1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-04 00:26:07 +00:00
Atmosphere/libraries/libstratosphere/source/spl/impl/spl_api_impl.cpp

976 lines
42 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "spl_ctr_drbg.hpp"
#include "spl_device_address_mapper.hpp"
#include "spl_key_slot_cache.hpp"
namespace ams::hos {
void InitializeVersionInternal(bool allow_approximate);
}
namespace ams::spl::impl {
namespace {
/* Drbg type. */
using Drbg = CtrDrbg<crypto::AesEncryptor128, AesKeySize, false>;
/* Convenient defines. */
#if defined(ATMOSPHERE_OS_HORIZON)
constexpr size_t DeviceAddressSpaceAlign = 4_MB;
constexpr u32 WorkBufferBase = 0x80000000u;
constexpr u32 ComputeAesInMapBase = 0x90000000u;
constexpr u32 ComputeAesOutMapBase = 0xC0000000u;
constexpr size_t ComputeAesSizeMax = static_cast<size_t>(ComputeAesOutMapBase - ComputeAesInMapBase);
#endif
constexpr size_t DeviceUniqueDataIvSize = 0x10;
constexpr size_t DeviceUniqueDataPaddingSize = 0x08;
constexpr size_t DeviceUniqueDataDeviceIdSize = 0x08;
constexpr size_t DeviceUniqueDataGmacSize = 0x10;
constexpr size_t DeviceUniqueDataPlainMetaDataSize = DeviceUniqueDataIvSize + DeviceUniqueDataGmacSize;
constexpr size_t DeviceUniqueDataMetaDataSize = DeviceUniqueDataPlainMetaDataSize + DeviceUniqueDataPaddingSize + DeviceUniqueDataDeviceIdSize;
constexpr size_t Rsa2048BlockSize = 0x100;
constexpr size_t LabelDigestSizeMax = 0x20;
constexpr size_t WorkBufferSizeMax = 0x800;
constexpr const KeySource KeyGenerationSource = {
.data = { 0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8 }
};
constexpr const KeySource AesKeyDecryptionSource = {
.data = { 0x11, 0x70, 0x24, 0x2B, 0x48, 0x69, 0x11, 0xF1, 0x11, 0xB0, 0x0C, 0x47, 0x7C, 0xC3, 0xEF, 0x7E }
};
constexpr s32 PhysicalAesKeySlotCount = 6;
/* KeySlot management. */
constinit AesKeySlotCache g_aes_keyslot_cache;
constinit util::optional<AesKeySlotCacheEntry> g_aes_keyslot_cache_entry[PhysicalAesKeySlotCount] = {};
constinit bool g_is_physical_keyslot_allowed = false;
constinit bool g_is_modern_device_unique_data = true;
constexpr inline bool IsVirtualAesKeySlot(s32 keyslot) {
return AesKeySlotMin <= keyslot && keyslot <= AesKeySlotMax;
}
constexpr inline bool IsPhysicalAesKeySlot(s32 keyslot) {
return keyslot < PhysicalAesKeySlotCount;
}
constexpr inline s32 GetVirtualAesKeySlotIndex(s32 keyslot) {
AMS_ASSERT(IsVirtualAesKeySlot(keyslot));
return keyslot - AesKeySlotMin;
}
constexpr inline s32 MakeVirtualAesKeySlot(s32 index) {
const s32 virt_slot = index + AesKeySlotMin;
AMS_ASSERT(IsVirtualAesKeySlot(virt_slot));
return virt_slot;
}
enum class AesKeySlotContentType {
None = 0,
AesKey = 1,
PreparedKey = 2,
};
struct AesKeySlotContents {
AesKeySlotContentType type;
union {
struct {
AccessKey access_key;
KeySource key_source;
} aes_key;
struct {
AccessKey access_key;
} prepared_key;
};
};
constinit bool g_is_aes_keyslot_allocated[AesKeySlotCount];
constinit AesKeySlotContents g_aes_keyslot_contents[AesKeySlotCount] = {};
constinit AesKeySlotContents g_aes_physical_keyslot_contents_for_backwards_compatibility[PhysicalAesKeySlotCount] = {};
void ClearPhysicalAesKeySlot(s32 keyslot) {
AMS_ASSERT(IsPhysicalAesKeySlot(keyslot));
AccessKey access_key = {};
KeySource key_source = {};
smc::LoadAesKey(keyslot, access_key, key_source);
}
s32 GetPhysicalAesKeySlot(s32 keyslot, bool load) {
s32 phys_slot = -1;
AesKeySlotContents *contents = nullptr;
if (g_is_physical_keyslot_allowed && IsPhysicalAesKeySlot(keyslot)) {
/* On 1.0.0, we allow the use of physical keyslots. */
phys_slot = keyslot;
contents = std::addressof(g_aes_physical_keyslot_contents_for_backwards_compatibility[phys_slot]);
/* If the physical slot is already loaded, we're good. */
if (g_aes_keyslot_cache.FindPhysical(phys_slot)) {
return phys_slot;
}
} else {
/* This should be a virtual keyslot. */
AMS_ASSERT(IsVirtualAesKeySlot(keyslot));
/* Try to find a physical slot in the cache. */
if (g_aes_keyslot_cache.Find(std::addressof(phys_slot), keyslot)) {
