/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include "dmnt2_debug_log.hpp"
#include "dmnt2_gdb_server_impl.hpp"
namespace ams::dmnt {
namespace {
constexpr const u32 SdkBreakPoint = 0xE7FFFFFF;
constexpr const u32 SdkBreakPointMask = 0xFFFFFFFF;
constexpr const u32 ArmBreakPoint = 0xE7FFDEFE;
constexpr const u32 ArmBreakPointMask = 0xFFFFFFFF;
constexpr const u32 A64BreakPoint = 0xD4200000;
constexpr const u32 A64BreakPointMask = 0xFFE0001F;
constexpr const u32 A64Halt = 0xD4400000;
constexpr const u32 A64HaltMask = 0xFFE0001F;
constexpr const u32 A32BreakPoint = 0xE1200070;
constexpr const u32 A32BreakPointMask = 0xFFF000F0;
constexpr const u32 T16BreakPoint = 0x0000BE00;
constexpr const u32 T16BreakPointMask = 0x0000FF00;
constexpr const char TargetXmlAarch64[] =
"l"
""
""
"aarch64"
""
""
"";
constexpr const char Aarch64CoreXml[] =
"l\n"
"\n"
"\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\n"
"\t\t\n"
"\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\n"
"\t\n"
"";
constexpr const char Aarch64FpuXml[] =
"l\n"
"\n"
"\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\n"
"\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\n"
"\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\n"
"\t\n"
"\t\t\n"
"\t\t\n"
"\t\n"
"\t\n"
"\t\t\n"
"\t\t\n"
"\t\n"
"\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"";
constexpr const char TargetXmlAarch32[] =
"l"
""
""
""
""
"";
constexpr const char ArmCoreXml[] =
"l\n"
"\n"
"\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\n";
constexpr const char ArmVfpXml[] =
"l\n"
"\n"
"\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\t\n"
"\n";
constexpr const char * const MemoryStateNames[svc::MemoryState_Coverage + 1] = {
"----- Free -----", /* svc::MemoryState_Free */
"Io ", /* svc::MemoryState_Io */
"Static ", /* svc::MemoryState_Static */
"Code ", /* svc::MemoryState_Code */
"CodeData ", /* svc::MemoryState_CodeData */
"Normal ", /* svc::MemoryState_Normal */
"Shared ", /* svc::MemoryState_Shared */
"Alias ", /* svc::MemoryState_Alias */
"AliasCode ", /* svc::MemoryState_AliasCode */
"AliasCodeData ", /* svc::MemoryState_AliasCodeData */
"Ipc ", /* svc::MemoryState_Ipc */
"Stack ", /* svc::MemoryState_Stack */
"ThreadLocal ", /* svc::MemoryState_ThreadLocal */
"Transfered ", /* svc::MemoryState_Transfered */
"SharedTransfered", /* svc::MemoryState_SharedTransfered */
"SharedCode ", /* svc::MemoryState_SharedCode */
"Inaccessible ", /* svc::MemoryState_Inaccessible */
"NonSecureIpc ", /* svc::MemoryState_NonSecureIpc */
"NonDeviceIpc ", /* svc::MemoryState_NonDeviceIpc */
"Kernel ", /* svc::MemoryState_Kernel */
"GeneratedCode ", /* svc::MemoryState_GeneratedCode */
"CodeOut ", /* svc::MemoryState_CodeOut */
"Coverage ", /* svc::MemoryState_Coverage */
};
constexpr const char *GetMemoryStateName(svc::MemoryState state) {
if (static_cast(state) < util::size(MemoryStateNames)) {
return MemoryStateNames[static_cast(state)];
} else {
return "Unknown ";
}
}
constexpr const char *GetMemoryPermissionString(const svc::MemoryInfo &info) {
if (info.state == svc::MemoryState_Free) {
return " ";
} else {
switch (info.permission) {
case svc::MemoryPermission_ReadExecute:
return "r-x";
case svc::MemoryPermission_Read:
return "r--";
case svc::MemoryPermission_ReadWrite:
return "rw-";
default:
return "---";
}
}
}
bool ParsePrefix(char *&packet, const char *prefix) {
const auto len = std::strlen(prefix);
if (std::strncmp(packet, prefix, len) == 0) {
packet += len;
return true;
} else {
return false;
}
}
void AppendReplyOk(char * &reply, char * const reply_end) {
AMS_UNUSED(reply_end);
std::strcpy(reply, "OK");
reply += 2;
}
void AppendReplyError(char * reply, char * const reply_end, const char *err) {
AMS_UNUSED(reply_end);
std::strcpy(reply, err);
reply += std::strlen(err);
}
void AppendReplyFormat(char * &reply, char * const reply_end, const char *fmt, ...) __attribute__((format(printf, 3, 4)));
void AppendReplyFormat(char * &reply, char * const reply_end, const char *fmt, ...) {
if (const auto remaining_size = reply_end - reply; remaining_size > 0) {
std::va_list vl;
va_start(vl, fmt);
reply += util::VSNPrintf(reply, remaining_size, fmt, vl);
va_end(vl);
}
}
constexpr int DecodeHex(char c) {
if ('a' <= c && c <= 'f') {
return 10 + (c - 'a');
} else if ('A' <= c && c <= 'F') {
return 10 + (c - 'A');
} else if ('0' <= c && c <= '9') {
return 0 + (c - '0');
} else {
return -1;
}
}
constexpr u64 DecodeHex(const char *s) {
u64 value = 0;
while (true) {
const char c = *(s++);
if (int v = DecodeHex(c); v >= 0) {
value <<= 4;
value |= v & 0xF;
} else {
break;
}
}
return value;
}
void MemoryToHex(char *dst, char * const dst_end, const void *mem, size_t size) {
const u8 *mem_u8 = static_cast(mem);
while (size-- > 0 && dst < dst_end - 1) {
const u8 v = *(mem_u8++);
*(dst++) = "0123456789abcdef"[v >> 4];
*(dst++) = "0123456789abcdef"[v & 0xF];
}
*dst = 0;
}
void HexToMemory(void *dst, const char *src, size_t size) {
u8 *dst_u8 = static_cast(dst);
for (size_t i = 0; i < size; ++i) {
u8 v = DecodeHex(*(src++)) << 4;
v |= DecodeHex(*(src++)) & 0xF;
*(dst_u8++) = v;
}
}
void ParseOffsetLength(const char *packet, u32 &offset, u32 &length) {
/* Default to zero. */
offset = 0;
length = 0;
bool parsed_offset = false;
while (*packet) {
const char c = *(packet++);
if (c == ',') {
parsed_offset = true;
} else if (auto hex = DecodeHex(c); hex >= 0) {
if (parsed_offset) {
length <<= 4;
length |= hex;
} else {
offset <<= 4;
offset |= hex;
}
}
}
AMS_DMNT2_GDB_LOG_DEBUG("Offset/Length %x/%x\n", offset, length);
}
s32 FindThreadIdIndex(u64 *thread_ids, s32 num_threads, u64 thread_id) {
for (auto i = 0; i < num_threads; ++i) {
if (thread_ids[i] == thread_id) {
return i;
}
}
return 0;
}
void SetGdbRegister32(char * &dst, char * const dst_end, u32 value) {
if (value != 0) {
AppendReplyFormat(dst, dst_end, "%08x", util::ConvertToBigEndian(value));
} else {
AppendReplyFormat(dst, dst_end, "0*\"00");
}
}
void SetGdbRegister64(char * &dst, char * const dst_end, u64 value) {
if (value != 0) {
AppendReplyFormat(dst, dst_end, "%016lx", util::ConvertToBigEndian(value));
} else {
AppendReplyFormat(dst, dst_end, "0*,");
}
}
void SetGdbRegister128(char * &dst, char * const dst_end, u128 value) {
if (value != 0) {
AppendReplyFormat(dst, dst_end, "%016lx%016lx", util::ConvertToBigEndian(static_cast(value >> 0)), util::ConvertToBigEndian(static_cast(value >> BITSIZEOF(u64))));
} else {
AppendReplyFormat(dst, dst_end, "0*<");
}
}
void SetGdbRegisterPacket(char * &dst, char * const dst_end, const svc::ThreadContext &thread_context, bool is_64_bit) {
/* Clear packet. */
dst[0] = 0;
if (is_64_bit) {
/* Copy general purpose registers. */
for (size_t i = 0; i < util::size(thread_context.r); ++i) {
SetGdbRegister64(dst, dst_end, thread_context.r[i]);
}
/* Copy special registers. */
SetGdbRegister64(dst, dst_end, thread_context.fp);
SetGdbRegister64(dst, dst_end, thread_context.lr);
SetGdbRegister64(dst, dst_end, thread_context.sp);
SetGdbRegister64(dst, dst_end, thread_context.pc);
SetGdbRegister32(dst, dst_end, thread_context.pstate);
/* Copy FPU registers. */
for (size_t i = 0; i < util::size(thread_context.v); ++i) {
SetGdbRegister128(dst, dst_end, thread_context.v[i]);
}
SetGdbRegister32(dst, dst_end, thread_context.fpsr);
SetGdbRegister32(dst, dst_end, thread_context.fpcr);
} else {
/* Copy general purpose registers. */
for (size_t i = 0; i < 15; ++i) {
SetGdbRegister32(dst, dst_end, thread_context.r[i]);
}
/* Copy special registers. */
SetGdbRegister32(dst, dst_end, thread_context.pc);
SetGdbRegister32(dst, dst_end, thread_context.pstate);
/* Copy FPU registers. */
