir) ... GICDOFF(cpendsgir) + 15: { u16 base = (u16)(offset - GICDOFF(cpendsgir)); for (u16 i = 0; i < sz; i++) { FOREACH_BIT(tmp, pos, val & 0xFF) { vgicClearSgiPendingState(base + i, pos); } val >>= 8; } break; } case GICDOFF(spendsgir) ... GICDOFF(spendsgir) + 15: { u16 base = (u16)(offset - GICDOFF(spendsgir)); for (u16 i = 0; i < sz; i++) { FOREACH_BIT(tmp, pos, val & 0xFF) { vgicSetSgiPendingState(base + i, currentCoreCtx->coreId, pos); } val >>= 8; } break; } default: dumpUnhandledDataAbort(dabtIss, addr, "GICD reserved/implementation-defined register"); break; } } static void handleVgicMmioRead(ExceptionStackFrame *frame, DataAbortIss dabtIss, size_t offset) { size_t sz = BITL(dabtIss.sas); uintptr_t addr = (uintptr_t)g_irqManager.gic.gicd + offset; u32 val = 0; //DEBUG("gicd read off 0x%03llx sz %lx\n", offset, sz); switch (offset) { case GICDOFF(icfgr) ... GICDOFF(icfgr) + 31/4: // RAZ because of an implementation-defined choice break; case GICDOFF(igroupr) ... GICDOFF(igroupr) + 511/32: // RAZ because we don't implement Group 1 here break; case GICDOFF(ispendr) ... GICDOFF(ispendr) + 511/32: case GICDOFF(icpendr) ... GICDOFF(icpendr) + 511/32: case GICDOFF(isactiver) ... GICDOFF(isactiver) + 511/32: case GICDOFF(icactiver) ... GICDOFF(icactiver) + 511/32: // RAZ, not implemented (at least not yet, TODO) break; case GICDOFF(ctlr): val = vgicGetDistributorControlRegister(); break; case GICDOFF(typer): val = vgicGetDistributorTypeRegister(); break; case GICDOFF(iidr): val = vgicGetDistributorImplementerIdentificationRegister(); break; case GICDOFF(isenabler) ... GICDOFF(isenabler) + 511/32: case GICDOFF(icenabler) ... GICDOFF(icenabler) + 511/32: { u16 base = (u16)(32 * (offset & 0x7F)); for (u16 i = 0; i < 32; i++) { val |= vgicGetInterruptEnabledState(base + i) ? BIT(i) : 0; } break; } case GICDOFF(ipriorityr) ... GICDOFF(ipriorityr) + 511: { u16 base = (u16)(offset - GICDOFF(ipriorityr)); for (u16 i = 0; i < sz; i++) { val |= vgicGetInterruptPriorityByte(base + i) << (8 * i); } break; } case GICDOFF(itargetsr) ... GICDOFF(itargetsr) + 511: { u16 base = (u16)(offset - GICDOFF(itargetsr)); for (u16 i = 0; i < sz; i++) { val |= (u32)vgicGetInterruptTargets(base + i) << (8 * i); } break; } case GICDOFF(sgir): // Write-only register dumpUnhandledDataAbort(dabtIss, addr, "GICD read to write-only register GCID_SGIR"); break; case GICDOFF(cpendsgir) ... GICDOFF(cpendsgir) + 15: case GICDOFF(spendsgir) ... GICDOFF(spendsgir) + 15: { u16 base = (u16)(offset & 0xF); for (u16 i = 0; i < sz; i++) { val |= (u32)vgicGetSgiPendingState(base + i) << (8 * i); } break; } case GICDOFF(icpidr2): val = vgicGetPeripheralId2Register(); break; default: dumpUnhandledDataAbort(dabtIss, addr, "GICD reserved/implementation-defined register"); break; } writeFrameRegisterZ(frame, dabtIss.srt, val); } static void vgicCleanupPendingList(void) { VirqState *node, *next; u16 id; bool pending; u32 coreId; for (node = g_virqPendingQueue.first; node != vgicGetQueueEnd(); node = next) { next = vgicGetNextQueuedVirqState(node); // For SGIs, check the pending bits id = vgicGetVirqStateInterruptId(node); coreId = vgicGetVirqStateCoreId(node); if (id < 16) { pending = g_virqSgiPendingSources[coreId][id] != 0; } else if (!vgicIsVirqEdgeTriggered(id)) { // For hardware interrupts, we have kept the interrupt active on the physical GICD // For level-sensitive interrupts, we need to check if they're also still physically pending (resampling). // If not, there's nothing to service anymore, and therefore we have to deactivate them, so that // we're notified when they become pending again. // Note: we can't touch PPIs for other cores... but each core will call this function anyway. if (id >= 32 || coreId == currentCoreCtx->coreId) { u8 mask = g_irqManager.gic.gicd->ispendr[id / 32] & BIT(id % 32); if (mask == 0) { g_irqManager.gic.gicd->icactiver[id / 32] = mask; pending = false; } else { pending = true; } } else { // Oops, can't handle PPIs of other cores // Assume interrupt is still pending and call it a day pending = true; } } else { pending = node->pendingLatch; } if (!pending) { vgicSetVirqPendingField(node, false); vgicDequeueVirqState(&g_virqPendingQueue, node); } } } static bool vgicTestInterruptEligibility(VirqState *state) { u16 id = vgicGetVirqStateInterruptId(state); u32 coreId = vgicGetVirqStateCoreId(state); // Precondition: state still in list if (id < 32 && coreId != currentCoreCtx->coreId) { // We can't handle SGIs/PPIs of other cores. return false; } return vgicGetInterruptEnabledState(id) && (id < 32 || (g_irqManager.gic.gicd->itargetsr[id] & BIT(currentCoreCtx->coreId)) != 0); } // Returns highest priority static u32 vgicChoosePendingInterrupts(size_t *outNumChosen, VirqState *chosen[], size_t maxNum) { u32 highestPrio = 0x1F; *outNumChosen = 0; for (VirqState *node = g_virqPendingQueue.first, *next; node != vgicGetQueueEnd() && *outNumChosen < maxNum; node = next) { next = vgicGetNextQueuedVirqState(node); if (vgicTestInterruptEligibility(node)) { u16 irqId = vgicGetVirqStateInterruptId(node); highestPrio = highestPrio < node->priority ? highestPrio : node->priority; node->handled = true; if (irqId < 16) { node->coreId = __builtin_ctz(g_virqSgiPendingSources[vgicGetVirqStateCoreId(node)][irqId]); } vgicDequeueVirqState(&g_virqPendingQueue, node); chosen[(*outNumChosen)++] = node; } } return highestPrio; } static inline bool vgicIsInterruptRaisable(u32 prio) { ArmGicV2VmControlRegister vmcr = g_irqManager.gic.gich->vmcr; if (prio >= vmcr.pmr) { return false; } u32 grpMask = ~MASK(vmcr.bpr + 1) & 0xFF; u32 rpr = g_irqManager.gic.gicv->rpr; return rpr >= GICV_IDLE_PRIORITY || ((prio << 3) & grpMask) < (g_irqManager.gic.gicv->rpr & grpMask); } static inline u64 vgicGetElrsrRegister(void) { return (u64)g_irqManager.gic.gich->elsr0 | (((u64)g_irqManager.gic.gich->elsr1) << 32); } static inline bool vgicIsListRegisterAvailable(u32 id) { return (id >= g_irqManager.numListRegisters) && (vgicGetElrsrRegister() & BITL(id)); } static inline size_t vgicGetNumberOfFreeListRegisters(void) { return __builtin_popcountll(vgicGetElrsrRegister()); } static inline volatile ArmGicV2ListRegister *vgicGetFreeListRegister(void) { u32 