return phys_slot;
}
/* Allocate a physical slot. */
phys_slot = g_aes_keyslot_cache.Allocate(keyslot);
contents = std::addressof(g_aes_keyslot_contents[GetVirtualAesKeySlotIndex(keyslot)]);
}
/* Ensure the contents of the keyslot. */
if (load) {
switch (contents->type) {
case AesKeySlotContentType::None:
ClearPhysicalAesKeySlot(phys_slot);
break;
case AesKeySlotContentType::AesKey:
R_ABORT_UNLESS(smc::ConvertResult(smc::LoadAesKey(phys_slot, contents->aes_key.access_key, contents->aes_key.key_source)));
break;
case AesKeySlotContentType::PreparedKey:
R_ABORT_UNLESS(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, contents->prepared_key.access_key)));
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
return phys_slot;
}
/* Type definitions. */
class ScopedAesKeySlot {
private:
s32 m_slot_index;
bool m_allocated;
public:
ScopedAesKeySlot() : m_slot_index(-1), m_allocated(false) {
/* ... */
}
~ScopedAesKeySlot() {
if (m_allocated) {
DeallocateAesKeySlot(m_slot_index);
}
}
s32 GetIndex() const {
return m_slot_index;
}
Result Allocate() {
R_TRY(AllocateAesKeySlot(std::addressof(m_slot_index)));
m_allocated = true;
return ResultSuccess();
}
};
struct SeLinkedListEntry {
u32 num_entries;
u32 address;
u32 size;
};
struct SeCryptContext {
SeLinkedListEntry in;
SeLinkedListEntry out;
};
/* Global variables. */
alignas(os::MemoryPageSize) constinit u8 g_work_buffer[WorkBufferSizeMax];
constinit util::TypedStorage<Drbg> g_drbg = {};
constinit os::InterruptName g_interrupt_name;
constinit os::InterruptEventType g_interrupt = {};
constinit util::TypedStorage<os::SystemEvent> g_aes_keyslot_available_event = {};
constinit os::SdkMutex g_operation_lock;
constinit dd::DeviceAddressSpaceType g_device_address_space = {};
#if defined(ATMOSPHERE_OS_HORIZON)
constinit u32 g_work_buffer_mapped_address;
#else
constinit uintptr_t g_work_buffer_mapped_address;
#endif
constinit BootReasonValue g_boot_reason;
constinit bool g_is_boot_reason_initialized;
/* Initialization functionality. */
void InitializeAsyncOperation() {
#if defined(ATMOSPHERE_OS_HORIZON)
u64 interrupt_number;
impl::GetConfig(std::addressof(interrupt_number), ConfigItem::SecurityEngineInterruptNumber);
g_interrupt_name = static_cast<os::InterruptName>(interrupt_number);
os::InitializeInterruptEvent(std::addressof(g_interrupt), g_interrupt_name, os::EventClearMode_AutoClear);
#else
AMS_UNUSED(g_interrupt_name, g_interrupt);
#endif
}
void InitializeDeviceAddressSpace() {
#if defined(ATMOSPHERE_OS_HORIZON)
/* Create device address space. */
R_ABORT_UNLESS(dd::CreateDeviceAddressSpace(std::addressof(g_device_address_space), 0, (1ul << 32)));
/* Attach to the security engine. */
R_ABORT_UNLESS(dd::AttachDeviceAddressSpace(std::addressof(g_device_address_space), dd::DeviceName_Se));
/* Map work buffer into the device. */
const uintptr_t work_buffer_address = reinterpret_cast<uintptr_t>(g_work_buffer);
g_work_buffer_mapped_address = WorkBufferBase + (work_buffer_address % DeviceAddressSpaceAlign);
R_ABORT_UNLESS(dd::MapDeviceAddressSpaceAligned(std::addressof(g_device_address_space), dd::GetCurrentProcessHandle(), work_buffer_address, dd::DeviceAddressSpaceMemoryRegionAlignment, g_work_buffer_mapped_address, dd::MemoryPermission_ReadWrite));
#else
/* Just set the work buffer address directly. */
AMS_UNUSED(g_device_address_space);
g_work_buffer_mapped_address = reinterpret_cast<uintptr_t>(g_work_buffer);
#endif
}
void InitializeCtrDrbg() {
u8 seed[Drbg::SeedSize];
AMS_ABORT_UNLESS(smc::GenerateRandomBytes(seed, sizeof(seed)) == smc::Result::Success);
util::ConstructAt(g_drbg);
util::GetReference(g_drbg).Initialize(seed, sizeof(seed), nullptr, 0, nullptr, 0);
}
void InitializeKeySlots() {
const auto fw_ver = hos::GetVersion();
g_is_physical_keyslot_allowed = fw_ver < hos::Version_2_0_0;
g_is_modern_device_unique_data = fw_ver >= hos::Version_5_0_0;
for (s32 i = 0; i < PhysicalAesKeySlotCount; i++) {
g_aes_keyslot_cache_entry[i].emplace(i);