for (size_t i = 0; i < util::size(thread_context.v) / 2; ++i) {
SetGdbRegister128(dst, dst_end, thread_context.v[i]);
}
const u32 fpscr = (thread_context.fpsr & 0xF80000FF) | (thread_context.fpcr & 0x07FFFF00);
SetGdbRegister32(dst, dst_end, fpscr);
}
}
void SetGdbRegisterPacket(char * &dst, char * const dst_end, const svc::ThreadContext &thread_context, u64 reg_num, bool is_64_bit) {
/* Clear packet. */
dst[0] = 0;
union {
u32 v32;
u64 v64;
u128 v128;
} v;
size_t reg_size = 0;
if (is_64_bit) {
if (reg_num < 29) {
v.v64 = thread_context.r[reg_num];
reg_size = sizeof(u64);
} else if (reg_num == 29) {
v.v64 = thread_context.fp;
reg_size = sizeof(u64);
} else if (reg_num == 30) {
v.v64 = thread_context.lr;
reg_size = sizeof(u64);
} else if (reg_num == 31) {
v.v64 = thread_context.sp;
reg_size = sizeof(u64);
} else if (reg_num == 32) {
v.v64 = thread_context.pc;
reg_size = sizeof(u64);
} else if (reg_num == 33) {
v.v32 = thread_context.pstate;
reg_size = sizeof(u32);
} else if (reg_num < 66) {
v.v128 = thread_context.v[reg_num - 34];
reg_size = sizeof(u128);
} else if (reg_num == 66) {
v.v32 = thread_context.fpsr;
reg_size = sizeof(u32);
} else if (reg_num == 67) {
v.v32 = thread_context.fpcr;
reg_size = sizeof(u32);
}
} else {
if (reg_num < 15) {
v.v32 = thread_context.r[reg_num];
reg_size = sizeof(u32);
} else if (reg_num == 15) {
v.v32 = thread_context.pc;
reg_size = sizeof(u32);
} else if (reg_num == 25) {
v.v32 = thread_context.pstate;
reg_size = sizeof(u32);
} else if (26 <= reg_num && reg_num < 58) {
const union {
u64 v64[2];
u128 v128;
} fpu_reg = { .v128 = thread_context.v[(reg_num - 26) / 2] };
v.v64 = fpu_reg.v64[(reg_num - 26) % 2];
reg_size = sizeof(u64);
} else if (reg_num == 58) {
const u32 fpscr = (thread_context.fpsr & 0xF80000FF) | (thread_context.fpcr & 0x07FFFF00);
v.v32 = fpscr;
reg_size = sizeof(u32);
}
}
switch (reg_size) {
case sizeof(u32): SetGdbRegister32 (dst, dst_end, v.v32 ); break;
case sizeof(u64): SetGdbRegister64 (dst, dst_end, v.v64 ); break;
case sizeof(u128): SetGdbRegister128(dst, dst_end, v.v128); break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
u64 Aarch32RegisterToAarch64Register(u64 reg_num) {
if (reg_num < 15) {
return reg_num;
} else if (reg_num == 15) {
return 32;
} else if (reg_num == 25) {
return 33;
} else if (26 <= reg_num && reg_num <= 57) {
return 34 + (reg_num - 26);
} else if (reg_num == 58) {
return 66;
} else {
AMS_ABORT("Unknown register number %lu\n", reg_num);
}
}
template requires std::unsigned_integral
util::optional ParseGdbRegister(const char *&src) {
union {
IntType v;
u8 bytes[sizeof(v)];
} reg;
for (size_t i = 0; i < util::size(reg.bytes); ++i) {
const auto high = DecodeHex(*(src++));
const auto low = DecodeHex(*(src++));
if (high < 0 || low < 0) {
return util::nullopt;
}
reg.bytes[i] = (high << 4) | low;
}
return reg.v;
}
ALWAYS_INLINE util::optional ParseGdbRegister32(const char *&src) { return ParseGdbRegister(src); }
ALWAYS_INLINE util::optional ParseGdbRegister64(const char *&src) { return ParseGdbRegister(src); }
ALWAYS_INLINE util::optional ParseGdbRegister128(const char *&src) { return ParseGdbRegister(src); }
void ParseGdbRegisterPacket(svc::ThreadContext &thread_context, const char *src, bool is_64_bit) {
if (is_64_bit) {
/* Copy general purpose registers. */
for (size_t i = 0; i < util::size(thread_context.r); ++i) {
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.r[i] = *v;
} else {
return;
}
}
/* Copy special registers. */
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.fp = *v;
} else {
return;
}
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.lr = *v;
} else {
return;
}
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.sp = *v;
} else {
return;
}
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.pc = *v;
} else {
return;
}
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.pstate = *v;
} else {
return;
}
/* Copy FPU registers. */
for (size_t i = 0; i < util::size(thread_context.v); ++i) {
if (const auto v = ParseGdbRegister128(src); v.has_value()) {
thread_context.v[i] = *v;
} else {
return;
}
}
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.fpsr = *v;
} else {
return;
}
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.fpcr = *v;
} else {
return;
}
} else {
/* Copy general purpose registers. */
for (size_t i = 0; i < 15; ++i) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.r[i] = *v;
} else {
return;
}
}
/* Copy special registers. */
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.pc = *v;
} else {
return;
}
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.pstate = *v;
} else {
return;
}
/* Copy FPU registers. */
for (size_t i = 0; i < util::size(thread_context.v) / 2; ++i) {
if (const auto v = ParseGdbRegister128(src); v.has_value()) {
thread_context.v[i] = *v;
} else {
return;
}
}
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.fpsr = *v & 0xF80000FF;
thread_context.fpcr = *v & 0x07FFFF00;
} else {
return;
}
}
}
void ParseGdbRegisterPacket(svc::ThreadContext &thread_context, const char *src, u64 reg_num, bool is_64_bit) {
if (is_64_bit) {
if (reg_num < 29) {
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.r[reg_num] = *v;
}
} else if (reg_num == 29) {
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.fp = *v;
}
} else if (reg_num == 30) {
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.lr = *v;
}
} else if (reg_num == 31) {
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.sp = *v;
}
} else if (reg_num == 32) {
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
thread_context.pc = *v;
}
} else if (reg_num == 33) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.pstate = *v;
}
} else if (reg_num < 66) {
if (const auto v = ParseGdbRegister128(src); v.has_value()) {
thread_context.v[reg_num - 34] = *v;
}
} else if (reg_num == 66) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.fpsr = *v;
}
} else if (reg_num == 67) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.fpcr = *v;
}
}
} else {
if (reg_num < 15) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.r[reg_num] = *v;
}
} else if (reg_num == 15) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.pc = *v;
}
} else if (reg_num == 25) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.pstate = *v;
}
} else if (26 <= reg_num && reg_num < 58) {
union {
u64 v64[2];
u128 v128;
} fpu_reg = { .v128 = thread_context.v[(reg_num - 26) / 2] };
if (const auto v = ParseGdbRegister64(src); v.has_value()) {
fpu_reg.v64[(reg_num - 26) % 2] = *v;
thread_context.v[(reg_num - 26) / 2] = fpu_reg.v128;
}
} else if (reg_num == 58) {
if (const auto v = ParseGdbRegister32(src); v.has_value()) {
thread_context.fpsr = *v & 0xF80000FF;
thread_context.fpcr = *v & 0x07FFFF00;
}
}
}
}
u32 RegisterToContextFlags(u64 reg_num, bool is_64_bit) {
/* Convert register number. */
if (!is_64_bit) {
reg_num = Aarch32RegisterToAarch64Register(reg_num);
}
/* Get flags. */
u32 flags = 0;
if (reg_num < 29) {
flags = svc::ThreadContextFlag_General;
} else if (reg_num < 34) {
flags = svc::ThreadContextFlag_Control;
} else if (reg_num < 66) {
flags = svc::ThreadContextFlag_Fpu;
} else if (reg_num == 66) {
flags = svc::ThreadContextFlag_FpuControl;
}
return flags;
}
constinit os::SdkMutex g_annex_buffer_lock;
constinit char g_annex_buffer[2 * GdbPacketBufferSize];
enum AnnexBufferContents {
AnnexBufferContents_Invalid,
AnnexBufferContents_Processes,
AnnexBufferContents_Threads,
AnnexBufferContents_Libraries,
};
constinit AnnexBufferContents g_annex_buffer_contents = AnnexBufferContents_Invalid;
void GetAnnexBufferContents(char * &dst, u32 offset, u32 length) {
const u32 annex_len = std::strlen(g_annex_buffer);
