/*
 * Copyright (c) Atmosphère-NX
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include <stratosphere.hpp>
#include "../amsmitm_fs_utils.hpp"
#include "fsmitm_romfs.hpp"

namespace ams::mitm::fs {

    using namespace ams::fs;

    namespace romfs {

        namespace {

            constexpr u32 EmptyEntry = 0xFFFFFFFF;
            constexpr size_t FilePartitionOffset = 0x200;

            struct Header {
                s64 header_size;
                s64 dir_hash_table_ofs;
                s64 dir_hash_table_size;
                s64 dir_table_ofs;
                s64 dir_table_size;
                s64 file_hash_table_ofs;
                s64 file_hash_table_size;
                s64 file_table_ofs;
                s64 file_table_size;
                s64 file_partition_ofs;
            };
            static_assert(util::is_pod<Header>::value && sizeof(Header) == 0x50);

            struct DirectoryEntry {
                u32 parent;
                u32 sibling;
                u32 child;
                u32 file;
                u32 hash;
                u32 name_size;
                char name[];
            };
            static_assert(util::is_pod<DirectoryEntry>::value && sizeof(DirectoryEntry) == 0x18);

            struct FileEntry {
                u32 parent;
                u32 sibling;
                s64 offset;
                s64 size;
                u32 hash;
                u32 name_size;
                char name[];
            };
            static_assert(util::is_pod<FileEntry>::value && sizeof(FileEntry) == 0x20);

            class DynamicTableCache {
                NON_COPYABLE(DynamicTableCache);
                NON_MOVEABLE(DynamicTableCache);
                private:
                    static constexpr size_t MaxCachedSize = (1_MB / 4);
                private:
                    size_t m_cache_bitsize;
                protected:
                    void *m_cache;
                protected:
                    DynamicTableCache(size_t sz) {
                        size_t cache_size = util::CeilingPowerOfTwo(std::min(sz, MaxCachedSize));
                        m_cache = std::malloc(cache_size);
                        while (m_cache == nullptr) {
                            cache_size >>= 1;
                            AMS_ABORT_UNLESS(cache_size >= 16_KB);
                        }
                        m_cache_bitsize = util::CountTrailingZeros(cache_size);
                    }

                    ~DynamicTableCache() {
                        std::free(m_cache);
                    }

                    ALWAYS_INLINE size_t GetCacheSize() const { return static_cast<size_t>(1) << m_cache_bitsize; }
            };

            class HashTableStorage : public DynamicTableCache {
                public:
                    HashTableStorage(size_t sz) : DynamicTableCache(sz) { /* ... */ }

                    ALWAYS_INLINE u32 *GetBuffer() { return reinterpret_cast<u32 *>(m_cache); }
                    ALWAYS_INLINE size_t GetBufferSize() const { return DynamicTableCache::GetCacheSize(); }
            };

            template<typename Entry>
            class TableReader : public DynamicTableCache {
                NON_COPYABLE(TableReader);
                NON_MOVEABLE(TableReader);
                private:
                    static constexpr size_t FallbackCacheSize = 1_KB;
                private:
                    ams::fs::IStorage *m_storage;
                    size_t m_offset;
                    size_t m_size;
                    size_t m_cache_idx;
                    u8 m_fallback_cache[FallbackCacheSize];
                private:
                    ALWAYS_INLINE void Read(size_t ofs, void *dst, size_t size) {
                        R_ABORT_UNLESS(m_storage->Read(m_offset + ofs, dst, size));
                    }
                    ALWAYS_INLINE void ReloadCacheImpl(size_t idx) {
                        const size_t rel_ofs = idx * this->GetCacheSize();
                        AMS_ABORT_UNLESS(rel_ofs < m_size);
                        const size_t new_cache_size = std::min(m_size - rel_ofs, this->GetCacheSize());
                        this->Read(rel_ofs, m_cache, new_cache_size);
                        m_cache_idx = idx;
                    }

                    ALWAYS_INLINE void ReloadCache(size_t idx) {
                        if (m_cache_idx != idx) {
                            this->ReloadCacheImpl(idx);
                        }
                    }

                    ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) {
                        return ofs / this->GetCacheSize();
                    }
                public:
                    TableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : DynamicTableCache(sz), m_storage(s), m_offset(ofs), m_size(sz), m_cache_idx(0) {
                        AMS_ABORT_UNLESS(m_cache != nullptr);
                        this->ReloadCacheImpl(0);
                    }

                    const Entry *GetEntry(u32 entry_offset) {
                        this->ReloadCache(this->GetCacheIndex(entry_offset));