g_aes_keyslot_cache.AddEntry(std::addressof(g_aes_keyslot_cache_entry[i].value()));
}
util::ConstructAt(g_aes_keyslot_available_event, os::EventClearMode_ManualClear, true);
util::GetReference(g_aes_keyslot_available_event).Signal();
}
void WaitOperation() {
#if defined(ATMOSPHERE_OS_HORIZON)
os::WaitInterruptEvent(std::addressof(g_interrupt));
#endif
}
smc::Result WaitAndGetResult(smc::AsyncOperationKey op_key) {
WaitOperation();
smc::Result async_res;
if (const smc::Result res = smc::GetResult(std::addressof(async_res), op_key); res != smc::Result::Success) {
return res;
}
return async_res;
}
smc::Result WaitAndGetResultData(void *dst, size_t size, smc::AsyncOperationKey op_key) {
WaitOperation();
smc::Result async_res;
if (const smc::Result res = smc::GetResultData(std::addressof(async_res), dst, size, op_key); res != smc::Result::Success) {
return res;
}
return async_res;
}
smc::Result DecryptAes(void *dst, s32 keyslot, const void *src) {
struct DecryptAesLayout {
SeCryptContext crypt_ctx;
u8 padding[8];
u8 in_buffer[crypto::AesEncryptor128::BlockSize];
u8 out_buffer[crypto::AesEncryptor128::BlockSize];
};
#if defined(ATMOSPHERE_OS_HORIZON)
auto &layout = *reinterpret_cast<DecryptAesLayout *>(g_work_buffer);
layout.crypt_ctx.in.num_entries = 0;
layout.crypt_ctx.in.address = g_work_buffer_mapped_address + AMS_OFFSETOF(DecryptAesLayout, in_buffer);
layout.crypt_ctx.in.size = sizeof(layout.in_buffer);
layout.crypt_ctx.out.num_entries = 0;
layout.crypt_ctx.out.address = g_work_buffer_mapped_address + AMS_OFFSETOF(DecryptAesLayout, out_buffer);
layout.crypt_ctx.out.size = sizeof(layout.out_buffer);
std::memcpy(layout.in_buffer, src, sizeof(layout.in_buffer));
os::FlushDataCache(std::addressof(layout), sizeof(layout));
{
std::scoped_lock lk(g_operation_lock);
smc::AsyncOperationKey op_key;
const IvCtr iv_ctr = {};
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::CbcDecrypt, GetPhysicalAesKeySlot(keyslot, true));
const u32 dst_ll_addr = g_work_buffer_mapped_address + AMS_OFFSETOF(DecryptAesLayout, crypt_ctx.out);
const u32 src_ll_addr = g_work_buffer_mapped_address + AMS_OFFSETOF(DecryptAesLayout, crypt_ctx.in);
smc::Result res = smc::ComputeAes(std::addressof(op_key), dst_ll_addr, mode, iv_ctr, src_ll_addr, sizeof(layout.out_buffer));
if (res != smc::Result::Success) {
return res;
}
res = WaitAndGetResult(op_key);
if (res != smc::Result::Success) {
return res;
}
}
os::FlushDataCache(std::addressof(layout.out_buffer), sizeof(layout.out_buffer));
std::memcpy(dst, layout.out_buffer, sizeof(layout.out_buffer));
#else
{
/* Set up buffers. */
u8 in_buffer[crypto::AesEncryptor128::BlockSize];
u8 out_buffer[crypto::AesEncryptor128::BlockSize];
std::memcpy(in_buffer, src, sizeof(in_buffer));
std::scoped_lock lk(g_operation_lock);
/* On generic os, we don't worry about the security engine. */
smc::AsyncOperationKey op_key;
const IvCtr iv_ctr = {};
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::CbcDecrypt, GetPhysicalAesKeySlot(keyslot, true));
smc::Result res = smc::ComputeAes(std::addressof(op_key), reinterpret_cast<uintptr_t>(out_buffer), mode, iv_ctr, reinterpret_cast<uintptr_t>(in_buffer), sizeof(in_buffer));
if (res != smc::Result::Success) {
return res;
}
res = WaitAndGetResult(op_key);
if (res != smc::Result::Success) {
return res;
}
std::memcpy(dst, out_buffer, sizeof(out_buffer));
}
#endif
return smc::Result::Success;
}
Result GenerateRandomBytesImpl(void *out, size_t size) {
AMS_ASSERT(size <= Drbg::RequestSizeMax);
if (!util::GetReference(g_drbg).Generate(out, size, nullptr, 0)) {
/* We need to reseed. */
{
u8 seed[Drbg::SeedSize];
if (smc::Result res = smc::GenerateRandomBytes(seed, sizeof(seed)); res != smc::Result::Success) {
return smc::ConvertResult(res);
}
util::GetReference(g_drbg).Reseed(seed, sizeof(seed), nullptr, 0);
}
util::GetReference(g_drbg).Generate(out, size, nullptr, 0);
}
return ResultSuccess();
}
Result DecryptAndStoreDeviceUniqueKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
struct DecryptAndStoreDeviceUniqueKeyLayout {