if (offset <= annex_len) {
if (offset + length < annex_len) {
dst[0] = 'm';
std::memcpy(dst + 1, g_annex_buffer + offset, length);
dst[1 + length] = 0;
dst += 1 + length;
} else {
const auto size = annex_len - offset;
dst[0] = 'l';
std::memcpy(dst + 1, g_annex_buffer + offset, size);
dst[1 + size] = 0;
dst += 1 + size;
}
} else {
dst[0] = '1';
dst[1] = 0;
dst += 1;
}
}
constinit os::SdkMutex g_event_request_lock;
constinit os::SdkMutex g_event_lock;
constinit os::SdkConditionVariable g_event_request_cv;
constinit os::SdkConditionVariable g_event_done_cv;
}
GdbServerImpl::GdbServerImpl(int socket, void *stack, size_t stack_size) : m_socket(socket), m_session(socket), m_packet_io(), m_state(State::Initial), m_debug_process(), m_event(os::EventClearMode_AutoClear) {
/* Create and start the events thread. */
R_ABORT_UNLESS(os::CreateThread(std::addressof(m_events_thread), DebugEventsThreadEntry, this, stack, stack_size, os::HighestThreadPriority - 1));
os::StartThread(std::addressof(m_events_thread));
/* Set our state. */
m_state = State::Running;
}
GdbServerImpl::~GdbServerImpl() {
/* Set ourselves as killed. */
m_killed = true;
/* Signal to our events thread. */
{
std::scoped_lock lk(g_event_request_lock);
g_event_request_cv.Signal();
}
/* Signal our event. */
m_event.Signal();
/* Wait for our thread to finish. */
os::WaitThread(std::addressof(m_events_thread));
os::DestroyThread(std::addressof(m_events_thread));
/* Clear our state. */
m_state = State::Destroyed;
/* Detach. */
if (this->HasDebugProcess()) {
m_debug_process.Detach();
}
}
void GdbServerImpl::DebugEventsThread() {
/* Process events. */
{
std::scoped_lock lk(g_event_lock);
/* Loop while we're not killed. */
while (!m_killed) {
/* Wait for a request to come in. */
g_event_request_cv.Wait(g_event_lock);
/* Check that we're not killed now. */
if (m_killed) {
break;
}
/* Detach. */
m_debug_process.Detach();
/* Check if we need to start the process. */
const bool start_process = m_process_id == m_wait_process_id;
{
/* Clear our wait process id. */
ON_SCOPE_EXIT { if (start_process) { m_wait_process_id = os::InvalidProcessId; } };
/* If we have a process id, attach. */
if (R_FAILED(m_debug_process.Attach(m_process_id, m_process_id == m_wait_process_id))) {
AMS_DMNT2_GDB_LOG_DEBUG("Failed to attach to %016lx\n", m_process_id.value);
g_event_done_cv.Signal();
continue;
}
}
/* Set our process id. */
m_process_id = m_debug_process.GetProcessId();
/* Signal that we're done attaching. */
g_event_done_cv.Signal();
/* Process debug events without the lock held. */
{
g_event_lock.Unlock();
this->ProcessDebugEvents();
g_event_lock.Lock();
}
/* Clear our process id and detach. */
m_process_id = os::InvalidProcessId;
m_debug_process.Detach();
}
}
/* Set our state. */
m_state = State::Exited;
}
void GdbServerImpl::ProcessDebugEvents() {
AMS_DMNT2_GDB_LOG_DEBUG("Processing debug events for %016lx\n", m_process_id.value);
u64 new_hb_nro_addr = 0;
u32 new_hb_nro_insn = 0;
while (true) {
/* Wait for an event to come in. */
const Result wait_result = [&] ALWAYS_INLINE_LAMBDA {
std::scoped_lock lk(g_event_lock);
s32 dummy = -1;
svc::Handle handle = m_debug_process.GetHandle();
R_RETURN(svc::WaitSynchronization(std::addressof(dummy), std::addressof(handle), 1, TimeSpan::FromMilliSeconds(20).GetNanoSeconds()));
}();
/* Check if we're killed. */
if (m_killed || !m_debug_process.IsValid()) {
break;
}
/* If we didn't get an event, try again. */
if (svc::ResultTimedOut::Includes(wait_result)) {
continue;
}
/* Try to get the event. */
svc::DebugEventInfo d;
if (R_FAILED(m_debug_process.GetProcessDebugEvent(std::addressof(d)))) {
continue;
}
/* Process the event. */
GdbSignal signal;
char send_buffer[GdbPacketBufferSize];
u64 thread_id = d.thread_id;
m_debug_process.ClearStep();
char * reply_cur = send_buffer;
char * const reply_end = std::end(send_buffer);
send_buffer[0] = 0;
switch (d.type) {
case svc::DebugEvent_Exception:
{
switch (d.info.exception.type) {
case svc::DebugException_BreakPoint:
{
signal = GdbSignal_BreakpointTrap;
const uintptr_t address = d.info.exception.address;
const bool is_instr = d.info.exception.specific.break_point.type == svc::BreakPointType_HardwareInstruction;
AMS_DMNT2_GDB_LOG_DEBUG("BreakPoint %lx, addr=%lx, type=%s\n", thread_id, address, is_instr ? "Instr" : "Data");
if (is_instr) {
AppendReplyFormat(reply_cur, reply_end, "T%02Xthread:p%lx.%lx;hwbreak:;", static_cast(signal), m_process_id.value, thread_id);
} else {
bool read = false, write = false;
const char *type = "watch";
if (R_SUCCEEDED(m_debug_process.GetWatchPointInfo(address, read, write))) {
if (read && write) {
type = "awatch";
} else if (read) {
type = "rwatch";
}
} else {
AMS_DMNT2_GDB_LOG_DEBUG("GetWatchPointInfo FAIL %lx, addr=%lx, type=%s\n", thread_id, address, is_instr ? "Instr" : "Data");
}
AppendReplyFormat(reply_cur, reply_end, "T%02Xthread:p%lx.%lx;%s:%lx;", static_cast(signal), m_process_id.value, thread_id, type, address);
}
}
break;
case svc::DebugException_UserBreak:
{
const uintptr_t address = d.info.exception.address;
const auto &info = d.info.exception.specific.user_break;
AMS_DMNT2_GDB_LOG_DEBUG("UserBreak %lx, addr=%lx, reason=%x, data=0x%lx, size=0x%lx\n", thread_id, address, info.break_reason, info.address, info.size);
/* Check reason. */
/* TODO: libnx/Nintendo provide addresses in different ways, but we could optimize to avoid iterating all memory repeatedly. */
if ((info.break_reason & svc::BreakReason_NotificationOnlyFlag) != 0) {
const auto reason = info.break_reason & ~svc::BreakReason_NotificationOnlyFlag;
if (reason == svc::BreakReason_PostLoadDll || reason == svc::BreakReason_PostUnloadDll) {
/* Re-collect the process's modules. */
m_debug_process.CollectModules();
}
if (m_debug_process.GetOverrideStatus().IsHbl() && reason == svc::BreakReason_PostLoadDll) {
if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(new_hb_nro_insn), info.address, sizeof(new_hb_nro_insn)))) {
const u32 break_insn = SdkBreakPoint;
if (R_SUCCEEDED(m_debug_process.WriteMemory(std::addressof(break_insn), info.address, sizeof(break_insn)))) {
AMS_DMNT2_GDB_LOG_DEBUG("Set automatic break on new homebrew NRO (%lx, %lx)\n", info.address, info.size);
new_hb_nro_addr = info.address;
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Failed to set automatic break on new homebrew NRO (%lx, %lx)\n", info.address, info.size);
}
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Failed to read first insn on new homebrew NRO (%lx, %lx)\n", info.address, info.size);
}
}
/* This was just a notification, so we should continue. */
m_debug_process.Continue();
continue;
}
/* Check if we should automatically continue. */
svc::ThreadContext ctx;
if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) {
u32 insn = 0;
if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(insn), ctx.pc, sizeof(insn)))) {
constexpr u32 Aarch64SvcBreakValue = 0xD4000001 | (svc::SvcId_Break << 5);
constexpr u32 Aarch32SvcBreakValue = 0xEF000000 | (svc::SvcId_Break);
bool is_svc_break = m_debug_process.Is64Bit() ? (insn == Aarch64SvcBreakValue) : (insn == Aarch32SvcBreakValue);
if (!is_svc_break) {
AMS_DMNT2_GDB_LOG_ERROR("UserBreak from non-SvcBreak (%08x)\n", insn);
m_debug_process.Continue();
continue;
}
}
}
signal = GdbSignal_BreakpointTrap;
}
break;
case svc::DebugException_DebuggerBreak:
{
signal = GdbSignal_Interrupt;
thread_id = m_debug_process.GetPreferredDebuggerBreakThreadId();
svc::ThreadContext ctx;
if (thread_id == 0 || thread_id == static_cast(-1) || R_FAILED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) {
thread_id = m_debug_process.GetLastThreadId();
}
