/* * Copyright (c) 2018-2020 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "utils.h" #include "synchronization.h" #include "interrupt.h" #include "se.h" #include "memory_map.h" #include "arm.h" #include "se.h" void trigger_se_rsa_op(void *buf, size_t size); void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size); /* Globals for driver. */ static unsigned int (*g_se_callback)(void); static unsigned int g_se_modulus_sizes[KEYSLOT_RSA_MAX]; static unsigned int g_se_exp_sizes[KEYSLOT_RSA_MAX]; static bool g_se_generated_vector = false; static uint8_t g_se_stored_test_vector[0x10]; /* Initialize a SE linked list. */ void ll_init(volatile se_ll_t *ll, void *buffer, size_t size) { ll->num_entries = 0; /* 1 Entry. */ if (buffer != NULL) { ll->addr_info.address = (uint32_t) get_physical_address(buffer); ll->addr_info.size = (uint32_t) size; } else { ll->addr_info.address = 0; ll->addr_info.size = 0; } flush_dcache_range((uint8_t *)ll, (uint8_t *)ll + sizeof(*ll)); } void set_security_engine_callback(unsigned int (*callback)(void)) { if (callback == NULL || g_se_callback != NULL) { generic_panic(); } g_se_callback = callback; } /* Fires on Security Engine operation completion. */ void se_operation_completed(void) { se_get_regs()->SE_INT_ENABLE = 0; if (g_se_callback != NULL) { g_se_callback(); g_se_callback = NULL; } } void se_check_error_status_reg(void) { if (se_get_regs()->SE_ERR_STATUS) { generic_panic(); } } void se_check_for_error(void) { volatile tegra_se_t *se = se_get_regs(); if (se->SE_INT_STATUS & 0x10000 || se->SE_STATUS & 3 || se->SE_ERR_STATUS) { generic_panic(); } } void se_trigger_interrupt(void) { intr_set_pending(INTERRUPT_ID_USER_SECURITY_ENGINE); } void se_verify_flags_cleared(void) { if (se_get_regs()->SE_STATUS & 3) { generic_panic(); } } void se_generate_test_vector(void *vector) { /* TODO: Implement real test vector generation. */ memset(vector, 0, 0x10); } void se_validate_stored_vector(void) { if (!g_se_generated_vector) { generic_panic(); } uint8_t calc_vector[0x10]; se_generate_test_vector(calc_vector); /* Ensure nobody's messed with the security engine while we slept. */ if (memcmp(calc_vector, g_se_stored_test_vector, 0x10) != 0) { generic_panic(); } } void se_generate_stored_vector(void) { if (g_se_generated_vector) { generic_panic(); } se_generate_test_vector(g_se_stored_test_vector); g_se_generated_vector = true; } /* Set the flags for an AES keyslot. */ void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Misc flags. */ if (flags & ~0x80) { se->SE_CRYPTO_KEYTABLE_ACCESS[keyslot] = ~flags; } /* Disable keyslot reads. */ if (flags & 0x80) { se->SE_CRYPTO_SECURITY_PERKEY &= ~(1 << keyslot); } } /* Set the flags for an RSA keyslot. */ void set_rsa_keyslot_flags(unsigned int keyslot, unsigned int flags) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_RSA_MAX) { generic_panic(); } /* Misc flags. */ if (flags & ~0x80) { /* TODO: Why are flags assigned this way? */ se->SE_RSA_KEYTABLE_ACCESS[keyslot] = (((flags >> 4) & 4) | (flags & 3)) ^ 7; } /* Disable keyslot reads. */ if (flags & 0x80) { se->SE_RSA_SECURITY_PERKEY &= ~(1 << keyslot); } } void clear_aes_keyslot(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Zero out the whole keyslot and IV. */ for (unsigned int i = 0; i < 0x10; i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | i; se->SE_CRYPTO_KEYTABLE_DATA = 0; } } void clear_rsa_keyslot(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_RSA_MAX) { generic_panic(); } /* Zero out the whole keyslot. */ for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Modulus[i] */ se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | i | 0x40; se->SE_RSA_KEYTABLE_DATA = 0; } for (unsigned int i = 0; i < 0x40; i++) { /* Select Keyslot Expontent[i] */ se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | i; se->SE_RSA_KEYTABLE_DATA = 0; } } void set_aes_keyslot(unsigned int keyslot, const void *key, size_t key_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || key_size > KEYSIZE_AES_MAX) { generic_panic(); } for (size_t i = 0; i < (key_size >> 2); i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | i; se->SE_CRYPTO_KEYTABLE_DATA = read32le(key, 4 * i); } } void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_size, const void *exponent, size_t exp_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_RSA_MAX || modulus_size > KEYSIZE_RSA_MAX || exp_size > KEYSIZE_RSA_MAX) { generic_panic(); } for (size_t i = 0; i < (modulus_size >> 2); i++) { se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | 0x40 | i; se->SE_RSA_KEYTABLE_DATA = read32be(modulus, (4 * (modulus_size >> 2)) - (4 * i) - 4); } for (size_t i = 0; i < (exp_size >> 2); i++) { se->SE_RSA_KEYTABLE_ADDR = (keyslot << 7) | i; se->SE_RSA_KEYTABLE_DATA = read32be(exponent, (4 * (exp_size >> 2)) - (4 * i) - 4); } g_se_modulus_sizes[keyslot] = modulus_size; g_se_exp_sizes[keyslot] = exp_size; } void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || iv_size > 0x10) { generic_panic(); } for (size_t i = 0; i < (iv_size >> 2); i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | 8 | i; se->SE_CRYPTO_KEYTABLE_DATA = read32le(iv, 4 * i); } } void clear_aes_keyslot_iv(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } for (size_t i = 0; i < (0x10 >> 2); i++) { se->SE_CRYPTO_KEYTABLE_ADDR = (keyslot << 4) | 8 | i; se->SE_CRYPTO_KEYTABLE_DATA = 0; } } void set_se_ctr(const void *ctr) { for (unsigned int i = 0; i < 4; i++) { se_get_regs()->SE_CRYPTO_LINEAR_CTR[i] = read32le(ctr, i * 4); } } void decrypt_data_into_keyslot(unsigned int keyslot_dst, unsigned int keyslot_src, const void *wrapped_key, size_t wrapped_key_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot_dst >= KEYSLOT_AES_MAX || keyslot_src >= KEYSIZE_AES_MAX || wrapped_key_size > KEYSIZE_AES_MAX) { generic_panic(); } se->SE_CONFIG = (ALG_AES_DEC | DST_KEYTAB); se->SE_CRYPTO_CONFIG = keyslot_src << 24; se->SE_CRYPTO_LAST_BLOCK = 0; se->SE_CRYPTO_KEYTABLE_DST = keyslot_dst << 8; flush_dcache_range(wrapped_key, (const uint8_t *)wrapped_key + wrapped_key_size); trigger_se_blocking_op(OP_START, NULL, 0, wrapped_key, wrapped_key_size); } void se_aes_crypt_insecure_internal(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, unsigned int crypt_config, bool encrypt, unsigned int (*callback)(void)) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } if (size == 0) { return; } /* Setup Config register. */ if (encrypt) { se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY); } else { se->SE_CONFIG = (ALG_AES_DEC | DST_MEMORY); } /* Setup Crypto register. */ se->SE_CRYPTO_CONFIG = crypt_config | (keyslot << 24) | (encrypt << 8); /* Mark this encryption as insecure -- this makes the SE not a secure busmaster. */ se->SE_CRYPTO_CONFIG |= 0x80000000; /* Appropriate number of blocks. */ se->SE_CRYPTO_LAST_BLOCK = (size >> 4) - 1; /* Set the callback, for after the async operation. */ set_security_engine_callback(callback); /* Enable SE Interrupt firing for async op. */ se->SE_INT_ENABLE = 0x10; /* Setup Input/Output lists */ se->SE_IN_LL_ADDR = in_ll_paddr; se->SE_OUT_LL_ADDR = out_ll_paddr; /* Set registers for operation. */ se->SE_ERR_STATUS = se->SE_ERR_STATUS; se->SE_INT_STATUS = se->SE_INT_STATUS; se->SE_OPERATION = 