u8 data[DeviceUniqueDataMetaDataSize + 2 * Rsa2048BlockSize + 0x10];
};
auto &layout = *reinterpret_cast<DecryptAndStoreDeviceUniqueKeyLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size <= sizeof(DecryptAndStoreDeviceUniqueKeyLayout), spl::ResultInvalidBufferSize());
std::memcpy(layout.data, src, src_size);
if (g_is_modern_device_unique_data) {
return smc::ConvertResult(smc::DecryptDeviceUniqueData(layout.data, src_size, access_key, key_source, static_cast<smc::DeviceUniqueDataMode>(option)));
} else {
return smc::ConvertResult(smc::DecryptAndStoreGcKey(layout.data, src_size, access_key, key_source, option));
}
}
Result ModularExponentiateWithStorageKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size, smc::ModularExponentiateWithStorageKeyMode mode) {
struct ModularExponentiateWithStorageKeyLayout {
u8 base[Rsa2048BlockSize];
u8 mod[Rsa2048BlockSize];
};
auto &layout = *reinterpret_cast<ModularExponentiateWithStorageKeyLayout *>(g_work_buffer);
/* Validate sizes. */
R_UNLESS(base_size <= sizeof(layout.base), spl::ResultInvalidBufferSize());
R_UNLESS(mod_size <= sizeof(layout.mod), spl::ResultInvalidBufferSize());
R_UNLESS(out_size <= sizeof(g_work_buffer), spl::ResultInvalidBufferSize());
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout.base) - base_size;
const size_t mod_ofs = sizeof(layout.mod) - mod_size;
std::memset(layout.base, 0, sizeof(layout.base));
std::memset(layout.mod, 0, sizeof(layout.mod));
std::memcpy(layout.base + base_ofs, base, base_size);
std::memcpy(layout.mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
{
std::scoped_lock lk(g_operation_lock);
smc::AsyncOperationKey op_key;
smc::Result res = smc::ModularExponentiateWithStorageKey(std::addressof(op_key), layout.base, layout.mod, mode);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
res = WaitAndGetResultData(g_work_buffer, out_size, op_key);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
/* Copy result. */
if (out != g_work_buffer) {
std::memcpy(out, g_work_buffer, out_size);
}
return ResultSuccess();
}
Result PrepareEsDeviceUniqueKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, smc::EsDeviceUniqueKeyType type, u32 generation) {
struct PrepareEsDeviceUniqueKeyLayout {
u8 base[Rsa2048BlockSize];
u8 mod[Rsa2048BlockSize];
};
auto &layout = *reinterpret_cast<PrepareEsDeviceUniqueKeyLayout *>(g_work_buffer);
/* Validate sizes. */
R_UNLESS(base_size <= sizeof(layout.base), spl::ResultInvalidBufferSize());
R_UNLESS(mod_size <= sizeof(layout.mod), spl::ResultInvalidBufferSize());
R_UNLESS(label_digest_size <= LabelDigestSizeMax, spl::ResultInvalidBufferSize());
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout.base) - base_size;
const size_t mod_ofs = sizeof(layout.mod) - mod_size;
std::memset(layout.base, 0, sizeof(layout.base));
std::memset(layout.mod, 0, sizeof(layout.mod));
std::memcpy(layout.base + base_ofs, base, base_size);
std::memcpy(layout.mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
{
std::scoped_lock lk(g_operation_lock);
smc::AsyncOperationKey op_key;
smc::Result res = smc::PrepareEsDeviceUniqueKey(std::addressof(op_key), layout.base, layout.mod, label_digest, label_digest_size, smc::GetPrepareEsDeviceUniqueKeyOption(type, generation));
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
res = WaitAndGetResultData(g_work_buffer, sizeof(*out_access_key), op_key);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
std::memcpy(out_access_key, g_work_buffer, sizeof(*out_access_key));
return ResultSuccess();
}
}
/* Initialization. */
void Initialize() {
/* Initialize async operation. */
InitializeAsyncOperation();
/* Initialize device address space for the SE. */
InitializeDeviceAddressSpace();
/* Initialize the Drbg. */
InitializeCtrDrbg();
/* Initialize the keyslot cache. */
InitializeKeySlots();
}
/* General. */
Result GetConfig(u64 *out, ConfigItem key) {
/* Nintendo explicitly blacklists package2 hash, which must be gotten via bespoke api. */