AMS_DMNT2_GDB_LOG_DEBUG("DebuggerBreak %lx, last=%lx\n", thread_id, m_debug_process.GetLastThreadId());
m_debug_process.SetLastThreadId(thread_id);
m_debug_process.SetThreadIdOverride(thread_id);
}
break;
case svc::DebugException_UndefinedInstruction:
{
signal = GdbSignal_IllegalInstruction;
uintptr_t address = d.info.exception.address;
const u32 insn = d.info.exception.specific.undefined_instruction.insn;
u32 new_insn = 0;
AMS_DMNT2_GDB_LOG_DEBUG("Undefined Instruction %lx, address=%p, insn=%08x\n", thread_id, reinterpret_cast(address), insn);
bool is_new_hb_nro = false;
svc::ThreadContext ctx;
if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) {
bool insn_changed = false;
if (ctx.pstate & 0x20) {
/* Thumb mode. */
address &= ~1;
if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(new_insn), address, 2))) {
switch ((new_insn >> 11) & 0x1F) {
case 0x1D:
case 0x1E:
case 0x1F:
{
if (R_SUCCEEDED(m_debug_process.ReadMemory(reinterpret_cast(std::addressof(new_insn)) + 2, address + 2, 2))) {
insn_changed = (new_insn != insn);
}
}
break;
default:
insn_changed = (new_insn != insn);
break;
}
if ((insn & T16BreakPointMask) == T16BreakPoint) {
signal = GdbSignal_BreakpointTrap;
}
}
} else {
/* Non-thumb. */
if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(new_insn), address, sizeof(new_insn)))) {
insn_changed = (new_insn != insn);
}
if (((insn & SdkBreakPointMask) == SdkBreakPoint) ||
((insn & ArmBreakPointMask) == ArmBreakPoint) ||
((insn & A64BreakPointMask) == A64BreakPoint) ||
((insn & A32BreakPointMask) == A32BreakPoint) ||
((insn & A64HaltMask) == A64Halt))
{
signal = GdbSignal_BreakpointTrap;
}
if (m_debug_process.GetOverrideStatus().IsHbl() && address == new_hb_nro_addr && insn == SdkBreakPoint) {
if (R_SUCCEEDED(m_debug_process.WriteMemory(std::addressof(new_hb_nro_insn), new_hb_nro_addr, sizeof(new_hb_nro_insn)))) {
AMS_DMNT2_GDB_LOG_DEBUG("Did automatic break on new homebrew NRO (%lx)\n", address);
new_hb_nro_addr = 0;
new_hb_nro_insn = 0;
is_new_hb_nro = true;
} else {
AMS_DMNT2_GDB_LOG_ERROR("Failed to restore instruction for new homebrew NRO (%lx)!\n", address);
}
}
}
if (insn_changed) {
AMS_DMNT2_GDB_LOG_DEBUG("Instruction Changed %lx, address=%p, insn=%08x, new_insn=%08x\n", thread_id, reinterpret_cast(address), insn, new_insn);
}
}
if (signal == GdbSignal_IllegalInstruction) {
AMS_DMNT2_GDB_LOG_DEBUG("Illegal Instruction %lx, address=%p, insn=%08x\n", thread_id, reinterpret_cast(address), insn);
} else if (signal == GdbSignal_BreakpointTrap && ((insn & SdkBreakPointMask) != SdkBreakPoint)) {
AMS_DMNT2_GDB_LOG_DEBUG("Non-SDK BreakPoint %lx, address=%p, insn=%08x\n", thread_id, reinterpret_cast(address), insn);
}
if (signal == GdbSignal_BreakpointTrap && !is_new_hb_nro) {
AppendReplyFormat(reply_cur, reply_end, "T%02Xthread:p%lx.%lx;swbreak:;", static_cast(signal), m_process_id.value, thread_id);
}
m_debug_process.ClearStep();
}
break;
default:
AMS_DMNT2_GDB_LOG_DEBUG("Unhandled Exception %u %lx\n", static_cast(d.info.exception.type), thread_id);
signal = GdbSignal_SegmentationFault;
break;
}
if (reply_cur == send_buffer) {
AppendReplyFormat(reply_cur, reply_end, "T%02Xthread:p%lx.%lx;", static_cast(signal), m_process_id.value, thread_id);
}
m_debug_process.SetLastThreadId(thread_id);
m_debug_process.SetLastSignal(signal);
}
break;
case svc::DebugEvent_CreateThread:
{
AMS_DMNT2_GDB_LOG_DEBUG("CreateThread %lx\n", thread_id);
if (m_debug_process.IsValid()) {
m_debug_process.Continue();
} else {
AppendReplyFormat(reply_cur, reply_end, "W00");
}
}
break;
case svc::DebugEvent_ExitThread:
{
AMS_DMNT2_GDB_LOG_DEBUG("ExitThread %lx\n", thread_id);
if (m_debug_process.IsValid()) {
m_debug_process.Continue();
} else {
AppendReplyFormat(reply_cur, reply_end, "W00");
}
}
break;
case svc::DebugEvent_ExitProcess:
{
m_killed = true;
AMS_DMNT2_GDB_LOG_DEBUG("ExitProcess\n");
if (d.info.exit_process.reason == svc::ProcessExitReason_ExitProcess) {
AppendReplyFormat(reply_cur, reply_end, "W00");
} else {
AppendReplyFormat(reply_cur, reply_end, "X%02X", GdbSignal_Killed);
}
m_debug_process.Detach();
}
break;
default:
AMS_DMNT2_GDB_LOG_DEBUG("Unhandled ProcessEvent %u %lx\n", static_cast(d.type), thread_id);
m_debug_process.Continue();
break;
}
if (reply_cur != send_buffer) {
bool do_break;
this->SendPacket(std::addressof(do_break), send_buffer);
if (do_break) {
m_debug_process.Break();
}
}
}
}
void GdbServerImpl::AppendStopReplyPacket(GdbSignal signal) {
/* Set the signal. */
AppendReplyFormat(m_reply_cur, m_reply_end, "T%02X", static_cast(signal));
/* Get the last thread id. */
const u64 thread_id = m_debug_process.GetLastThreadId();
/* Get the thread context. */
svc::ThreadContext thread_context = {};
m_debug_process.GetThreadContext(std::addressof(thread_context), thread_id, svc::ThreadContextFlag_General | svc::ThreadContextFlag_Control);
/* Add important registers. */
/* TODO: aarch32 */
{
if (thread_context.fp != 0) {
AppendReplyFormat(m_reply_cur, m_reply_end, "1d:%016lx", util::ConvertToBigEndian(thread_context.fp));
} else {
AppendReplyFormat(m_reply_cur, m_reply_end, "1d:0*,");
}
if (thread_context.sp != 0) {
AppendReplyFormat(m_reply_cur, m_reply_end, ";1f:%016lx", util::ConvertToBigEndian(thread_context.sp));
} else {
AppendReplyFormat(m_reply_cur, m_reply_end, ";1f:0*,");
}
if (thread_context.pc != 0) {
AppendReplyFormat(m_reply_cur, m_reply_end, ";20:%016lx", util::ConvertToBigEndian(thread_context.pc));
} else {
AppendReplyFormat(m_reply_cur, m_reply_end, ";20:0*,");
}
}
/* Add the thread id. */
AppendReplyFormat(m_reply_cur, m_reply_end, ";thread:p%lx.%lx", m_process_id.value, thread_id);
/* Add the thread core. */
{
u32 core = 0;
m_debug_process.GetThreadCurrentCore(std::addressof(core), thread_id);
AppendReplyFormat(m_reply_cur, m_reply_end, ";core:%u;", core);
}
}
void GdbServerImpl::LoopProcess() {
/* Process packets. */
while (m_session.IsValid()) {
/* Receive a packet. */
bool do_break = false;
char recv_buf[GdbPacketBufferSize];
char *packet = this->ReceivePacket(std::addressof(do_break), recv_buf, sizeof(recv_buf));
if (!do_break && packet != nullptr) {
/* Process the packet. */
char reply_buffer[GdbPacketBufferSize];
this->ProcessPacket(packet, reply_buffer);
/* Send packet. */
this->SendPacket(std::addressof(do_break), reply_buffer);
}
/* If we should, break the process. */
if (do_break) {
m_debug_process.Break();
}
}
}
void GdbServerImpl::ProcessPacket(char *receive, char *reply) {
/* Set our fields. */
m_receive_packet = receive;
m_reply_cur = reply;
m_reply_end = reply + GdbPacketBufferSize;
/* Log the packet we're processing. */
AMS_DMNT2_GDB_LOG_DEBUG("Receive: %s\n", m_receive_packet);
/* Clear our reply packet. */
reply[0] = 0;
/* Handle the received packet. */
switch (m_receive_packet[0]) {
case 'D':
this->D();
break;
case 'G':
this->G();
break;
case 'H':
this->H();
break;
case 'M':
this->M();
break;
case 'P':
this->P();
break;
case 'Q':
this->Q();
break;
case 'T':
this->T();
break;
case 'Z':
this->Z();
break;
case 'c':
this->c();
break;
case 'k':
this->k();
break;
case 'g':
if (!this->g()) {
m_killed = true;
}
break;
case 'm':
this->m();
break;
case 'p':
this->p();
break;
case 'v':
this->v();
break;
case 'q':
this->q();
break;
case 'z':
this->z();
break;
case '!':
AppendReplyOk(m_reply_cur, m_reply_end);
break;
case '?':
this->QuestionMark();
break;
default:
AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented: %s\n", m_receive_packet);
break;
}
}
void GdbServerImpl::D() {
m_debug_process.Detach();
AppendReplyOk(m_reply_cur, m_reply_end);
}
void GdbServerImpl::G() {
/* Get thread id. */
u32 thread_id = m_debug_process.GetThreadIdOverride();