                        const size_t ofs = entry_offset % this->GetCacheSize();

                        const Entry *entry = reinterpret_cast<const Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs);
                        if (AMS_UNLIKELY(this->GetCacheIndex(entry_offset) != this->GetCacheIndex(entry_offset + sizeof(Entry) + entry->name_size + sizeof(u32)))) {
                            this->Read(entry_offset, m_fallback_cache, std::min(m_size - entry_offset, FallbackCacheSize));
                            entry = reinterpret_cast<const Entry *>(m_fallback_cache);
                        }
                        return entry;
                    }
            };

            template<typename Entry>
            class TableWriter : public DynamicTableCache {
                NON_COPYABLE(TableWriter);
                NON_MOVEABLE(TableWriter);
                private:
                    static constexpr size_t FallbackCacheSize = 1_KB;
                private:
                    ::FsFile *m_file;
                    size_t m_offset;
                    size_t m_size;
                    size_t m_cache_idx;
                    u8 m_fallback_cache[FallbackCacheSize];
                    size_t m_fallback_cache_entry_offset;
                    size_t m_fallback_cache_entry_size;
                    bool m_cache_dirty;
                    bool m_fallback_cache_dirty;
                private:
                    ALWAYS_INLINE void Read(size_t ofs, void *dst, size_t sz) {
                        u64 read_size;
                        R_ABORT_UNLESS(fsFileRead(m_file, m_offset + ofs, dst, sz, 0, std::addressof(read_size)));
                        AMS_ABORT_UNLESS(read_size == sz);
                    }

                    ALWAYS_INLINE void Write(size_t ofs, const void *src, size_t sz) {
                        R_ABORT_UNLESS(fsFileWrite(m_file, m_offset + ofs, src, sz, FsWriteOption_None));
                    }

                    ALWAYS_INLINE void Flush() {
                        AMS_ABORT_UNLESS(!(m_cache_dirty && m_fallback_cache_dirty));

                        if (m_cache_dirty) {
                            const size_t ofs = m_cache_idx * this->GetCacheSize();
                            this->Write(ofs, m_cache, std::min(m_size - ofs, this->GetCacheSize()));
                            m_cache_dirty = false;
                        }
                        if (m_fallback_cache_dirty) {
                            this->Write(m_fallback_cache_entry_offset, m_fallback_cache, m_fallback_cache_entry_size);
                            m_fallback_cache_dirty = false;
                        }
                    }

                    ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) {
                        return ofs / this->GetCacheSize();
                    }

                    ALWAYS_INLINE void RefreshCacheImpl() {
                        const size_t cur_cache = m_cache_idx * this->GetCacheSize();
                        this->Read(cur_cache, m_cache, std::min(m_size - cur_cache, this->GetCacheSize()));
                    }

                    ALWAYS_INLINE void RefreshCache(u32 entry_offset) {
                        if (size_t idx = this->GetCacheIndex(entry_offset); idx != m_cache_idx || m_fallback_cache_dirty) {
                            this->Flush();
                            m_cache_idx = idx;
                            this->RefreshCacheImpl();
                        }
                    }
                public:
                    TableWriter(::FsFile *f, size_t ofs, size_t sz) : DynamicTableCache(sz), m_file(f), m_offset(ofs), m_size(sz), m_cache_idx(0), m_fallback_cache_entry_offset(), m_fallback_cache_entry_size(), m_cache_dirty(), m_fallback_cache_dirty() {
                        AMS_ABORT_UNLESS(m_cache != nullptr);

                        std::memset(m_cache, 0, this->GetCacheSize());
                        std::memset(m_fallback_cache, 0, sizeof(m_fallback_cache));
                        for (size_t cur = 0; cur < m_size; cur += this->GetCacheSize()) {
                            this->Write(cur, m_cache, std::min(m_size - cur, this->GetCacheSize()));
                        }
                    }

                    ~TableWriter() {
                        this->Flush();
                    }

                    Entry *GetEntry(u32 entry_offset, u32 name_len) {
                        this->RefreshCache(entry_offset);

                        const size_t ofs = entry_offset % this->GetCacheSize();