R_UNLESS(key != ConfigItem::Package2Hash, spl::ResultInvalidArgument());
smc::Result res = smc::GetConfig(out, 1, key);
/* Nintendo has some special handling here for hardware type/hardware state. */
if (key == ConfigItem::HardwareType && res == smc::Result::InvalidArgument) {
*out = static_cast<u64>(HardwareType::Icosa);
res = smc::Result::Success;
}
if (key == ConfigItem::HardwareState && res == smc::Result::InvalidArgument) {
*out = HardwareState_Development;
res = smc::Result::Success;
}
return smc::ConvertResult(res);
}
Result ModularExponentiate(void *out, size_t out_size, const void *base, size_t base_size, const void *exp, size_t exp_size, const void *mod, size_t mod_size) {
struct ModularExponentiateLayout {
u8 base[Rsa2048BlockSize];
u8 exp[Rsa2048BlockSize];
u8 mod[Rsa2048BlockSize];
};
auto &layout = *reinterpret_cast<ModularExponentiateLayout *>(g_work_buffer);
/* Validate sizes. */
R_UNLESS(base_size <= sizeof(layout.base), spl::ResultInvalidBufferSize());
R_UNLESS(exp_size <= sizeof(layout.exp), spl::ResultInvalidBufferSize());
R_UNLESS(mod_size <= sizeof(layout.mod), spl::ResultInvalidBufferSize());
R_UNLESS(out_size <= sizeof(g_work_buffer), spl::ResultInvalidBufferSize());
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout.base) - base_size;
const size_t mod_ofs = sizeof(layout.mod) - mod_size;
std::memset(layout.base, 0, sizeof(layout.base));
std::memset(layout.mod, 0, sizeof(layout.mod));
std::memcpy(layout.base + base_ofs, base, base_size);
std::memcpy(layout.mod + mod_ofs, mod, mod_size);
std::memcpy(layout.exp, exp, exp_size);
/* Do exp mod operation. */
{
std::scoped_lock lk(g_operation_lock);
smc::AsyncOperationKey op_key;
smc::Result res = smc::ModularExponentiate(std::addressof(op_key), layout.base, layout.exp, exp_size, layout.mod);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
res = WaitAndGetResultData(g_work_buffer, out_size, op_key);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
std::memcpy(out, g_work_buffer, out_size);
return ResultSuccess();
}
Result SetConfig(ConfigItem key, u64 value) {
R_TRY(smc::ConvertResult(smc::SetConfig(key, value)));
/* Work around for temporary version. */
if (key == ConfigItem::ExosphereApiVersion) {
hos::InitializeVersionInternal(false);
}
return ResultSuccess();
}
Result GenerateRandomBytes(void *out, size_t size) {
for (size_t offset = 0; offset < size; offset += Drbg::RequestSizeMax) {
R_TRY(GenerateRandomBytesImpl(static_cast<u8 *>(out) + offset, std::min(size - offset, Drbg::RequestSizeMax)));
}
return ResultSuccess();
}
Result IsDevelopment(bool *out) {
u64 hardware_state;
R_TRY(impl::GetConfig(std::addressof(hardware_state), ConfigItem::HardwareState));
*out = (hardware_state == HardwareState_Development);
return ResultSuccess();
}
Result SetBootReason(BootReasonValue boot_reason) {
R_UNLESS(!g_is_boot_reason_initialized, spl::ResultBootReasonAlreadyInitialized());
g_boot_reason = boot_reason;
g_is_boot_reason_initialized = true;
return ResultSuccess();
}
Result GetBootReason(BootReasonValue *out) {
R_UNLESS(g_is_boot_reason_initialized, spl::ResultBootReasonNotInitialized());
*out = g_boot_reason;
return ResultSuccess();
}
/* Crypto. */
Result GenerateAesKek(AccessKey *out_access_key, const KeySource &key_source, u32 generation, u32 option) {
return smc::ConvertResult(smc::GenerateAesKek(out_access_key, key_source, generation, option));
}
Result LoadAesKey(s32 keyslot, const AccessKey &access_key, const KeySource &key_source) {
/* Ensure we can load into the slot. */
const s32 phys_slot = GetPhysicalAesKeySlot(keyslot, false);
R_TRY(smc::ConvertResult(smc::LoadAesKey(phys_slot, access_key, key_source)));
/* Update our contents. */
const s32 index = GetVirtualAesKeySlotIndex(keyslot);
g_aes_keyslot_contents[index].type = AesKeySlotContentType::AesKey;
g_aes_keyslot_contents[index].aes_key.access_key = access_key;
g_aes_keyslot_contents[index].aes_key.key_source = key_source;
return ResultSuccess();
}
Result GenerateAesKey(AesKey *out_key, const AccessKey &access_key, const KeySource &key_source) {