if (thread_id == 0 || thread_id == static_cast(-1)) {
thread_id = m_debug_process.GetLastThreadId();
}
/* Get thread context. */
svc::ThreadContext ctx;
if (R_FAILED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_All))) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Update the thread context. */
ParseGdbRegisterPacket(ctx, m_receive_packet, m_debug_process.Is64Bit());
/* Set the thread context. */
if (R_SUCCEEDED(m_debug_process.SetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_All))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::H() {
if (this->HasDebugProcess()) {
if (ParsePrefix(m_receive_packet, "Hg") || ParsePrefix(m_receive_packet, "HG")) {
this->Hg();
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::Hg() {
bool success = false;
s64 thread_id;
if (const char *dot = std::strchr(m_receive_packet, '.'); dot != nullptr) {
thread_id = std::strcmp(dot + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(dot + 1));
AMS_DMNT2_GDB_LOG_DEBUG("Set thread id = %lx\n", thread_id);
u64 thread_ids[DebugProcess::ThreadCountMax];
s32 num_threads;
if (R_SUCCEEDED(m_debug_process.GetThreadList(std::addressof(num_threads), thread_ids, util::size(thread_ids)))) {
if (thread_id == 0) {
thread_id = thread_ids[0];
}
for (auto i = 0; i < num_threads; ++i) {
if (thread_id == -1 || static_cast(thread_id) == thread_ids[i]) {
svc::ThreadContext context;
if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(context), thread_ids[i], svc::ThreadContextFlag_Control))) {
success = true;
if (thread_id != -1) {
m_debug_process.SetThreadIdOverride(thread_ids[i]);
}
}
}
}
}
}
if (success) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::M() {
++m_receive_packet;
/* Validate format. */
char *comma = std::strchr(m_receive_packet, ',');
if (comma == nullptr) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
*comma = 0;
char *colon = std::strchr(comma + 1, ':');
if (colon == nullptr) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
*colon = 0;
/* Parse address/length. */
const u64 address = DecodeHex(m_receive_packet);
const u64 length = DecodeHex(comma + 1);
if (length >= sizeof(m_buffer)) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Decode the memory. */
HexToMemory(m_buffer, colon + 1, length);
/* Write the memory. */
if (R_SUCCEEDED(m_debug_process.WriteMemory(m_buffer, address, length))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::P() {
++m_receive_packet;
/* Validate format. */
char *equal = std::strchr(m_receive_packet, '=');
if (equal == nullptr) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
*equal = 0;
/* Decode the register. */
const u64 reg_num = DecodeHex(m_receive_packet);
/* Get the flags. */
const u32 flags = RegisterToContextFlags(reg_num, m_debug_process.Is64Bit());
/* Determine thread id. */
u32 thread_id = m_debug_process.GetThreadIdOverride();
if (thread_id == 0 || thread_id == static_cast(-1)) {
thread_id = m_debug_process.GetLastThreadId();
}
/* Update the register. */
svc::ThreadContext ctx;
if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, flags))) {
ParseGdbRegisterPacket(ctx, equal + 1, reg_num, m_debug_process.Is64Bit());
if (R_SUCCEEDED(m_debug_process.SetThreadContext(std::addressof(ctx), thread_id, flags))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::Q() {
if (false) {
/* TODO: QStartNoAckMode? */
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented Q: %s\n", m_receive_packet);
}
}
void GdbServerImpl::T() {
if (const char *dot = std::strchr(m_receive_packet, '.'); dot != nullptr) {
const u64 thread_id = DecodeHex(dot + 1);
svc::ThreadContext ctx;
if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyFormat(m_reply_cur, m_reply_end, "E01");
}
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::Z() {
/* Increment past the 'Z'. */
++m_receive_packet;
/* Decode the type. */
if (!('0' <= m_receive_packet[0] && m_receive_packet[0] <= '4') || m_receive_packet[1] != ',') {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
const auto type = m_receive_packet[0] - '0';
m_receive_packet += 2;
/* Decode the address/length. */
const char *comma = std::strchr(m_receive_packet, ',');
if (comma == nullptr) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Parse address/length. */
const u64 address = DecodeHex(m_receive_packet);
const u64 length = DecodeHex(comma + 1);
switch (type) {
case 0: /* SW */
{
if (length == 2 || length == 4) {
if (R_SUCCEEDED(m_debug_process.SetBreakPoint(address, length, false))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
}
break;
case 1: /* HW */
{
if (length == 2 || length == 4) {
if (R_SUCCEEDED(m_debug_process.SetHardwareBreakPoint(address, length, false))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
}
break;
case 2: /* Watch-W */
{
if (m_debug_process.IsValidWatchPoint(address, length)) {
if (R_SUCCEEDED(m_debug_process.SetWatchPoint(address, length, false, true))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
}
break;
case 3: /* Watch-R */
{
if (m_debug_process.IsValidWatchPoint(address, length)) {
if (R_SUCCEEDED(m_debug_process.SetWatchPoint(address, length, true, false))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
}
break;
case 4: /* Watch-A */
{
if (m_debug_process.IsValidWatchPoint(address, length)) {
if (R_SUCCEEDED(m_debug_process.SetWatchPoint(address, length, true, true))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
}
break;
default:
break;
}
}
void GdbServerImpl::c() {
/* Get thread id. */
u64 thread_id = m_debug_process.GetThreadIdOverride();
if (thread_id == 0 || thread_id == static_cast(-1)) {
thread_id = m_debug_process.GetLastThreadId();
}
/* Continue the thread. */
Result result;
if (thread_id == m_debug_process.GetLastThreadId()) {
result = m_debug_process.Continue(thread_id);
} else {
result = m_debug_process.Continue();
}
if (R_SUCCEEDED(result)) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
bool GdbServerImpl::g() {
/* Get thread id. */
u64 thread_id = m_debug_process.GetThreadIdOverride();
if (thread_id == 0 || thread_id == static_cast(-1)) {
thread_id = m_debug_process.GetLastThreadId();
}
/* Get thread context. */
svc::ThreadContext thread_context;
if (R_FAILED(m_debug_process.GetThreadContext(std::addressof(thread_context), thread_id, svc::ThreadContextFlag_All))) {
return false;
}
/* Populate reply packet. */
SetGdbRegisterPacket(m_reply_cur, m_reply_end, thread_context, m_debug_process.Is64Bit());
return true;
}
void GdbServerImpl::m() {
++m_receive_packet;
/* Validate format. */
const char *comma = std::strchr(m_receive_packet, ',');
if (comma == nullptr) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Parse address/length. */
const u64 address = DecodeHex(m_receive_packet);
const u64 length = DecodeHex(comma + 1);
if (length >= sizeof(m_buffer)) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Read the memory. */
/* TODO: Detect partial readability? */
if (R_FAILED(m_debug_process.ReadMemory(m_buffer, address, length))) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Encode the memory. */
MemoryToHex(m_reply_cur, m_reply_end, m_buffer, length);
}
void GdbServerImpl::k() {
m_debug_process.Terminate();
m_killed = true;
}
void GdbServerImpl::p() {
++m_receive_packet;
/* Decode the register. */
const u64 reg_num = DecodeHex(m_receive_packet);
/* Get the flags. */
const u32 flags = RegisterToContextFlags(reg_num, m_debug_process.Is64Bit());
/* Determine thread id. */
u32 thread_id = m_debug_process.GetThreadIdOverride();
if (thread_id == 0 || thread_id == static_cast(-1)) {
thread_id = m_debug_process.GetLastThreadId();
}
/* Get the register. */
svc::ThreadContext ctx;