1; (void)(se->SE_OPERATION); /* Ensure writes go through. */ __dsb_ish(); } void se_aes_ctr_crypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *ctr, unsigned int (*callback)(void)) { /* Unknown what this write does, but official code writes it for CTR mode. */ se_get_regs()->SE_SPARE = 1; set_se_ctr(ctr); se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x81E, true, callback); } void se_aes_cbc_encrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void)) { set_aes_keyslot_iv(keyslot, iv, 0x10); se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x44, true, callback); } void se_aes_cbc_decrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void)) { set_aes_keyslot_iv(keyslot, iv, 0x10); se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x66, false, callback); } void se_exp_mod(unsigned int keyslot, void *buf, size_t size, unsigned int (*callback)(void)) { volatile tegra_se_t *se = se_get_regs(); uint8_t stack_buf[KEYSIZE_RSA_MAX]; if (keyslot >= KEYSLOT_RSA_MAX || size > KEYSIZE_RSA_MAX) { generic_panic(); } /* Endian swap the input. */ for (size_t i = 0; i < size; i++) { stack_buf[i] = *((uint8_t *)buf + size - i - 1); } se->SE_CONFIG = (ALG_RSA | DST_RSAREG); se->SE_RSA_CONFIG = keyslot << 24; se->SE_RSA_KEY_SIZE = (g_se_modulus_sizes[keyslot] >> 6) - 1; se->SE_RSA_EXP_SIZE = g_se_exp_sizes[keyslot] >> 2; set_security_engine_callback(callback); /* Enable SE interrupt firing for async op. */ se->SE_INT_ENABLE = 0x10; flush_dcache_range(stack_buf, stack_buf + KEYSIZE_RSA_MAX); trigger_se_rsa_op(stack_buf, size); while (!(se->SE_INT_STATUS & 2)) { /* Wait a while */ } } void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); uint8_t stack_buf[KEYSIZE_RSA_MAX]; if (keyslot >= KEYSLOT_RSA_MAX || src_size > KEYSIZE_RSA_MAX || dst_size > KEYSIZE_RSA_MAX) { generic_panic(); } /* Endian swap the input. */ for (size_t i = 0; i < src_size; i++) { stack_buf[i] = *((uint8_t *)src + src_size - i - 1); } se->SE_CONFIG = (ALG_RSA | DST_RSAREG); se->SE_RSA_CONFIG = keyslot << 24; se->SE_RSA_KEY_SIZE = (g_se_modulus_sizes[keyslot] >> 6) - 1; se->SE_RSA_EXP_SIZE = g_se_exp_sizes[keyslot] >> 2; flush_dcache_range(stack_buf, stack_buf + KEYSIZE_RSA_MAX); trigger_se_blocking_op(OP_START, NULL, 0, stack_buf, src_size); se_get_exp_mod_output(dst, dst_size); } void se_get_exp_mod_output(void *buf, size_t size) { size_t num_dwords = (size >> 2); if (num_dwords < 1) { return; } uint32_t *p_out = ((uint32_t *)buf) + num_dwords - 1; uint32_t offset = 0; /* Copy endian swapped output. */ while (num_dwords) { *p_out = read32be(se_get_regs()->SE_RSA_OUTPUT, offset); offset += 4; p_out--; num_dwords--; } } bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const void *modulus, size_t modulus_size, const void *data, size_t data_size) { uint8_t message[RSA_2048_BYTES]; uint8_t h_buf[0x24]; /* Hardcode RSA with keyslot 0. */ const uint8_t public_exponent[4] = {0x00, 0x01, 0x00, 0x01}; set_rsa_keyslot(0, modulus, modulus_size, public_exponent, sizeof(public_exponent)); se_synchronous_exp_mod(0, message, sizeof(message), signature, signature_size); /* Validate sanity byte. */ if (message[RSA_2048_BYTES - 1] != 0xBC) { return false; } /* Copy Salt into MGF1 Hash Buffer. */ memset(h_buf, 0, sizeof(h_buf)); memcpy(h_buf, message + RSA_2048_BYTES - 0x20 - 0x1, 0x20); /* Decrypt maskedDB (via inline MGF1). */ uint8_t seed = 0; uint8_t mgf1_buf[0x20]; for (unsigned int ofs = 0; ofs < RSA_2048_BYTES - 0x20 - 1; ofs += 0x20) { h_buf[sizeof(h_buf) - 1] = seed++; flush_dcache_range(h_buf, h_buf + sizeof(h_buf)); se_calculate_sha256(mgf1_buf, h_buf, sizeof(h_buf)); for (unsigned int i = ofs; i < ofs + 0x20 && i < RSA_2048_BYTES - 0x20 - 1; i++) { message[i] ^= mgf1_buf[i - ofs]; } } /* Constant lmask for rsa-2048-pss. */ message[0] &= 0x7F; /* Validate DB is of the form 0000...0001. */ for (unsigned int i = 0; i < RSA_2048_BYTES - 0x20 - 0x20 - 1 - 1; i++) { if (message[i] != 0) { return false; } } if (message[RSA_2048_BYTES - 0x20 - 0x20 - 1 - 1] != 1) { return false; } /* Check hash correctness. */ uint8_t validate_buf[8 + 0x20 + 0x20]; uint8_t validate_hash[0x20]; memset(validate_buf, 0, sizeof(validate_buf)); flush_dcache_range((uint8_t *)data, (uint8_t *)data + data_size); se_calculate_sha256(&validate_buf[8], data, data_size); memcpy(&validate_buf[0x28], &message[RSA_2048_BYTES - 0x20 - 0x20 - 1], 0x20); flush_dcache_range(validate_buf, validate_buf + sizeof(validate_buf)); se_calculate_sha256(validate_hash, validate_buf, sizeof(validate_buf)); return memcmp(h_buf, validate_hash, 0x20) == 0; } void trigger_se_rsa_op(void *buf, size_t size) { volatile tegra_se_t *se = se_get_regs(); se_ll_t in_ll; ll_init(&in_ll, (void *)buf, size); /* Set the input LL. */ se->SE_IN_LL_ADDR = (uint32_t) get_physical_address(&in_ll); /* Set registers for operation. */ se->SE_ERR_STATUS = se->SE_ERR_STATUS; se->SE_INT_STATUS = se->SE_INT_STATUS; se->SE_OPERATION = 1; (void)(se->SE_OPERATION); /* Ensure writes go through. */ __dsb_ish(); } void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); se_ll_t in_ll; se_ll_t out_ll; ll_init(&in_ll, (void *)src, src_size); ll_init(&out_ll, dst, dst_size); __dsb_sy(); /* Set the LLs. */ se->SE_IN_LL_ADDR = (uint32_t) get_physical_address(&in_ll); se->SE_OUT_LL_ADDR = (uint32_t) get_physical_address(&out_ll); /* Set registers for operation. */ se->SE_ERR_STATUS = se->SE_ERR_STATUS; se->SE_INT_STATUS = se->SE_INT_STATUS; se->SE_OPERATION = op; (void)(se->SE_OPERATION); __dsb_ish(); while (!(se->SE_INT_STATUS & 0x10)) { /* Wait a while */ } se_check_for_error(); } /* Secure AES Functionality. */ void se_perform_aes_block_operation(void *dst, size_t dst_size, const void *src, size_t src_size) { uint8_t block[0x10] = {0}; if (src_size > sizeof(block) || dst_size > sizeof(block)) { generic_panic(); } /* Load src data into block. */ if (src_size != 0) { memcpy(block, src, src_size); } flush_dcache_range(block, block + sizeof(block)); /* Trigger AES operation. */ se_get_regs()->SE_CRYPTO_LAST_BLOCK = 0; trigger_se_blocking_op(OP_START, block, sizeof(block), block, sizeof(block)); /* Copy output data into dst. */ flush_dcache_range(block, block + sizeof(block)); if (dst_size != 0) { memcpy(dst, block, dst_size); } } void se_aes_ctr_crypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *ctr, size_t ctr_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || ctr_size != 0x10) { generic_panic(); } if (src_size) { flush_dcache_range((uint8_t *)src, (uint8_t *)src + src_size); } if (dst_size) { flush_dcache_range((uint8_t *)dst, (uint8_t *)dst + dst_size); } unsigned int num_blocks = src_size >> 4; /* Unknown what this write does, but official code writes it for CTR mode. */ se->SE_SPARE = 1; se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x91E; set_se_ctr(ctr); /* Handle any aligned blocks. */ size_t aligned_size = (size_t)num_blocks << 4; if (aligned_size) { se->SE_CRYPTO_LAST_BLOCK = num_blocks - 1; trigger_se_blocking_op(OP_START, dst, dst_size, src, aligned_size); } /* Handle final, unaligned block. */ if (aligned_size < dst_size && aligned_size < src_size) { size_t last_block_size = dst_size - aligned_size; if (src_size < dst_size) { last_block_size = src_size - aligned_size; } se_perform_aes_block_operation(dst + aligned_size, last_block_size, (uint8_t *)src + aligned_size, src_size - aligned_size); } if (dst_size) { flush_dcache_range((uint8_t *)dst, (uint8_t *)dst + dst_size); } } void se_aes_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, unsigned int config_high) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) { generic_panic(); } /* Set configuration high (256-bit vs 128-bit) based on parameter. */ se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY) | (config_high << 16); se->SE_CRYPTO_CONFIG = keyslot << 24 | 0x100; flush_dcache_range((uint8_t *)src, (uint8_t *)src + 0x10); se_perform_aes_block_operation(dst, 0x10, src, 0x10); flush_dcache_range((uint8_t *)dst, (uint8_t *)dst + 0x10); } void se_aes_128_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0); } void se_aes_256_ecb_encrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { se_aes_ecb_encrypt_block(keyslot, dst, dst_size, src, src_size, 0x202); } void se_aes_ecb_decrypt_block(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || dst_size != 0x10 || src_size != 0x10) { generic_panic(); } se->SE_CONFIG = (ALG_AES_DEC | DST_MEMORY); se->SE_CRYPTO_CONFIG = keyslot << 24; flush_dcache_range((uint8_t *)src, (uint8_t *)src + 0x10); se_perform_aes_block_operation(dst, 0x10, src, 0x10); flush_dcache_range((uint8_t *)dst, (uint8_t *)dst + 0x10); } void shift_left_xor_rb(uint8_t *key) { uint8_t prev_high_bit = 0; for (unsigned int i = 0; i < 0x10; i++) { uint8_t cur_byte = key[0xF - i]; key[0xF - i] = (cur_byte << 1) | (prev_high_bit); prev_high_bit = cur_byte >> 7; } if (prev_high_bit) { key[0xF] ^= 0x87; } } void se_compute_aes_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size, unsigned int config_high) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } if (data_size) { flush_dcache_range((uint8_t *)data, (uint8_t *)data + data_size); } /* Generate the derived key, to be XOR'd with final output block. */ uint8_t derived_key[0x10] = {0}; se_aes_ecb_encrypt_block(keyslot, derived_key, sizeof(derived_key), derived_key, sizeof(derived_key), config_high); shift_left_xor_rb(derived_key); if (data_size & 0xF) { shift_left_xor_rb(derived_key); } se->SE_CONFIG = (ALG_AES_ENC | DST_HASHREG) | (config_high << 16); se->SE_CRYPTO_CONFIG = (keyslot << 24) | (0x145); clear_aes_keyslot_iv(keyslot); unsigned int num_blocks = (data_size + 0xF) >> 4; /* Handle aligned blocks. */ if (num_blocks > 1) { se->SE_CRYPTO_LAST_BLOCK = num_blocks - 2; trigger_se_blocking_op(OP_START, NULL, 0, data, data_size); se->SE_CRYPTO_CONFIG |= 0x80; } /* Create final block. */ uint8_t last_block[0x10] = {0}; if (data_size & 0xF) { memcpy(last_block, data + (data_size & ~0xF), data_size & 0xF); last_block[data_size & 0xF] = 0x80; /* Last block = data || 100...0 */ } else if (data_size >= 0x10) { memcpy(last_block, data + data_size - 0x10, 0x10); } for (unsigned int i = 0; i < 0x10; i++) { last_block[i] ^= derived_key[i]; } /* Perform last operation. */ se->SE_CRYPTO_LAST_BLOCK = 0; flush_dcache_range(last_block, last_block + sizeof(last_block)); trigger_se_blocking_op(OP_START, NULL, 0, last_block, sizeof(last_block)); /* Copy output CMAC. */ for (unsigned int i = 0; i < (cmac_size >> 2); i++) { ((uint32_t *)cmac)[i] = read32le(se->SE_HASH_RESULT, i << 2); } } void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) { se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0); } void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size) { se_compute_aes_cmac(keyslot, cmac, cmac_size, data, data_size, 0x202); } void se_aes_256_cbc_encrypt(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size, const