ScopedAesKeySlot keyslot_holder;
R_TRY(keyslot_holder.Allocate());
R_TRY(LoadAesKey(keyslot_holder.GetIndex(), access_key, KeyGenerationSource));
return smc::ConvertResult(DecryptAes(out_key, keyslot_holder.GetIndex(), std::addressof(key_source)));
}
Result DecryptAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 option) {
AccessKey access_key;
R_TRY(GenerateAesKek(std::addressof(access_key), AesKeyDecryptionSource, generation, option));
return GenerateAesKey(out_key, access_key, key_source);
}
Result ComputeCtr(void *dst, size_t dst_size, s32 keyslot, const void *src, size_t src_size, const IvCtr &iv_ctr) {
/* Succeed immediately if there's nothing to compute. */
R_SUCCEED_IF(src_size == 0);
/* Validate sizes. */
R_UNLESS(src_size <= dst_size, spl::ResultInvalidBufferSize());
R_UNLESS(util::IsAligned(src_size, AesBlockSize), spl::ResultInvalidBufferSize());
#if defined(ATMOSPHERE_OS_HORIZON)
/* We can only map 4_MB aligned buffers for the SE, so determine where to map our buffers. */
const uintptr_t src_addr = reinterpret_cast<uintptr_t>(src);
const uintptr_t dst_addr = reinterpret_cast<uintptr_t>(dst);
const uintptr_t src_addr_aligned = util::AlignDown(src_addr, dd::DeviceAddressSpaceMemoryRegionAlignment);
const uintptr_t dst_addr_aligned = util::AlignDown(dst_addr, dd::DeviceAddressSpaceMemoryRegionAlignment);
const size_t src_size_aligned = util::AlignUp(src_addr + src_size, dd::DeviceAddressSpaceMemoryRegionAlignment) - src_addr_aligned;
const size_t dst_size_aligned = util::AlignUp(dst_addr + dst_size, dd::DeviceAddressSpaceMemoryRegionAlignment) - dst_addr_aligned;
const u32 src_se_map_addr = ComputeAesInMapBase + (src_addr_aligned % DeviceAddressSpaceAlign);
const u32 dst_se_map_addr = ComputeAesOutMapBase + (dst_addr_aligned % DeviceAddressSpaceAlign);
const u32 src_se_addr = ComputeAesInMapBase + (src_addr % DeviceAddressSpaceAlign);
const u32 dst_se_addr = ComputeAesOutMapBase + (dst_addr % DeviceAddressSpaceAlign);
/* Validate aligned sizes. */
R_UNLESS(src_size_aligned <= ComputeAesSizeMax, spl::ResultInvalidBufferSize());
R_UNLESS(dst_size_aligned <= ComputeAesSizeMax, spl::ResultInvalidBufferSize());
/* Helpers for mapping/unmapping. */
DeviceAddressMapper src_mapper(std::addressof(g_device_address_space), src_addr_aligned, src_size_aligned, src_se_map_addr, dd::MemoryPermission_ReadOnly);
DeviceAddressMapper dst_mapper(std::addressof(g_device_address_space), dst_addr_aligned, dst_size_aligned, dst_se_map_addr, dd::MemoryPermission_WriteOnly);
/* Setup SE linked list entries. */
auto &crypt_ctx = *reinterpret_cast<SeCryptContext *>(g_work_buffer);
crypt_ctx.in.num_entries = 0;
crypt_ctx.in.address = src_se_addr;
crypt_ctx.in.size = src_size;
crypt_ctx.out.num_entries = 0;
crypt_ctx.out.address = dst_se_addr;
crypt_ctx.out.size = dst_size;
os::FlushDataCache(std::addressof(crypt_ctx), sizeof(crypt_ctx));
os::FlushDataCache(src, src_size);
os::FlushDataCache(dst, dst_size);
{
std::scoped_lock lk(g_operation_lock);
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::Ctr, GetPhysicalAesKeySlot(keyslot, true));
const u32 dst_ll_addr = g_work_buffer_mapped_address + AMS_OFFSETOF(SeCryptContext, out);
const u32 src_ll_addr = g_work_buffer_mapped_address + AMS_OFFSETOF(SeCryptContext, in);
smc::AsyncOperationKey op_key;
smc::Result res = smc::ComputeAes(std::addressof(op_key), dst_ll_addr, mode, iv_ctr, src_ll_addr, src_size);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
res = WaitAndGetResult(op_key);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
os::FlushDataCache(dst, dst_size);
#else
{
std::scoped_lock lk(g_operation_lock);
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::Ctr, GetPhysicalAesKeySlot(keyslot, true));
/* On generic os, we don't worry about the security engine. */
smc::AsyncOperationKey op_key;
smc::Result res = smc::ComputeAes(std::addressof(op_key), reinterpret_cast<uintptr_t>(dst), mode, iv_ctr, reinterpret_cast<uintptr_t>(src), src_size);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