if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, flags))) {
SetGdbRegisterPacket(m_reply_cur, m_reply_end, ctx, reg_num, m_debug_process.Is64Bit());
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::v() {
if (ParsePrefix(m_receive_packet, "vAttach;")) {
this->vAttach();
} else if (ParsePrefix(m_receive_packet, "vCont")) {
this->vCont();
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented v: %s\n", m_receive_packet);
}
}
void GdbServerImpl::vAttach() {
if (!this->HasDebugProcess()) {
/* Get the process id. */
if (const u64 process_id = DecodeHex(m_receive_packet); process_id != 0) {
/* Set our process id. */
m_process_id = { process_id };
/* Wait for us to be attached. */
{
std::scoped_lock lk(g_event_request_lock);
g_event_request_cv.Signal();
if (!g_event_done_cv.TimedWait(g_event_request_lock, TimeSpan::FromSeconds(2))) {
m_event.Signal();
}
}
/* If we're attached, send a stop reply packet. */
if (m_debug_process.IsValid()) {
/* Set the stop reply packet. */
this->AppendStopReplyPacket(m_debug_process.GetLastSignal());
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::vCont() {
/* Check if this is a query about what we support. */
if (ParsePrefix(m_receive_packet, "?")) {
AppendReplyFormat(m_reply_cur, m_reply_end, "vCont;c;C;s;S;");
return;
}
/* We want to parse semicolon separated fields repeatedly. */
char *saved;
char *token = strtok_r(m_receive_packet, ";", std::addressof(saved));
/* Validate the initial token. */
if (token == nullptr) {
return;
}
/* Prepare to parse threads. */
u64 thread_ids[DebugProcess::ThreadCountMax] = {};
u8 continue_modes[DebugProcess::ThreadCountMax] = {};
s32 num_threads;
if (R_FAILED(m_debug_process.GetThreadList(std::addressof(num_threads), thread_ids, util::size(thread_ids)))) {
AMS_DMNT2_GDB_LOG_ERROR("vCont: Failed to get thread list\n");
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Handle each token. */
Result result = ResultSuccess();
DebugProcess::ContinueMode default_continue_mode = DebugProcess::ContinueMode_Stopped;
while (token != nullptr && R_SUCCEEDED(result)) {
result = this->ParseVCont(token, thread_ids, continue_modes, num_threads, default_continue_mode);
token = strtok_r(nullptr, ";", std::addressof(saved));
}
AMS_DMNT2_GDB_LOG_DEBUG("vCont: NumThreads=%d, Default Continue Mode=%d\n", num_threads, static_cast(default_continue_mode));
/* Act on all threads. */
s64 thread_id = -1;
for (auto i = 0; i < num_threads; ++i) {
if (continue_modes[i] == DebugProcess::ContinueMode_Step || (continue_modes[i] == DebugProcess::ContinueMode_Stopped && default_continue_mode == DebugProcess::ContinueMode_Step)) {
thread_id = thread_ids[i];
result = m_debug_process.Step(thread_ids[i]);
}
}
/* Continue the last thread. */
if (static_cast(thread_id) == m_debug_process.GetLastThreadId() && default_continue_mode != DebugProcess::ContinueMode_Continue) {
result = m_debug_process.Continue(thread_id);
} else {
result = m_debug_process.Continue();
}
/* Set reply. */
if (R_SUCCEEDED(result)) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AMS_DMNT2_GDB_LOG_ERROR("vCont: Failed %08x\n", result.GetValue());
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
Result GdbServerImpl::ParseVCont(char * const token, u64 *thread_ids, u8 *continue_modes, s32 num_threads, DebugProcess::ContinueMode &default_continue_mode) {
/* Parse the thread id. */
s64 thread_id = -1;
s32 signal = -1;
s32 thread_ix = -1;
if (token[0] && token[1]) {
if (char *colon = std::strchr(token, ':'); colon != nullptr) {
*colon = 0;
if (char *dot = std::strchr(colon + 1, '.'); dot != nullptr) {
*dot = 0;
thread_id = std::strcmp(dot + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(dot + 1));
thread_ix = FindThreadIdIndex(thread_ids, num_threads, static_cast(thread_id));
}
}
}
/* Check that we don't already have a default mode. */
if (thread_id == -1 && default_continue_mode != DebugProcess::ContinueMode_Stopped) {
AMS_DMNT2_GDB_LOG_ERROR("vCont: Too many defaults specified\n");
}
/* Handle the action. */
switch (token[0]) {
case 'c':
if (thread_id > 0) {
AMS_DMNT2_GDB_LOG_DEBUG("vCont: Continue %lx\n", static_cast(thread_id));
continue_modes[thread_ix] = DebugProcess::ContinueMode_Continue;
} else {
default_continue_mode = DebugProcess::ContinueMode_Continue;
}
break;
case 'C':
if (token[1]) {
signal = std::strcmp(token + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(token + 1));
}
AMS_DMNT2_GDB_LOG_WARN("vCont: Ignoring C, signal=%d\n", signal);
if (thread_id > 0) {
AMS_DMNT2_GDB_LOG_DEBUG("vCont: Continue %lx, signal=%d\n", static_cast(thread_id), signal);
continue_modes[thread_ix] = DebugProcess::ContinueMode_Continue;
} else {
default_continue_mode = DebugProcess::ContinueMode_Continue;
}
break;
case 's':
if (thread_id > 0) {
AMS_DMNT2_GDB_LOG_DEBUG("vCont: Step %lx\n", static_cast(thread_id));
continue_modes[thread_ix] = DebugProcess::ContinueMode_Step;
} else {
default_continue_mode = DebugProcess::ContinueMode_Step;
}
break;
case 'S':
if (token[1]) {
signal = std::strcmp(token + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(token + 1));
}
AMS_DMNT2_GDB_LOG_WARN("vCont: Ignoring S, signal=%d\n", signal);
if (thread_id > 0) {
AMS_DMNT2_GDB_LOG_DEBUG("vCont: Step %lx, signal=%d\n", static_cast(thread_id), signal);
continue_modes[thread_ix] = DebugProcess::ContinueMode_Step;
} else {
default_continue_mode = DebugProcess::ContinueMode_Step;
}
break;
default:
AMS_DMNT2_GDB_LOG_WARN("vCont: Ignoring %c\n", token[0]);
break;
}
R_SUCCEED();
}
void GdbServerImpl::q() {
if (ParsePrefix(m_receive_packet, "qAttached:")) {
this->qAttached();
} else if (ParsePrefix(m_receive_packet, "qC")) {
this->qC();
} else if (ParsePrefix(m_receive_packet, "qRcmd,")) {
this->qRcmd();
} else if (ParsePrefix(m_receive_packet, "qSupported:")) {
this->qSupported();
} else if (ParsePrefix(m_receive_packet, "qXfer:")) {
this->qXfer();
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented q: %s\n", m_receive_packet);
}
}
void GdbServerImpl::qAttached() {
if (this->HasDebugProcess()) {
AppendReplyFormat(m_reply_cur, m_reply_end, "1");
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::qC() {
if (this->HasDebugProcess()) {
/* Send the thread id. */
AppendReplyFormat(m_reply_cur, m_reply_end, "QCp%lx.%lx", m_process_id.value, m_debug_process.GetLastThreadId());
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::qRcmd() {
/* Decode the command. */
const auto packet_len = std::strlen(m_receive_packet);
HexToMemory(m_buffer, m_receive_packet, packet_len);
m_buffer[packet_len / 2] = '\x00';
/* Convert our response to hex, on complete. */
ON_SCOPE_EXIT {
/* Convert response to hex. */
MemoryToHex(m_reply_cur, m_reply_end, m_buffer, std::strlen(m_buffer));
};
char *reply_cur = m_buffer;
char *reply_end = m_buffer + sizeof(m_buffer);
/* Parse the command. */
char *command = reinterpret_cast(m_buffer);
if (ParsePrefix(command, "help")) {
AppendReplyFormat(reply_cur, reply_end, "get info\n"
"get mappings\n"
"get mappings {address}\n"
"get mapping {address}\n"
"wait application\n"
"wait {program id}\n"
"wait homebrew\n");
} else if (ParsePrefix(command, "get base") || ParsePrefix(command, "get info") || ParsePrefix(command, "get modules")) {
if (!this->HasDebugProcess()) {
AppendReplyFormat(reply_cur, reply_end, "Not attached.\n");
return;
}
AppendReplyFormat(reply_cur, reply_end, "Process: 0x%lx (%s)\n"
"Program Id: 0x%016lx\n"
"Application: %d\n"
"Hbl: %d\n"
"Layout:\n", m_process_id.value, m_debug_process.GetProcessName(), m_debug_process.GetProgramLocation().program_id.value, m_debug_process.IsApplication(), m_debug_process.GetOverrideStatus().IsHbl());