void *iv) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX || src_size < 0x10) { generic_panic(); } se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY) | (0x202 << 16); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x144; set_aes_keyslot_iv(keyslot, iv, 0x10); se->SE_CRYPTO_LAST_BLOCK = (src_size >> 4) - 1; trigger_se_blocking_op(OP_START, dst, dst_size, src, src_size); } /* SHA256 Implementation. */ void se_calculate_sha256(void *dst, const void *src, size_t src_size) { volatile tegra_se_t *se = se_get_regs(); /* Setup config for SHA256, size = BITS(src_size) */ se->SE_CONFIG = (ENCMODE_SHA256 | ALG_SHA | DST_HASHREG); se->SE_SHA_CONFIG = 1; se->SE_SHA_MSG_LENGTH[0] = (uint32_t)(src_size << 3); se->SE_SHA_MSG_LENGTH[1] = 0; se->SE_SHA_MSG_LENGTH[2] = 0; se->SE_SHA_MSG_LENGTH[3] = 0; se->SE_SHA_MSG_LEFT[0] = (uint32_t)(src_size << 3); se->SE_SHA_MSG_LEFT[1] = 0; se->SE_SHA_MSG_LEFT[2] = 0; se->SE_SHA_MSG_LEFT[3] = 0; /* Trigger the operation. */ trigger_se_blocking_op(OP_START, NULL, 0, src, src_size); /* Copy output hash. */ for (unsigned int i = 0; i < (0x20 >> 2); i++) { ((uint32_t *)dst)[i] = read32be(se->SE_HASH_RESULT, i << 2); } } /* RNG API */ void se_initialize_rng(unsigned int keyslot) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* To initialize the RNG, we'll perform an RNG operation into an output buffer. */ /* This will be discarded, when done. */ uint8_t output_buf[0x10]; se->SE_RNG_SRC_CONFIG = 3; /* Entropy enable + Entropy lock enable */ se->SE_RNG_RESEED_INTERVAL = 70001; se->SE_CONFIG = (ALG_RNG | DST_MEMORY); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x108; se->SE_RNG_CONFIG = 5; se->SE_CRYPTO_LAST_BLOCK = 0; trigger_se_blocking_op(OP_START, output_buf, 0x10, NULL, 0); } void se_generate_random(unsigned int keyslot, void *dst, size_t size) { volatile tegra_se_t *se = se_get_regs(); if (keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } uint32_t num_blocks = size >> 4; size_t aligned_size = num_blocks << 4; se->SE_CONFIG = (ALG_RNG | DST_MEMORY); se->SE_CRYPTO_CONFIG = (keyslot << 24) | 0x108; se->SE_RNG_CONFIG = 4; if (num_blocks >= 1) { se->SE_CRYPTO_LAST_BLOCK = num_blocks - 1; trigger_se_blocking_op(OP_START, dst, aligned_size, NULL, 0); } if (size > aligned_size) { se_perform_aes_block_operation(dst + aligned_size, size - aligned_size, NULL, 0); } } /* SE context save API. */ void se_set_in_context_save_mode(bool is_context_save_mode) { volatile tegra_se_t *se = se_get_regs(); uint32_t val = se->SE_SE_SECURITY; if (is_context_save_mode) { val |= 0x10000; } else { val &= 0xFFFEFFFF; } se->SE_SE_SECURITY = val; /* Perform a useless read from flags reg. */ (void)(se->SE_STATUS); } void se_generate_random_key(unsigned int dst_keyslot, unsigned int rng_keyslot) { volatile tegra_se_t *se = se_get_regs(); if (dst_keyslot >= KEYSLOT_AES_MAX || rng_keyslot >= KEYSLOT_AES_MAX) { generic_panic(); } /* Setup Config. */ se->SE_CONFIG = (ALG_RNG | DST_KEYTAB); se->SE_CRYPTO_CONFIG = (rng_keyslot << 24) | 0x108; se->SE_RNG_CONFIG = 4; se->SE_CRYPTO_LAST_BLOCK = 0; /* Generate low part of key. */ se->SE_CRYPTO_KEYTABLE_DST = (dst_keyslot << 8); trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0); /* Generate high part of key. */ se->SE_CRYPTO_KEYTABLE_DST = (dst_keyslot << 8) | 1; trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0); } void se_generate_srk(unsigned int srkgen_keyslot) { volatile tegra_se_t *se = se_get_regs(); se->SE_CONFIG = (ALG_RNG | DST_SRK); se->SE_CRYPTO_CONFIG = (srkgen_keyslot << 24) | 0x108; se->SE_RNG_CONFIG = 6; se->SE_CRYPTO_LAST_BLOCK = 0; trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0); } void se_encrypt_with_srk(void *dst, size_t dst_size, const void *src, size_t src_size) { uint8_t output[0x80]; uint8_t *aligned_out = (uint8_t *)(((uintptr_t)output + 0x7F) & ~0x3F); if (dst_size > 0x10) { generic_panic(); } if (src_size) { flush_dcache_range((uint8_t *)src, (uint8_t *)src + src_size); } if (dst_size) { flush_dcache_range(aligned_out, aligned_out + 0x10); trigger_se_blocking_op(OP_CTX_SAVE, aligned_out, dst_size, src, src_size); flush_dcache_range(aligned_out, aligned_out + 0x10); memcpy(dst, aligned_out, dst_size); } else { trigger_se_blocking_op(OP_CTX_SAVE, aligned_out, 0, src, src_size); } } void se_save_context(unsigned int srkgen_keyslot, unsigned int rng_keyslot, void *dst) { volatile tegra_se_t *se = se_get_regs(); uint8_t _work_buf[0x80]; uint8_t *work_buf = (uint8_t *)(((uintptr_t)_work_buf + 0x7F) & ~0x3F); /* Generate the SRK (context save encryption key). */ se_generate_random_key(srkgen_keyslot, rng_keyslot); se_generate_srk(srkgen_keyslot); flush_dcache_range(work_buf, work_buf + 0x10); se_generate_random(rng_keyslot, work_buf, 0x10); flush_dcache_range(work_buf, work_buf + 0x10); /* Save random initial block. */ se->SE_CONFIG = (ALG_AES_ENC | DST_MEMORY); se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_MEM); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(dst, 0x10, work_buf, 0x10); /* Save Sticky Bits. */ for (unsigned int i = 0; i < 0x2; i++) { se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_STICKY_BITS) | (i << CTX_SAVE_STICKY_BIT_INDEX_SHIFT); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(dst + 0x10 + (i * 0x10), 0x10, NULL, 0); } /* Save AES Key Table. */ for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) { se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_LOW_BITS); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(dst + 0x30 + (i * 0x20), 0x10, NULL, 0); se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_HIGH_BITS); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(dst + 0x40 + (i * 0x20), 0x10, NULL, 0); } /* Save AES Original IVs. */ for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) { se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_ORIGINAL_IV); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(dst + 0x230 + (i * 0x10), 0x10, NULL, 0); } /* Save AES Updated IVs */ for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) { se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_UPDATED_IV); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(dst + 0x330 + (i * 0x10), 0x10, NULL, 0); } /* Save RSA Keytable. */ uint8_t *rsa_ctx_out = (uint8_t *)dst + 0x430; for (unsigned int rsa_key = 0; rsa_key < KEYSLOT_RSA_MAX; rsa_key++) { for (unsigned int mod_exp = 0; mod_exp < 2; mod_exp++) { for (unsigned int sub_block = 0; sub_block < 0x10; sub_block++) { se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_KEYTABLE_RSA) | ((2 * rsa_key + (1 - mod_exp)) << CTX_SAVE_RSA_KEY_INDEX_SHIFT) | (sub_block << CTX_SAVE_RSA_KEY_BLOCK_INDEX_SHIFT); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(rsa_ctx_out, 0x10, NULL, 0); rsa_ctx_out += 0x10; } } } /* Save "Known Pattern. " */ static const uint8_t context_save_known_pattern[0x10] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_MEM); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(dst + 0x830, 0x10, context_save_known_pattern, 0x10); /* Save SRK into PMC registers. */ se->SE_CTX_SAVE_CONFIG = (CTX_SAVE_SRC_SRK); se->SE_CRYPTO_LAST_BLOCK = 0; se_encrypt_with_srk(work_buf, 0, NULL, 0); se->SE_CONFIG = 0; se_encrypt_with_srk(work_buf, 0, NULL, 0); }