                        Entry *entry = reinterpret_cast<Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs);
                        if (ofs + sizeof(Entry) + util::AlignUp(name_len, sizeof(u32)) > this->GetCacheSize()) {
                            this->Flush();

                            m_fallback_cache_entry_offset = entry_offset;
                            m_fallback_cache_entry_size   = sizeof(Entry) + util::AlignUp(name_len, sizeof(u32));
                            this->Read(m_fallback_cache_entry_offset, m_fallback_cache, m_fallback_cache_entry_size);

                            entry = reinterpret_cast<Entry *>(m_fallback_cache);
                            m_fallback_cache_dirty = true;
                        } else {
                            m_cache_dirty = true;
                        }

                        return entry;
                    }
            };

            using DirectoryTableWriter = TableWriter<DirectoryEntry>;
            using FileTableWriter      = TableWriter<FileEntry>;

            constexpr inline u32 CalculatePathHash(u32 parent, const char *_path, u32 start, size_t path_len) {
                const unsigned char *path = reinterpret_cast<const unsigned char *>(_path);
                u32 hash = parent ^ 123456789;
                for (size_t i = 0; i < path_len; i++) {
                    hash = (hash >> 5) | (hash << 27);
                    hash ^= path[start + i];
                }
                return hash;
            }

            constexpr inline size_t GetHashTableSize(size_t num_entries) {
                if (num_entries < 3) {
                    return 3;
                } else if (num_entries < 19) {
                    return num_entries | 1;
                } else {
                    size_t count = num_entries;
                    while ((count %  2 == 0) ||
                           (count %  3 == 0) ||
                           (count %  5 == 0) ||
                           (count %  7 == 0) ||
                           (count % 11 == 0) ||
                           (count % 13 == 0) ||
                           (count % 17 == 0))
                   {
                       count++;
                   }
                   return count;
                }
            }

            constinit os::SdkMutex g_fs_romfs_path_lock;
            constinit char g_fs_romfs_path_buffer[fs::EntryNameLengthMax + 1];

            NOINLINE void OpenFileSystemRomfsDirectory(FsDir *out, ncm::ProgramId program_id, BuildDirectoryContext *parent, fs::OpenDirectoryMode mode, FsFileSystem *fs) {
                std::scoped_lock lk(g_fs_romfs_path_lock);
                parent->GetPath(g_fs_romfs_path_buffer);
                R_ABORT_UNLESS(mitm::fs::OpenAtmosphereRomfsDirectory(out, program_id, g_fs_romfs_path_buffer, mode, fs));
            }

        }

        Builder::Builder(ncm::ProgramId pr_id) : m_program_id(pr_id), m_num_dirs(0), m_num_files(0), m_dir_table_size(0), m_file_table_size(0), m_dir_hash_table_size(0), m_file_hash_table_size(0), m_file_partition_size(0) {
            auto res = m_directories.emplace(std::make_unique<BuildDirectoryContext>(BuildDirectoryContext::RootTag{}));
            AMS_ABORT_UNLESS(res.second);
            m_root = res.first->get();
            m_num_dirs = 1;
            m_dir_table_size = 0x18;
        }

        void Builder::AddDirectory(BuildDirectoryContext **out, BuildDirectoryContext *parent_ctx, std::unique_ptr<BuildDirectoryContext> child_ctx) {
            /* Set parent context member. */
            child_ctx->parent = parent_ctx;

            /* Check if the directory already exists. */
            auto existing = m_directories.find(child_ctx);
            if (existing != m_directories.end()) {
                *out = existing->get();
                return;
            }

            /* Add a new directory. */
            m_num_dirs++;
            m_dir_table_size += sizeof(DirectoryEntry) + util::AlignUp(child_ctx->path_len, 4);

            *out = child_ctx.get();
            m_directories.emplace(std::move(child_ctx));
        }

        void Builder::AddFile(BuildDirectoryContext *parent_ctx, std::unique_ptr<BuildFileContext> file_ctx) {
            /* Set parent context member. */
            file_ctx->parent = parent_ctx;

            /* Check if the file already exists. */
            if (m_files.find(file_ctx) != m_files.end()) {
                return;
            }

            /* Add a new file. */
            m_num_files++;
            m_file_table_size += sizeof(FileEntry) + util::AlignUp(file_ctx->path_len, 4);
            m_files.emplace(std::move(file_ctx));
        }

        void Builder::VisitDirectory(FsFileSystem *fs, BuildDirectoryContext *parent) {
            FsDir dir;