AppendReplyFormat(reply_cur, reply_end, " Alias: 0x%010lx - 0x%010lx\n"
" Heap: 0x%010lx - 0x%010lx\n"
" Aslr: 0x%010lx - 0x%010lx\n"
" Stack: 0x%010lx - 0x%010lx\n"
"Modules:\n", m_debug_process.GetAliasRegionAddress(), m_debug_process.GetAliasRegionAddress() + m_debug_process.GetAliasRegionSize() - 1,
m_debug_process.GetHeapRegionAddress(), m_debug_process.GetHeapRegionAddress() + m_debug_process.GetHeapRegionSize() - 1,
m_debug_process.GetAslrRegionAddress(), m_debug_process.GetAslrRegionAddress() + m_debug_process.GetAslrRegionSize() - 1,
m_debug_process.GetStackRegionAddress(), m_debug_process.GetStackRegionAddress() + m_debug_process.GetStackRegionSize() - 1);
/* Get the module list. */
for (size_t i = 0; i < m_debug_process.GetModuleCount(); ++i) {
const char *module_name = m_debug_process.GetModuleName(i);
const auto name_len = std::strlen(module_name);
if (name_len < 5 || (std::strcmp(module_name + name_len - 4, ".elf") != 0 && std::strcmp(module_name + name_len - 4, ".nss") != 0)) {
AppendReplyFormat(reply_cur, reply_end, " 0x%010lx - 0x%010lx %s.elf\n", m_debug_process.GetModuleBaseAddress(i), m_debug_process.GetModuleBaseAddress(i) + m_debug_process.GetModuleSize(i) - 1, module_name);
} else {
AppendReplyFormat(reply_cur, reply_end, " 0x%010lx - 0x%010lx %s\n", m_debug_process.GetModuleBaseAddress(i), m_debug_process.GetModuleBaseAddress(i) + m_debug_process.GetModuleSize(i) - 1, module_name);
}
}
} else if (ParsePrefix(command, "get mappings")) {
if (!this->HasDebugProcess()) {
AppendReplyFormat(reply_cur, reply_end, "Not attached.\n");
return;
}
uintptr_t cur_addr = 0;
if (ParsePrefix(command, " ")) {
ParsePrefix(command, "0x");
cur_addr = DecodeHex(command);
}
AppendReplyFormat(reply_cur, reply_end, "Mappings (starting from 0x%010lx):\n", cur_addr);
while (true) {
/* Check if we have room for a mapping. */
if (reply_end - reply_cur < 0x48 * 2) {
AppendReplyFormat(reply_cur, reply_end, "<-- Send `monitor get mappings 0x%010lx` to continue -->\n", cur_addr);
break;
}
/* Get mapping. */
svc::MemoryInfo mem_info;
if (R_FAILED(m_debug_process.QueryMemory(std::addressof(mem_info), cur_addr))) {
break;
}
if (mem_info.state != svc::MemoryState_Inaccessible || mem_info.base_address + mem_info.size - 1 != std::numeric_limits::max()) {
const char *state = GetMemoryStateName(mem_info.state);
const char *perm = GetMemoryPermissionString(mem_info);
const char l = (mem_info.attribute & svc::MemoryAttribute_Locked) ? 'L' : '-';
const char i = (mem_info.attribute & svc::MemoryAttribute_IpcLocked) ? 'I' : '-';
const char d = (mem_info.attribute & svc::MemoryAttribute_DeviceShared) ? 'D' : '-';
const char u = (mem_info.attribute & svc::MemoryAttribute_Uncached) ? 'U' : '-';
AppendReplyFormat(reply_cur, reply_end, " 0x%010lx - 0x%010lx %s %s %c%c%c%c [%d, %d]\n", mem_info.base_address, mem_info.base_address + mem_info.size - 1, perm, state, l, i, d, u, mem_info.ipc_count, mem_info.device_count);
}
/* Advance. */
const uintptr_t next_address = mem_info.base_address + mem_info.size;
if (next_address <= cur_addr) {
break;
}
cur_addr = next_address;
}
} else if (ParsePrefix(command, "get mapping ")) {
if (!this->HasDebugProcess()) {
AppendReplyFormat(reply_cur, reply_end, "Not attached.\n");
return;
}
/* Allow optional "0x" prefix. */
ParsePrefix(command, "0x");
/* Decode address. */
const u64 address = DecodeHex(command);
/* Get mapping. */
svc::MemoryInfo mem_info;
if (R_FAILED(m_debug_process.QueryMemory(std::addressof(mem_info), address))) {
AppendReplyFormat(reply_cur, reply_end, "0x%016lx: No mapping.\n", address);
}
const char *state = GetMemoryStateName(mem_info.state);
const char *perm = GetMemoryPermissionString(mem_info);
const char l = (mem_info.attribute & svc::MemoryAttribute_Locked) ? 'L' : '-';
const char i = (mem_info.attribute & svc::MemoryAttribute_IpcLocked) ? 'I' : '-';
const char d = (mem_info.attribute & svc::MemoryAttribute_DeviceShared) ? 'D' : '-';
const char u = (mem_info.attribute & svc::MemoryAttribute_Uncached) ? 'U' : '-';
AppendReplyFormat(reply_cur, reply_end, "0x%010lx - 0x%010lx %s %s %c%c%c%c [%d, %d]\n", mem_info.base_address, mem_info.base_address + mem_info.size - 1, perm, state, l, i, d, u, mem_info.ipc_count, mem_info.device_count);
} else if (ParsePrefix(command, "wait application") || ParsePrefix(command, "wait app")) {
/* Wait for an application process. */
{
/* Get hook to creation of application process. */
os::NativeHandle h;
R_ABORT_UNLESS(pm::dmnt::HookToCreateApplicationProcess(std::addressof(h)));
/* Wait for event. */
os::SystemEvent hook_event(h, true, os::InvalidNativeHandle, false, os::EventClearMode_AutoClear);
hook_event.Wait();
}
/* Get application process id. */
R_ABORT_UNLESS(pm::dmnt::GetApplicationProcessId(std::addressof(m_wait_process_id)));
/* Note that we're attaching. */
AppendReplyFormat(reply_cur, reply_end, "Send `attach 0x%lx` to attach.\n", m_wait_process_id.value);
} else if (ParsePrefix(command, "wait ")) {
/* Allow optional "0x" prefix. */
ParsePrefix(command, "0x");
/* Decode program id. */
const u64 program_id = DecodeHex(command);
AppendReplyFormat(reply_cur, reply_end, "[TODO] wait for program id 0x%lx\n", program_id);
} else {
std::memcpy(m_reply_cur, command, std::strlen(command) + 1);
AppendReplyFormat(reply_cur, reply_end, "Unknown command `%s`\n", m_reply_cur);
}
}
void GdbServerImpl::qSupported() {
/* Current string from devkita64-none-elf-gdb: */
/* qSupported:multiprocess+;swbreak+;hwbreak+;qRelocInsn+;fork-events+;vfork-events+;exec-events+;vContSupported+;QThreadEvents+;no-resumed+ */
AppendReplyFormat(m_reply_cur, m_reply_end, "PacketSize=%lx", GdbPacketBufferSize - 1);
AppendReplyFormat(m_reply_cur, m_reply_end, ";multiprocess+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";qXfer:osdata:read+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";qXfer:features:read+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";qXfer:libraries:read+");
// TODO: AppendReplyFormat(m_reply_cur, m_reply_end, ";qXfer:libraries-svr4:read+");
// TODO: AppendReplyFormat(m_reply_cur, m_reply_end, ";augmented-libraries-svr4-read+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";qXfer:threads:read+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";qXfer:exec-file:read+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";swbreak+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";hwbreak+");
AppendReplyFormat(m_reply_cur, m_reply_end, ";vContSupported+");
}
void GdbServerImpl::qXfer() {
/* Check for osdata. */
if (ParsePrefix(m_receive_packet, "osdata:read:")) {
this->qXferOsdataRead();
} else {
/* All other qXfer require debug process. */
if (!this->HasDebugProcess()) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Process. */
if (ParsePrefix(m_receive_packet, "features:read:")) {
this->qXferFeaturesRead();
} else if (ParsePrefix(m_receive_packet, "threads:read::")) {
if (!this->qXferThreadsRead()) {
m_killed = true;
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
} else if (ParsePrefix(m_receive_packet, "libraries:read::")) {
this->qXferLibrariesRead();
} else if (ParsePrefix(m_receive_packet, "exec-file:read:")) {
AppendReplyFormat(m_reply_cur, m_reply_end, "l%s", m_debug_process.GetProcessName());
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented qxfer: %s\n", m_receive_packet);
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
}
void GdbServerImpl::qXferFeaturesRead() {
/* Handle the qXfer. */
u32 offset, length;
if (ParsePrefix(m_receive_packet, "target.xml:")) {
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Send the desired xml. */
std::strncpy(m_reply_cur, (this->Is64Bit() ? TargetXmlAarch64 : TargetXmlAarch32) + offset, length);