res = WaitAndGetResult(op_key);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
#endif
return ResultSuccess();
}
Result ComputeCmac(Cmac *out_cmac, s32 keyslot, const void *data, size_t size) {
R_UNLESS(size <= sizeof(g_work_buffer), spl::ResultInvalidBufferSize());
std::memcpy(g_work_buffer, data, size);
return smc::ConvertResult(smc::ComputeCmac(out_cmac, GetPhysicalAesKeySlot(keyslot, true), g_work_buffer, size));
}
Result AllocateAesKeySlot(s32 *out_keyslot) {
/* Find an unused keyslot. */
for (s32 i = 0; i < AesKeySlotCount; ++i) {
if (!g_is_aes_keyslot_allocated[i]) {
g_is_aes_keyslot_allocated[i] = true;
g_aes_keyslot_contents[i].type = AesKeySlotContentType::None;
*out_keyslot = MakeVirtualAesKeySlot(i);
return ResultSuccess();
}
}
util::GetReference(g_aes_keyslot_available_event).Clear();
return spl::ResultNoAvailableKeySlot();
}
Result DeallocateAesKeySlot(s32 keyslot) {
/* Only virtual keyslots can be freed. */
R_UNLESS(IsVirtualAesKeySlot(keyslot), spl::ResultInvalidKeySlot());
/* Check that the virtual keyslot is allocated. */
const s32 index = GetVirtualAesKeySlotIndex(keyslot);
R_UNLESS(g_is_aes_keyslot_allocated[index], spl::ResultInvalidKeySlot());
/* Clear the physical keyslot, if we're cached. */
s32 phys_slot;
if (g_aes_keyslot_cache.Release(std::addressof(phys_slot), keyslot)) {
ClearPhysicalAesKeySlot(phys_slot);
}
/* Clear the virtual keyslot. */
g_aes_keyslot_contents[index].type = AesKeySlotContentType::None;
g_is_aes_keyslot_allocated[index] = false;
util::GetReference(g_aes_keyslot_available_event).Signal();
return ResultSuccess();
}
Result TestAesKeySlot(s32 *out_index, bool *out_virtual, s32 keyslot) {
if (g_is_physical_keyslot_allowed && IsPhysicalAesKeySlot(keyslot)) {
*out_index = keyslot;
*out_virtual = false;
return ResultSuccess();
}
R_UNLESS(IsVirtualAesKeySlot(keyslot), spl::ResultInvalidKeySlot());
const s32 index = GetVirtualAesKeySlotIndex(keyslot);
R_UNLESS(g_is_aes_keyslot_allocated[index], spl::ResultInvalidKeySlot());
*out_index = index;
*out_virtual = true;
return ResultSuccess();
}
os::SystemEvent *GetAesKeySlotAvailableEvent() {
return util::GetPointer(g_aes_keyslot_available_event);
}
/* RSA. */
Result DecryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
struct DecryptDeviceUniqueDataLayout {
u8 data[Rsa2048BlockSize + DeviceUniqueDataMetaDataSize];
};
auto &layout = *reinterpret_cast<DecryptDeviceUniqueDataLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size >= DeviceUniqueDataMetaDataSize, spl::ResultInvalidBufferSize());
R_UNLESS(src_size <= sizeof(DecryptDeviceUniqueDataLayout), spl::ResultInvalidBufferSize());
std::memcpy(layout.data, src, src_size);
smc::Result smc_res;
size_t copy_size = 0;
if (g_is_modern_device_unique_data) {
copy_size = std::min(dst_size, src_size - DeviceUniqueDataMetaDataSize);
smc_res = smc::DecryptDeviceUniqueData(layout.data, src_size, access_key, key_source, static_cast<smc::DeviceUniqueDataMode>(option));
} else {
smc_res = smc::DecryptDeviceUniqueData(std::addressof(copy_size), layout.data, src_size, access_key, key_source, option);
copy_size = std::min(dst_size, copy_size);
}
if (smc_res == smc::Result::Success) {
std::memcpy(dst, layout.data, copy_size);
}
return smc::ConvertResult(smc_res);
}
/* SSL */
Result DecryptAndStoreSslClientCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast<u32>(smc::DeviceUniqueDataMode::DecryptAndStoreSslKey));
}
Result ModularExponentiateWithSslClientCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Ssl);
}
/* ES */
Result LoadEsDeviceKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
if (g_is_modern_device_unique_data) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option);
} else {
struct LoadEsDeviceKeyLayout {
u8 data[DeviceUniqueDataMetaDataSize + 2 * Rsa2048BlockSize + 0x10];
};
auto &layout = *reinterpret_cast<LoadEsDeviceKeyLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size <= sizeof(layout.data), spl::ResultInvalidBufferSize());