            /* Get number of child directories. */
            s64 num_child_dirs = 0;
            {
                OpenFileSystemRomfsDirectory(std::addressof(dir), m_program_id, parent, OpenDirectoryMode_Directory, fs);
                ON_SCOPE_EXIT { fsDirClose(std::addressof(dir)); };
                R_ABORT_UNLESS(fsDirGetEntryCount(std::addressof(dir), std::addressof(num_child_dirs)));
            }
            AMS_ABORT_UNLESS(num_child_dirs >= 0);

            {
                BuildDirectoryContext **child_dirs = num_child_dirs != 0 ? reinterpret_cast<BuildDirectoryContext **>(std::malloc(sizeof(BuildDirectoryContext *) * num_child_dirs)) : nullptr;
                AMS_ABORT_UNLESS(num_child_dirs == 0 || child_dirs != nullptr);
                ON_SCOPE_EXIT { std::free(child_dirs); };

                s64 cur_child_dir_ind = 0;
                {
                    OpenFileSystemRomfsDirectory(std::addressof(dir), m_program_id, parent, OpenDirectoryMode_All, fs);
                    ON_SCOPE_EXIT { fsDirClose(std::addressof(dir)); };

                    s64 read_entries = 0;
                    while (true) {
                        R_ABORT_UNLESS(fsDirRead(std::addressof(dir), std::addressof(read_entries), 1, std::addressof(m_dir_entry)));
                        if (read_entries != 1) {
                            break;
                        }

                        AMS_ABORT_UNLESS(m_dir_entry.type == FsDirEntryType_Dir || m_dir_entry.type == FsDirEntryType_File);
                        if (m_dir_entry.type == FsDirEntryType_Dir) {
                            AMS_ABORT_UNLESS(child_dirs != nullptr);

                            BuildDirectoryContext *real_child = nullptr;
                            this->AddDirectory(std::addressof(real_child), parent, std::make_unique<BuildDirectoryContext>(m_dir_entry.name, strlen(m_dir_entry.name)));
                            AMS_ABORT_UNLESS(real_child != nullptr);
                            child_dirs[cur_child_dir_ind++] = real_child;
                            AMS_ABORT_UNLESS(cur_child_dir_ind <= num_child_dirs);
                        } else /* if (m_dir_entry.type == FsDirEntryType_File) */ {
                            this->AddFile(parent, std::make_unique<BuildFileContext>(m_dir_entry.name, strlen(m_dir_entry.name), m_dir_entry.file_size, 0, m_cur_source_type));
                        }
                    }
                }

                AMS_ABORT_UNLESS(num_child_dirs == cur_child_dir_ind);
                for (s64 i = 0; i < num_child_dirs; i++) {
                    this->VisitDirectory(fs, child_dirs[i]);
                }
            }

        }

        class DirectoryTableReader : public TableReader<DirectoryEntry> {
            public:
                DirectoryTableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : TableReader(s, ofs, sz) { /* ... */ }
        };

        class FileTableReader : public TableReader<FileEntry> {
            public:
                FileTableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : TableReader(s, ofs, sz) { /* ... */ }
        };

        void Builder::VisitDirectory(BuildDirectoryContext *parent, u32 parent_offset, DirectoryTableReader &dir_table, FileTableReader &file_table) {
            const DirectoryEntry *parent_entry = dir_table.GetEntry(parent_offset);

            u32 cur_file_offset = parent_entry->file;
            while (cur_file_offset != EmptyEntry) {
                const FileEntry *cur_file = file_table.GetEntry(cur_file_offset);

                this->AddFile(parent, std::make_unique<BuildFileContext>(cur_file->name, cur_file->name_size, cur_file->size, cur_file->offset, m_cur_source_type));

                cur_file_offset = cur_file->sibling;
            }

            u32 cur_child_offset = parent_entry->child;
            while (cur_child_offset != EmptyEntry) {
                BuildDirectoryContext *real_child = nullptr;
                u32 next_child_offset = 0;
                {
                    const DirectoryEntry *cur_child = dir_table.GetEntry(cur_child_offset);

                    this->AddDirectory(std::addressof(real_child), parent, std::make_unique<BuildDirectoryContext>(cur_child->name, cur_child->name_size));
                    AMS_ABORT_UNLESS(real_child != nullptr);

                    next_child_offset = cur_child->sibling;
                    __asm__ __volatile__("" ::: "memory");
                }

                this->VisitDirectory(real_child, cur_child_offset, dir_table, file_table);

                cur_child_offset = next_child_offset;
            }
        }


        void Builder::AddSdFiles() {
            /* Open Sd Card filesystem. */
            FsFileSystem sd_filesystem;
            R_ABORT_UNLESS(fsOpenSdCardFileSystem(std::addressof(sd_filesystem)));
            ON_SCOPE_EXIT { fsFsClose(std::addressof(sd_filesystem)); };