m_reply_cur[length] = 0;
m_reply_cur += std::strlen(m_reply_cur);
} else if (ParsePrefix(m_receive_packet, "aarch64-core.xml:")) {
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Send the desired xml. */
std::strncpy(m_reply_cur, Aarch64CoreXml + offset, length);
m_reply_cur[length] = 0;
m_reply_cur += std::strlen(m_reply_cur);
} else if (ParsePrefix(m_receive_packet, "aarch64-fpu.xml:")) {
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Send the desired xml. */
std::strncpy(m_reply_cur, Aarch64FpuXml + offset, length);
m_reply_cur[length] = 0;
m_reply_cur += std::strlen(m_reply_cur);
} else if (ParsePrefix(m_receive_packet, "arm-core.xml:")) {
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Send the desired xml. */
std::strncpy(m_reply_cur, ArmCoreXml + offset, length);
m_reply_cur[length] = 0;
m_reply_cur += std::strlen(m_reply_cur);
} else if (ParsePrefix(m_receive_packet, "arm-vfp.xml:")) {
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Send the desired xml. */
std::strncpy(m_reply_cur, ArmVfpXml + offset, length);
m_reply_cur[length] = 0;
m_reply_cur += std::strlen(m_reply_cur);
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented qxfer:features:read: %s\n", m_receive_packet);
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
void GdbServerImpl::qXferLibrariesRead() {
/* Handle the qXfer. */
u32 offset, length;
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Acquire access to the annex buffer. */
std::scoped_lock lk(g_annex_buffer_lock);
/* If doing a fresh read, generate the module list. */
if (offset == 0 || g_annex_buffer_contents != AnnexBufferContents_Libraries) {
/* Prepare to write to annex buffer. */
char *dst_cur = g_annex_buffer;
char *dst_end = g_annex_buffer + sizeof(g_annex_buffer);
/* Set header. */
AppendReplyFormat(dst_cur, dst_end, "");
/* Get the module list. */
for (size_t i = 0; i < m_debug_process.GetModuleCount(); ++i) {
AMS_DMNT2_GDB_LOG_DEBUG("Module[%zu]: %p, %s\n", i, reinterpret_cast(m_debug_process.GetModuleBaseAddress(i)), m_debug_process.GetModuleName(i));
const char *module_name = m_debug_process.GetModuleName(i);
const auto name_len = std::strlen(module_name);
if (name_len < 5 || (std::strcmp(module_name + name_len - 4, ".elf") != 0 && std::strcmp(module_name + name_len - 4, ".nss") != 0)) {
AppendReplyFormat(dst_cur, dst_end, "", module_name, m_debug_process.GetModuleBaseAddress(i));
} else {
AppendReplyFormat(dst_cur, dst_end, "", module_name, m_debug_process.GetModuleBaseAddress(i));
}
}
AppendReplyFormat(dst_cur, dst_end, "");
g_annex_buffer_contents = AnnexBufferContents_Libraries;
}
/* Copy out the module list. */
GetAnnexBufferContents(m_reply_cur, offset, length);
}
void GdbServerImpl::qXferOsdataRead() {
/* Handle the qXfer. */
u32 offset, length;
if (ParsePrefix(m_receive_packet, "processes:")) {
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Acquire access to the annex buffer. */
std::scoped_lock lk(g_annex_buffer_lock);
/* If doing a fresh read, generate the process list. */
if (offset == 0 || g_annex_buffer_contents != AnnexBufferContents_Processes) {
/* Prepare to write to annex buffer. */
char *dst_cur = g_annex_buffer;
char *dst_end = g_annex_buffer + sizeof(g_annex_buffer);
/* Clear the process list buffer. */
dst_cur[0] = 0;
/* Set header. */
AppendReplyFormat(dst_cur, dst_end, "\n\n\n");
/* Get all processes. */
{
/* Get all process ids. */
u64 process_ids[0x50];
s32 num_process_ids;
R_ABORT_UNLESS(svc::GetProcessList(std::addressof(num_process_ids), process_ids, util::size(process_ids)));
/* Send all processes. */
for (s32 i = 0; i < num_process_ids; ++i) {
svc::Handle handle;
if (R_SUCCEEDED(svc::DebugActiveProcess(std::addressof(handle), process_ids[i]))) {
ON_SCOPE_EXIT { R_ABORT_UNLESS(svc::CloseHandle(handle)); };
/* Get the create process event. */
svc::DebugEventInfo d;
R_ABORT_UNLESS(svc::GetDebugEvent(std::addressof(d), handle));
AMS_ABORT_UNLESS(d.type == svc::DebugEvent_CreateProcess);
AppendReplyFormat(dst_cur, dst_end, "- \n%lu\n%s\n
\n", d.info.create_process.process_id, d.info.create_process.name);
}
}
}
/* Set footer. */
AppendReplyFormat(dst_cur, dst_end, "");
g_annex_buffer_contents = AnnexBufferContents_Processes;
}
/* Copy out the process list. */
GetAnnexBufferContents(m_reply_cur, offset, length);
} else {
AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented qxfer:osdata:read: %s\n", m_receive_packet);
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
bool GdbServerImpl::qXferThreadsRead() {
/* Handle the qXfer. */
u32 offset, length;
/* Parse offset/length. */
ParseOffsetLength(m_receive_packet, offset, length);
/* Acquire access to the annex buffer. */
std::scoped_lock lk(g_annex_buffer_lock);
/* If doing a fresh read, generate the thread list. */
if (offset == 0 || g_annex_buffer_contents != AnnexBufferContents_Threads) {
/* Prepare to write to annex buffer. */
char *dst_cur = g_annex_buffer;
char *dst_end = g_annex_buffer + sizeof(g_annex_buffer);
/* Set header. */
AppendReplyFormat(dst_cur, dst_end, "");
/* Get the thread list. */
u64 thread_ids[DebugProcess::ThreadCountMax];
s32 num_threads;
if (R_SUCCEEDED(m_debug_process.GetThreadList(std::addressof(num_threads), thread_ids, util::size(thread_ids)))) {
for (auto i = 0; i < num_threads; ++i) {
/* Check that we can get the thread context. */
{
svc::ThreadContext dummy_context;
if (R_FAILED(m_debug_process.GetThreadContext(std::addressof(dummy_context), thread_ids[i], svc::ThreadContextFlag_All))) {
continue;
}
}
/* Get the thread core. */
u32 core = 0;
m_debug_process.GetThreadCurrentCore(std::addressof(core), thread_ids[i]);
/* Get the thread name. */
char name[os::ThreadNameLengthMax + 1];
m_debug_process.GetThreadName(name, thread_ids[i]);
name[sizeof(name) - 1] = '\x00';
/* Set the thread entry */
AppendReplyFormat(dst_cur, dst_end, "", m_process_id.value, thread_ids[i], core, name);
}
}
AppendReplyFormat(dst_cur, dst_end, "");
g_annex_buffer_contents = AnnexBufferContents_Threads;
}
/* Copy out the threads list. */
GetAnnexBufferContents(m_reply_cur, offset, length);
return true;
}
void GdbServerImpl::z() {
/* Increment past the 'z'. */
++m_receive_packet;
/* Decode the type. */
if (!('0' <= m_receive_packet[0] && m_receive_packet[0] <= '4') || m_receive_packet[1] != ',') {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
const auto type = m_receive_packet[0] - '0';
m_receive_packet += 2;
/* Decode the address/length. */
const char *comma = std::strchr(m_receive_packet, ',');
if (comma == nullptr) {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
return;
}
/* Parse address/length. */
const u64 address = DecodeHex(m_receive_packet);
const u64 length = DecodeHex(comma + 1);
switch (type) {
case 0: /* SW */
{
if (R_SUCCEEDED(m_debug_process.ClearBreakPoint(address, length))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
break;
case 1: /* HW */
{
if (R_SUCCEEDED(m_debug_process.ClearHardwareBreakPoint(address, length))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
break;
case 2: /* Watch-W */
case 3: /* Watch-R */
case 4: /* Watch-A */
{
if (R_SUCCEEDED(m_debug_process.ClearWatchPoint(address, length))) {
AppendReplyOk(m_reply_cur, m_reply_end);
} else {
AppendReplyError(m_reply_cur, m_reply_end, "E01");
}
}
break;
default:
break;
}
}
void GdbServerImpl::QuestionMark() {
if (m_debug_process.IsValid()) {
if (m_debug_process.GetLastThreadId() == 0) {
AppendReplyFormat(m_reply_cur, m_reply_end, "X01");
} else {
this->AppendStopReplyPacket(m_debug_process.GetLastSignal());
}
} else {
AppendReplyFormat(m_reply_cur, m_reply_end, "W00");
}
}
}