/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "fatal_debug.hpp" #include "fatal_config.hpp" namespace ams::fatal::srv { namespace { constexpr u32 SvcSendSyncRequestInstruction = 0xD4000421; struct StackFrame { u64 fp; u64 lr; }; constexpr inline size_t MaxThreads = 0x60; template class ThreadTlsMapImpl { private: std::pair m_map[MaxThreadCount]; size_t m_index; public: constexpr ThreadTlsMapImpl() : m_map(), m_index(0) { /* ... */ } constexpr void ResetThreadTlsMap() { m_index = 0; } constexpr void SetThreadTls(u64 thread_id, u64 tls) { if (m_index < util::size(m_map)) { m_map[m_index++] = std::make_pair(thread_id, tls); } } constexpr bool GetThreadTls(u64 *out, u64 thread_id) const { for (size_t i = 0; i < m_index; ++i) { if (m_map[i].first == thread_id) { *out = m_map[i].second; return true; } } return false; } }; using ThreadTlsMap = ThreadTlsMapImpl; constinit ThreadTlsMap g_thread_id_to_tls_map; bool IsThreadFatalCaller(Result result, os::NativeHandle debug_handle, u64 thread_id, u64 thread_tls_addr, svc::ThreadContext *thread_ctx) { /* Verify that the thread is running or waiting. */ { u64 _; u32 _thread_state; if (R_FAILED(svc::GetDebugThreadParam(&_, &_thread_state, debug_handle, thread_id, svc::DebugThreadParam_State))) { return false; } const auto thread_state = static_cast(_thread_state); if (thread_state != svc::ThreadState_Waiting && thread_state != svc::ThreadState_Running) { return false; } } /* Get the thread context. */ if (R_FAILED(svc::GetDebugThreadContext(thread_ctx, debug_handle, thread_id, svc::ThreadContextFlag_All))) { return false; } /* Try to read the current instruction. */ u32 insn; if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast(std::addressof(insn)), debug_handle, thread_ctx->pc, sizeof(insn)))) { return false; } /* If the instruction isn't svc::SendSyncRequest, it's not the fatal caller. */ if (insn != SvcSendSyncRequestInstruction) { return false; } /* Read in the fatal caller's TLS. */ u8 thread_tls[sizeof(svc::ThreadLocalRegion::message_buffer)]; if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast(thread_tls), debug_handle, thread_tls_addr, sizeof(thread_tls)))) { return false; } /* We want to parse the command the fatal caller sent. */ { const auto request = hipcParseRequest(thread_tls); const struct { CmifInHeader header; Result result; } *in_data = decltype(in_data)(request.data.data_words); static_assert(sizeof(*in_data) == 0x14, "InData!"); /* Fatal command takes in a PID, only one buffer max. */ if ((request.meta.type != CmifCommandType_Request && request.meta.type != CmifCommandType_RequestWithContext) || !request.meta.send_pid || request.meta.num_send_statics || request.meta.num_recv_statics || request.meta.num_recv_buffers || request.meta.num_exch_buffers || request.meta.num_copy_handles || request.meta.num_move_handles || request.meta.num_data_words < ((sizeof(*in_data) + 0x10) / sizeof(u32))) { return false; } if (in_data->header.magic != CMIF_IN_HEADER_MAGIC) { return false; } if (in_data->header.version > 1) { return false; } switch (in_data->header.command_id) { case 0: case 1: if (request.meta.num_send_buffers != 0) { return false; } break; case 2: if (request.meta.num_send_buffers != 1) { return false; } default: return false; } if (in_data->result.GetValue() != result.GetValue()) { return false; } } /* We found our caller. */ return true; } bool TryGuessBaseAddress(u64 *out_base_address, os::NativeHandle debug_handle, u64 guess) { svc::MemoryInfo mi; svc::PageInfo pi; if (R_FAILED(svc::QueryDebugProcessMemory(&mi, &pi, debug_handle, guess)) || mi.permission != svc::MemoryPermission_ReadExecute) { return false; } /* Iterate backwards until we find the memory before the code region. */ while (mi.base_address > 0) { if (R_FAILED(svc::QueryDebugProcessMemory(&mi, &pi, debug_handle, guess))) { return false; } if (mi.state == svc::MemoryState_Free) { /* Code region will be at the end of the unmapped region preceding it. */ *out_base_address = mi.base_address + mi.size; return true; } guess = mi.base_address - 4; } return false; } u64 GetBaseAddress(const ThrowContext *throw_ctx, const svc::ThreadContext *thread_ctx, os::NativeHandle debug_handle) { u64 base_address = 0; if (TryGuessBaseAddress(&base_address, debug_handle, thread_ctx->pc)) { return base_address; } if (TryGuessBaseAddress(&base_address, debug_handle, thread_ctx->lr)) { return base_address; } for (size_t i = 0; i < throw_ctx->cpu_ctx.aarch64_ctx.stack_trace_size; i++) { if (TryGuessBaseAddress(&base_address, debug_handle, throw_ctx->cpu_ctx.aarch64_ctx.stack_trace[i])) { return base_address; } } return base_address; } } void TryCollectDebugInformation(ThrowContext *ctx, os::ProcessId process_id) { /* Try to debug the process. This may fail, if we called into ourself. */ os::NativeHandle debug_handle; if (R_FAILED(svc::DebugActiveProcess(std::addressof(debug_handle), process_id.value))) { return; } ON_SCOPE_EXIT { os::CloseNativeHandle(debug_handle); }; /* First things first, check if process is 64 bits, and get list of thread infos. */ g_thread_id_to_tls_map.ResetThreadTlsMap(); { bool got_create_process = false; svc::DebugEventInfo d; while (R_SUCCEEDED(svc::GetDebugEvent(std::addressof(d), debug_handle))) { switch (d.type) { case svc::DebugEvent_CreateProcess: ctx->cpu_ctx.architecture = (d.info.create_process.flags & 1) ? CpuContext::Architecture_Aarch64 : CpuContext::Architecture_Aarch32; std::memcpy(ctx->proc_name, d.info.create_process.name, sizeof(d.info.create_process.name)); got_create_process = true; break; case svc::DebugEvent_CreateThread: g_thread_id_to_tls_map.SetThreadTls(d.info.create_thread.thread_id, d.info.create_thread.tls_address); break; case svc::DebugEvent_Exception: case svc::DebugEvent_ExitProcess: case svc::DebugEvent_ExitThread: break; } } if (!got_create_process) { return; } } /* TODO: Try to collect information on 32-bit fatals. This shouldn't really matter for any real use case. */ if (ctx->cpu_ctx.architecture == CpuContext::Architecture_Aarch32) { return; } /* Welcome to hell. Here, we try to identify which thread called into fatal. */ bool found_fatal_caller = false; u64 thread_id = 0; u64 thread_tls = 0; svc::ThreadContext thread_ctx; { /* We start by trying to get a list of threads. */ s32 thread_count; u64 thread_ids[0x60]; if (R_FAILED(svc::GetThreadList(&thread_count, thread_ids, 0x60, debug_handle))) { return; } /* We need to locate the thread that's called fatal. */ for (s32 i = 0; i < thread_count; i++) { const u64 cur_thread_id = thread_ids[i]; u64 cur_thread_tls; if (!g_thread_id_to_tls_map.GetThreadTls(std::addressof(cur_thread_tls), cur_thread_id)) { continue; } if (IsThreadFatalCaller(ctx->result, debug_handle, cur_thread_id, cur_thread_tls, &thread_ctx)) { thread_id = cur_thread_id; thread_tls = cur_thread_tls; found_fatal_caller = true; break; } } if (!found_fatal_caller) { return; } } if (R_FAILED(svc::GetDebugThreadContext(&thread_ctx, debug_handle, thread_id, svc::ThreadContextFlag_All))) { return; } /* Set register states. */ ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_FP, thread_ctx.fp); ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_LR, thread_ctx.lr); ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_SP, thread_ctx.sp); ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_PC, thread_ctx.pc); /* Parse a stack trace. */ u64 cur_fp = thread_ctx.fp; ctx->cpu_ctx.aarch64_ctx.stack_trace_size = 0; for (unsigned int i = 0; i < aarch64::CpuContext::MaxStackTraceDepth; i++) { /* Validate the current frame. */ if (cur_fp == 0 || (cur_fp & 0xF)) { break; } /* Read a new frame. */ StackFrame cur_frame = {}; if (R_FAILED(svc::ReadDebugProcessMemory(reinterpret_cast(std::addressof(cur_frame)), debug_handle, cur_fp, sizeof(StackFrame)))) { break; } /* Advance to the next frame. */ ctx->cpu_ctx.aarch64_ctx.stack_trace[ctx->cpu_ctx.aarch64_ctx.stack_trace_size++] = cur_frame.lr; cur_fp = cur_frame.fp; } /* Try to read up to 0x100 of stack. */ ctx->stack_dump_base = 0; for (size_t sz = 0x100; sz > 0; sz -= 0x10) { if (R_SUCCEEDED(svc::ReadDebugProcessMemory(reinterpret_cast(ctx->stack_dump), debug_handle, thread_ctx.sp, sz))) { ctx->stack_dump_base = thread_ctx.sp; ctx->stack_dump_size = sz; break; } } /* Try to read the first 0x100 of TLS. */ if (R_SUCCEEDED(svc::ReadDebugProcessMemory(reinterpret_cast(ctx->tls_dump), debug_handle, thread_tls, sizeof(ctx->tls_dump)))) { ctx->tls_address = thread_tls; } else { ctx->tls_address = 0; std::memset(ctx->tls_dump, 0xCC, sizeof(ctx->tls_dump)); } /* Parse the base address. */ ctx->cpu_ctx.aarch64_ctx.SetBaseAddress(GetBaseAddress(ctx, &thread_ctx, debug_handle)); } }