            /* If there is no romfs folder on the SD, don't bother continuing. */
            {
                FsDir dir;
                if (R_FAILED(mitm::fs::OpenAtmosphereRomfsDirectory(std::addressof(dir), m_program_id, m_root->path.get(), OpenDirectoryMode_Directory, std::addressof(sd_filesystem)))) {
                    return;
                }
                fsDirClose(std::addressof(dir));
            }

            m_cur_source_type = DataSourceType::LooseSdFile;
            this->VisitDirectory(std::addressof(sd_filesystem), m_root);
        }

        void Builder::AddStorageFiles(ams::fs::IStorage *storage, DataSourceType source_type) {
            Header header;
            R_ABORT_UNLESS(storage->Read(0, std::addressof(header), sizeof(Header)));
            AMS_ABORT_UNLESS(header.header_size == sizeof(Header));

            /* Read tables. */
            DirectoryTableReader dir_table(storage, header.dir_table_ofs, header.dir_table_size);
            FileTableReader file_table(storage, header.file_table_ofs, header.file_table_size);

            m_cur_source_type = source_type;
            this->VisitDirectory(m_root, 0x0, dir_table, file_table);
        }

        void Builder::Build(std::vector<SourceInfo> *out_infos) {
            /* Clear output. */
            out_infos->clear();

            /* Open an SD card filesystem. */
            FsFileSystem sd_filesystem;
            R_ABORT_UNLESS(fsOpenSdCardFileSystem(std::addressof(sd_filesystem)));
            ON_SCOPE_EXIT { fsFsClose(std::addressof(sd_filesystem)); };

            /* Calculate hash table sizes. */
            const size_t num_dir_hash_table_entries  = GetHashTableSize(m_num_dirs);
            const size_t num_file_hash_table_entries = GetHashTableSize(m_num_files);
            m_dir_hash_table_size  = sizeof(u32) * num_dir_hash_table_entries;
            m_file_hash_table_size = sizeof(u32) * num_file_hash_table_entries;

            /* Allocate metadata, make pointers. */
            Header *header = reinterpret_cast<Header *>(std::malloc(sizeof(Header)));
            std::memset(header, 0x00, sizeof(*header));

            /* Open metadata file. */
            const size_t metadata_size = m_dir_hash_table_size + m_dir_table_size + m_file_hash_table_size + m_file_table_size;
            FsFile metadata_file;
            R_ABORT_UNLESS(mitm::fs::CreateAndOpenAtmosphereSdFile(std::addressof(metadata_file), m_program_id, "romfs_metadata.bin", metadata_size));

            /* Ensure later hash tables will have correct defaults. */
            static_assert(EmptyEntry == 0xFFFFFFFF);

            /* Emplace metadata source info. */
            out_infos->emplace_back(0, sizeof(*header), DataSourceType::Memory, header);

            /* Process Files. */
            {
                u32 entry_offset = 0;
                BuildFileContext *cur_file = nullptr;
                BuildFileContext *prev_file = nullptr;
                for (const auto &it : m_files) {
                    cur_file = it.get();

                    /* By default, pad to 0x10 alignment. */
                    m_file_partition_size = util::AlignUp(m_file_partition_size, 0x10);

                    /* Check if extra padding is present in original source, preserve it to make our life easier. */
                    const bool is_storage_or_file = cur_file->source_type == DataSourceType::Storage || cur_file->source_type == DataSourceType::File;
                    if (prev_file != nullptr && prev_file->source_type == cur_file->source_type && is_storage_or_file) {
                        const s64 expected = m_file_partition_size - prev_file->offset + prev_file->orig_offset;
                        if (expected != cur_file->orig_offset) {
                            AMS_ABORT_UNLESS(expected <= cur_file->orig_offset);
                            m_file_partition_size += cur_file->orig_offset - expected;
                        }
                    }