std::memcpy(layout.data, src, src_size);
return smc::ConvertResult(smc::LoadEsDeviceKey(layout.data, src_size, access_key, key_source, option));
}
}
Result PrepareEsTitleKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, smc::EsDeviceUniqueKeyType::TitleKey, generation);
}
Result PrepareCommonEsTitleKey(AccessKey *out_access_key, const KeySource &key_source, u32 generation) {
return smc::ConvertResult(smc::PrepareCommonEsTitleKey(out_access_key, key_source, generation));
}
Result DecryptAndStoreDrmDeviceCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast<u32>(smc::DeviceUniqueDataMode::DecryptAndStoreDrmDeviceCertKey));
}
Result ModularExponentiateWithDrmDeviceCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::DrmDeviceCert);
}
Result PrepareEsArchiveKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, smc::EsDeviceUniqueKeyType::ArchiveKey, generation);
}
/* FS */
Result DecryptAndStoreGcKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option);
}
Result DecryptGcMessage(u32 *out_size, void *dst, size_t dst_size, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size) {
/* Validate sizes. */
R_UNLESS(dst_size <= sizeof(g_work_buffer), spl::ResultInvalidBufferSize());
R_UNLESS(label_digest_size == LabelDigestSizeMax, spl::ResultInvalidBufferSize());
/* Nintendo doesn't check this result code, but we will. */
R_TRY(ModularExponentiateWithStorageKey(g_work_buffer, Rsa2048BlockSize, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Gc));
const auto data_size = crypto::DecodeRsa2048OaepSha256(dst, dst_size, label_digest, label_digest_size, g_work_buffer, Rsa2048BlockSize);
R_UNLESS(data_size > 0, spl::ResultDecryptionFailed());
*out_size = static_cast<u32>(data_size);
return ResultSuccess();
}
Result GenerateSpecificAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 which) {
return smc::ConvertResult(smc::GenerateSpecificAesKey(out_key, key_source, generation, which));
}
Result LoadPreparedAesKey(s32 keyslot, const AccessKey &access_key) {
/* Ensure we can load into the slot. */
const s32 phys_slot = GetPhysicalAesKeySlot(keyslot, false);
R_TRY(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, access_key)));
/* Update our contents. */
const s32 index = GetVirtualAesKeySlotIndex(keyslot);
g_aes_keyslot_contents[index].type = AesKeySlotContentType::PreparedKey;
g_aes_keyslot_contents[index].prepared_key.access_key = access_key;
return ResultSuccess();
}
Result GetPackage2Hash(void *dst, const size_t size) {
u64 hash[4];
R_UNLESS(size >= sizeof(hash), spl::ResultInvalidBufferSize());
const smc::Result smc_res = smc::GetConfig(hash, 4, ConfigItem::Package2Hash);
if (smc_res != smc::Result::Success) {
return smc::ConvertResult(smc_res);
}
std::memcpy(dst, hash, sizeof(hash));
return ResultSuccess();
}
/* Manu. */
Result ReencryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key_dec, const KeySource &source_dec, const AccessKey &access_key_enc, const KeySource &source_enc, u32 option) {
struct ReencryptDeviceUniqueDataLayout {
u8 data[DeviceUniqueDataMetaDataSize + 2 * Rsa2048BlockSize + 0x10];
AccessKey access_key_dec;
KeySource source_dec;
AccessKey access_key_enc;
KeySource source_enc;
};
auto &layout = *reinterpret_cast<ReencryptDeviceUniqueDataLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size > DeviceUniqueDataMetaDataSize, spl::ResultInvalidBufferSize());
R_UNLESS(src_size <= sizeof(layout.data), spl::ResultInvalidBufferSize());
std::memcpy(layout.data, src, src_size);
layout.access_key_dec = access_key_dec;
layout.source_dec = source_dec;
layout.access_key_enc = access_key_enc;
layout.source_enc = source_enc;
const smc::Result smc_res = smc::ReencryptDeviceUniqueData(layout.data, src_size, layout.access_key_dec, layout.source_dec, layout.access_key_enc, layout.source_enc, option);
if (smc_res == smc::Result::Success) {
std::memcpy(dst, layout.data, std::min(dst_size, src_size));
}
return smc::ConvertResult(smc_res);
}
}