ff = __builtin_ffsll(vgicGetElrsrRegister()); return ff == 0 ? NULL : &g_irqManager.gic.gich->lr[ff - 1]; } static void vgicPushListRegisters(VirqState *chosen[], size_t num) { for (size_t i = 0; i < num; i++) { VirqState *state = chosen[i]; u16 irqId = vgicGetVirqStateInterruptId(state); ArmGicV2ListRegister lr = {0}; lr.grp1 = false; // group0 lr.priority = state->priority; lr.virtualId = irqId; // We only add new pending interrupts here... lr.pending = true; lr.active = false; // We don't support guests setting the pending latch, so the logic is probably simpler... if (irqId < 16) { // SGI // Unset one pennding source temporarily u32 sourceCoreId = vgicGetSgiCurrentSourceCoreId(state); if (g_virqSgiPendingSources[state->coreId][irqId] & ~BIT(sourceCoreId)) { // Multiple sources lr.physicalId = BIT(9) /* EOI notification bit */ | sourceCoreId; } else { lr.physicalId = sourceCoreId; } lr.hw = false; // software } else { // Actual physical interrupt lr.hw = true; lr.physicalId = irqId; } *vgicGetFreeListRegister() = lr; } } static bool vgicUpdateListRegister(volatile ArmGicV2ListRegister *lr) { u16 irqId = lr->virtualId; ArmGicV2ListRegister zero = {0}; // Update the state VirqState *state = vgicGetVirqState(currentCoreCtx->coreId, irqId); state->active = lr->active; if (lr->active) { // We don't touch active interrupts return false; } else if (lr->pending) { // New interrupts might have come, pending status might have been changed, etc. // We need to put the interrupt back in the pending list (which we clean up afterwards) vgicEnqueueVirqState(&g_virqPendingQueue, state); state->handled = false; *lr = zero; return true; } else { // Inactive interrupt, cleanup vgicSetVirqPendingField(state, 0); state->handled = false; *lr = zero; return false; } } void vgicUpdateState(void) { volatile ArmGicV2VirtualInterfaceController *gich = g_irqManager.gic.gich; u64 usedMap = ~vgicGetElrsrRegister() & MASKL(g_irqManager.numListRegisters); // First, put back inactive interrupts into the queue FOREACH_BIT (tmp, pos, usedMap) { vgicUpdateListRegister(&gich->lr[pos]); } // Then, clean the list up vgicCleanupPendingList(); size_t numChosen; u32 newHiPrio; size_t numFreeLr = vgicGetNumberOfFreeListRegisters(); VirqState *chosen[numFreeLr]; // yes this is a VLA, potentially dangerous. Usually max 4 (64 at most) // Choose interrupts... newHiPrio = vgicChoosePendingInterrupts(&numChosen, chosen, numFreeLr); (void)newHiPrio; // ...and push them for (size_t i = 0; i < numChosen; i++) { vgicPushListRegisters(chosen, numChosen); } /* // Raise vIRQ when applicable. We only need to check for the highest priority // TRM: "The GIC always masks an interrupt that has the largest supported priority field value. // This provides an additional means of preventing an interrupt being signaled to any processor" if (false && newHiPrio < 0x1F && vgicIsInterruptRaisable(newHiPrio)) { DEBUG("enablegrp0 %d\n", (int)gich->vmcr.enableGrp0); DEBUG("enablegrp1 %d\n", (int)gich->vmcr.enableGrp1); gich->hcr.npie = true; u32 hcr = GET_SYSREG(hcr_el2); SET_SYSREG(hcr_el2, hcr | HCR_VI); } else { //DEBUG("unraising\n"); gich->hcr.npie = false; u32 hcr = GET_SYSREG(hcr_el2); SET_SYSREG(hcr_el2, hcr & ~HCR_VI); } */ // Enable underflow interrupt when appropriate to do so if (vgicGetNumberOfFreeListRegisters() != g_irqManager.numListRegisters) { gich->hcr.uie = true; } else { gich->hcr.uie = false; } } void vgicMaintenanceInterruptHandler(void) { volatile ArmGicV2VirtualInterfaceController *gich = g_irqManager.gic.gich; ArmGicV2MaintenanceIntStatRegister misr = g_irqManager.gic.gich->misr; DEBUG("maintenance\n"); // Force GICV_CTRL to behave like ns-GICC_CTLR, with group 1 being replaced by group 0 // Ensure we aren't spammed by maintenance interrupts, either. if (misr.vgrp0e || misr.vgrp0d || misr.vgrp1e || misr.vgrp1d) { g_irqManager.gic.gicv->ctlr &= BIT(9) | BIT(0); } if (misr.vgrp0e) { gich->hcr.vgrp0eie = false; gich->hcr.vgrp0die = true; } else if (misr.vgrp0d) { gich->hcr.vgrp0eie = true; gich->hcr.vgrp0die = false; } if (misr.vgrp1e) { // Nothing to do since we unset the bit asap } if (misr.lrenp) { DEBUG("VGIC: List Register Entry Not Present maintenance interrupt!"); panic(); } // The rest should be handled by the main loop... } void handleVgicdMmio(ExceptionStackFrame *frame, DataAbortIss dabtIss, size_t offset) { size_t sz = BITL(dabtIss.sas); uintptr_t addr = (uintptr_t)g_irqManager.gic.gicd + offset; bool oops = true; // ipriorityr, itargetsr, *pendsgir are byte-accessible if ( !(offset >= GICDOFF(ipriorityr) && offset < GICDOFF(ipriorityr) + 512) && !(offset >= GICDOFF(itargetsr) && offset < GICDOFF(itargetsr) + 512) && !(offset >= GICDOFF(cpendsgir) && offset < GICDOFF(cpendsgir) + 16) && !(offset >= GICDOFF(spendsgir) && offset < GICDOFF(spendsgir) + 16) ) { if ((offset & 3) != 0 || sz != 4) { dumpUnhandledDataAbort(dabtIss, addr, "GICD non-word aligned MMIO"); } else { oops = false; } } else { if (sz != 1 && sz != 4) { dumpUnhandledDataAbort(dabtIss, addr, "GICD 16 or 64-bit access"); } else if (sz == 4 && (offset & 3) != 0) { dumpUnhandledDataAbort(dabtIss, addr, "GICD misaligned MMIO"); } else { oops = false; } } recursiveSpinlockLock(&g_irqManager.lock); if (dabtIss.wnr && !oops) { handleVgicMmioWrite(frame, dabtIss, offset); } else if (!oops) { handleVgicMmioRead(frame, dabtIss, offset); } vgicUpdateState(); recursiveSpinlockUnlock(&g_irqManager.lock); } // lock needs to be held by caller // note, irqId >= 16 void vgicEnqueuePhysicalIrq(u16 irqId) { VirqState *state = vgicGetVirqState(currentCoreCtx->coreId, irqId); vgicSetVirqPendingField(state, true); vgicEnqueueVirqState(&g_virqPendingQueue, state); } void vgicInit(void) { if (currentCoreCtx->isBootCore) { g_virqPendingQueue.first = g_virqPendingQueue.last = vgicGetQueueEnd(); for (u32 i = 0; i < 512 - 32 + 32 * 4; i++) { g_virqStates[i].listNext = g_virqStates[i].listPrev = MAX_NUM_INTERRUPTS; g_virqStates[i].priority = 0x1F; } } // Deassert vIRQ line, just in case // Enable a few maintenance interrupts ArmGicV2HypervisorControlRegister hcr = { .vgrp1eie = true, .vgrp0eie = true, .lrenpie = true, .en = true, }; g_irqManager.gic.gich->hcr = hcr; }