                    /* Calculate offsets. */
                    cur_file->offset = m_file_partition_size;
                    m_file_partition_size += cur_file->size;
                    cur_file->entry_offset = entry_offset;
                    entry_offset += sizeof(FileEntry) + util::AlignUp(cur_file->path_len, 4);

                    /* Save current file as prev for next iteration. */
                    prev_file = cur_file;
                }
                /* Assign deferred parent/sibling ownership. */
                for (auto it = m_files.rbegin(); it != m_files.rend(); it++) {
                    cur_file = it->get();
                    cur_file->sibling = cur_file->parent->file;
                    cur_file->parent->file = cur_file;
                }
            }

            /* Process Directories. */
            {
                u32 entry_offset = 0;
                BuildDirectoryContext *cur_dir = nullptr;
                for (const auto &it : m_directories) {
                    cur_dir = it.get();
                    cur_dir->entry_offset = entry_offset;
                    entry_offset += sizeof(DirectoryEntry) + util::AlignUp(cur_dir->path_len, 4);
                }
                /* Assign deferred parent/sibling ownership. */
                for (auto it = m_directories.rbegin(); it != m_directories.rend(); it++) {
                    cur_dir = it->get();
                    if (cur_dir == m_root) {
                        continue;
                    }
                    cur_dir->sibling = cur_dir->parent->child;
                    cur_dir->parent->child = cur_dir;
                }
            }

            /* Set all files' hash value = hash index. */
            for (const auto &it : m_files) {
                BuildFileContext *cur_file = it.get();
                cur_file->hash_value = CalculatePathHash(cur_file->parent->entry_offset, cur_file->path.get(), 0, cur_file->path_len) % num_file_hash_table_entries;
            }

            /* Set all directories' hash value = hash index. */
            for (const auto &it : m_directories) {
                BuildDirectoryContext *cur_dir = it.get();
                cur_dir->hash_value = CalculatePathHash(cur_dir == m_root ? 0 : cur_dir->parent->entry_offset, cur_dir->path.get(), 0, cur_dir->path_len) % num_dir_hash_table_entries;
            }

            /* Write hash tables. */
            {
                HashTableStorage hash_table_storage(std::max(m_dir_hash_table_size, m_file_hash_table_size));

                u32 *hash_table = hash_table_storage.GetBuffer();
                size_t hash_table_size = hash_table_storage.GetBufferSize();

                /* Write the file hash table. */
                for (size_t ofs = 0; ofs < m_file_hash_table_size; ofs += hash_table_size) {
                    std::memset(hash_table, 0xFF, hash_table_size);

                    const u32 ofs_ind = ofs / sizeof(u32);
                    const u32 end_ind = (ofs + hash_table_size) / sizeof(u32);

                    for (const auto &it : m_files) {
                        BuildFileContext *cur_file = it.get();
                        if (cur_file->HasHashMark()) {
                            continue;
                        }

                        if (const auto hash_ind = cur_file->hash_value; ofs_ind <= hash_ind && hash_ind < end_ind) {
                            cur_file->hash_value = hash_table[hash_ind - ofs_ind];
                            hash_table[hash_ind - ofs_ind] = cur_file->entry_offset;

                            cur_file->SetHashMark();
                        }
                    }

                    R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size + ofs, hash_table, std::min(m_file_hash_table_size - ofs, hash_table_size), FsWriteOption_None));
                }

                /* Write the directory hash table. */
                for (size_t ofs = 0; ofs < m_dir_hash_table_size; ofs += hash_table_size) {
                    std::memset(hash_table, 0xFF, hash_table_size);

                    const u32 ofs_ind = ofs / sizeof(u32);
                    const u32 end_ind = (ofs + hash_table_size) / sizeof(u32);

                    for (const auto &it : m_directories) {
                        BuildDirectoryContext *cur_dir = it.get();
                        if (cur_dir->HasHashMark()) {
                            continue;
                        }

                        if (const auto hash_ind = cur_dir->hash_value; ofs_ind <= hash_ind && hash_ind < end_ind) {
                            cur_dir->hash_value = hash_table[hash_ind - ofs_ind];
                            hash_table[hash_ind - ofs_ind] = cur_dir->entry_offset;

                            cur_dir->SetHashMark();
                        }
                    }

                    R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), ofs, hash_table, std::min(m_dir_hash_table_size - ofs, hash_table_size), FsWriteOption_None));
                }
            }

            /* Write the file table. */
            {
                FileTableWriter file_table(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size + m_file_hash_table_size, m_file_table_size);

                for (const auto &it : m_files) {
                    BuildFileContext *cur_file = it.get();
                    FileEntry *cur_entry = file_table.GetEntry(cur_file->entry_offset, cur_file->path_len);

                    cur_file->ClearHashMark();

                    /* Set entry fields. */
                    cur_entry->parent  = cur_file->parent->entry_offset;
                    cur_entry->sibling = (cur_file->sibling == nullptr) ? EmptyEntry : cur_file->sibling->entry_offset;
                    cur_entry->offset  = cur_file->offset;
                    cur_entry->size    = cur_file->size;
                    cur_entry->hash    = cur_file->hash_value;

                    /* Set name. */
                    const u32 name_size = cur_file->path_len;
                    cur_entry->name_size = name_size;
                    if (name_size) {
                        std::memcpy(cur_entry->name, cur_file->path.get(), name_size);
                        for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) {
                            cur_entry->name[i] = 0;
                        }
                    }

                    /* Emplace a source. */
                    switch (cur_file->source_type) {
                        case DataSourceType::Storage:
                        case DataSourceType::File:
                            {
                                /* Try to compact if possible. */
                                auto &back = out_infos->back();
                                if (back.source_type == cur_file->source_type) {
                                    back.size = cur_file->offset + FilePartitionOffset + cur_file->size - back.virtual_offset;
                                } else {
                                    out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, cur_file->orig_offset + FilePartitionOffset);
                                }
                            }
                            break;
                        case DataSourceType::LooseSdFile:
                            {
                                char *new_path = new char[cur_file->GetPathLength() + 1];
                                cur_file->GetPath(new_path);
                                out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, new_path);
                            }
                            break;
                        AMS_UNREACHABLE_DEFAULT_CASE();
                    }
                }
            }

            /* Write the directory table. */
            {
                DirectoryTableWriter dir_table(std::addressof(metadata_file), m_dir_hash_table_size, m_dir_table_size);

                for (const auto &it : m_directories) {
                    BuildDirectoryContext *cur_dir = it.get();
                    DirectoryEntry *cur_entry = dir_table.GetEntry(cur_dir->entry_offset, cur_dir->path_len);

                    cur_dir->ClearHashMark();

                    /* Set entry fields. */
                    cur_entry->parent  = cur_dir == m_root ? 0 : cur_dir->parent->entry_offset;
                    cur_entry->sibling = (cur_dir->sibling == nullptr) ? EmptyEntry : cur_dir->sibling->entry_offset;
                    cur_entry->child   = (cur_dir->child   == nullptr) ? EmptyEntry : cur_dir->child->entry_offset;
                    cur_entry->file    = (cur_dir->file    == nullptr) ? EmptyEntry : cur_dir->file->entry_offset;
                    cur_entry->hash    = cur_dir->hash_value;

                    /* Set name. */
                    const u32 name_size = cur_dir->path_len;
                    cur_entry->name_size = name_size;
                    if (name_size) {
                        std::memcpy(cur_entry->name, cur_dir->path.get(), name_size);
                        for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) {
                            cur_entry->name[i] = 0;
                        }
                    }
                }
            }

            /* Delete maps. */
            m_root = nullptr;
            m_directories.clear();
            m_files.clear();

            /* Set header fields. */
            header->header_size          = sizeof(*header);
            header->file_hash_table_size = m_file_hash_table_size;
            header->file_table_size      = m_file_table_size;
            header->dir_hash_table_size  = m_dir_hash_table_size;
            header->dir_table_size       = m_dir_table_size;
            header->file_partition_ofs   = FilePartitionOffset;
            header->dir_hash_table_ofs   = util::AlignUp(FilePartitionOffset + m_file_partition_size, 4);
            header->dir_table_ofs        = header->dir_hash_table_ofs + header->dir_hash_table_size;
            header->file_hash_table_ofs  = header->dir_table_ofs + header->dir_table_size;
            header->file_table_ofs       = header->file_hash_table_ofs + header->file_hash_table_size;

            /* Save metadata to the SD card, to save on memory space. */
            {
                R_ABORT_UNLESS(fsFileFlush(std::addressof(metadata_file)));
                out_infos->emplace_back(header->dir_hash_table_ofs, metadata_size, DataSourceType::Metadata, new RemoteFile(metadata_file));
            }
        }

    }

}