1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-23 20:32:10 +00:00
Atmosphere/stratosphere/pm/source/impl/pm_resource_manager.cpp
2022-03-23 09:10:50 -07:00

448 lines
24 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "pm_resource_manager.hpp"
namespace ams::pm::resource {
namespace {
constexpr svc::LimitableResource LimitableResources[] = {
svc::LimitableResource_PhysicalMemoryMax,
svc::LimitableResource_ThreadCountMax,
svc::LimitableResource_EventCountMax,
svc::LimitableResource_TransferMemoryCountMax,
svc::LimitableResource_SessionCountMax,
};
/* Definitions for limit differences over time. */
constexpr size_t ExtraSystemMemorySize400 = 10_MB;
constexpr size_t ReservedMemorySize600 = 5_MB;
/* Atmosphere always allocates extra memory for system usage. */
constexpr size_t ExtraSystemMemorySizeAtmosphere = 24_MB;
/* Desired extra threads. */
constexpr u64 BaseApplicationThreads = 96;
constexpr u64 BaseAppletThreads = 96;
constexpr u64 BaseSystemThreads = 800 - BaseAppletThreads - BaseApplicationThreads;
constexpr s64 ExtraSystemThreads = 1024 - BaseSystemThreads;
constexpr s64 ExtraApplicationThreads = 256 - BaseApplicationThreads;
constexpr s64 ExtraAppletThreads = 256 - BaseAppletThreads;
static_assert(ExtraSystemThreads >= 0);
static_assert(ExtraApplicationThreads >= 0);
static_assert(ExtraAppletThreads >= 0);
/* Globals. */
constinit os::SdkMutex g_resource_limit_lock;
constinit os::NativeHandle g_resource_limit_handles[ResourceLimitGroup_Count];
constinit spl::MemoryArrangement g_memory_arrangement = spl::MemoryArrangement_Standard;
constinit u64 g_system_memory_boost_size = 0;
constinit u64 g_extra_threads_available[ResourceLimitGroup_Count];
constinit u64 g_resource_limits[ResourceLimitGroup_Count][svc::LimitableResource_Count] = {
[ResourceLimitGroup_System] = {
[svc::LimitableResource_PhysicalMemoryMax] = 0, /* Initialized dynamically later. */
[svc::LimitableResource_ThreadCountMax] = BaseSystemThreads,
[svc::LimitableResource_EventCountMax] = 0, /* Initialized dynamically later. */
[svc::LimitableResource_TransferMemoryCountMax] = 0, /* Initialized dynamically later. */
[svc::LimitableResource_SessionCountMax] = 0, /* Initialized dynamically later. */
},
[ResourceLimitGroup_Application] = {
[svc::LimitableResource_PhysicalMemoryMax] = 0, /* Initialized dynamically later. */
[svc::LimitableResource_ThreadCountMax] = BaseApplicationThreads,
[svc::LimitableResource_EventCountMax] = 0,
[svc::LimitableResource_TransferMemoryCountMax] = 32,
[svc::LimitableResource_SessionCountMax] = 1,
},
[ResourceLimitGroup_Applet] = {
[svc::LimitableResource_PhysicalMemoryMax] = 0, /* Initialized dynamically later. */
[svc::LimitableResource_ThreadCountMax] = BaseAppletThreads,
[svc::LimitableResource_EventCountMax] = 0,
[svc::LimitableResource_TransferMemoryCountMax] = 32,
[svc::LimitableResource_SessionCountMax] = 5,
},
};
constinit u64 g_memory_resource_limits[spl::MemoryArrangement_Count][ResourceLimitGroup_Count] = {
[spl::MemoryArrangement_Standard] = {
[ResourceLimitGroup_System] = 269_MB,
[ResourceLimitGroup_Application] = 3285_MB,
[ResourceLimitGroup_Applet] = 535_MB,
},
[spl::MemoryArrangement_StandardForAppletDev] = {
[ResourceLimitGroup_System] = 481_MB,
[ResourceLimitGroup_Application] = 2048_MB,
[ResourceLimitGroup_Applet] = 1560_MB,
},
[spl::MemoryArrangement_StandardForSystemDev] = {
[ResourceLimitGroup_System] = 328_MB,
[ResourceLimitGroup_Application] = 3285_MB,
[ResourceLimitGroup_Applet] = 476_MB,
},
[spl::MemoryArrangement_Expanded] = {
[ResourceLimitGroup_System] = 653_MB,
[ResourceLimitGroup_Application] = 4916_MB,
[ResourceLimitGroup_Applet] = 568_MB,
},
[spl::MemoryArrangement_ExpandedForAppletDev] = {
[ResourceLimitGroup_System] = 653_MB,
[ResourceLimitGroup_Application] = 3285_MB,
[ResourceLimitGroup_Applet] = 2199_MB,
},
};
/* Helpers. */
Result SetMemoryResourceLimitLimitValue(ResourceLimitGroup group, u64 new_memory_limit) {
const u64 old_memory_limit = g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax];
g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax] = new_memory_limit;
/* Restore the old memory limit if we fail. */
ON_RESULT_FAILURE { g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax] = old_memory_limit; };
/* Set the resource limit. */
R_RETURN(svc::SetResourceLimitLimitValue(GetResourceLimitHandle(group), svc::LimitableResource_PhysicalMemoryMax, g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax]));
}
Result SetResourceLimitLimitValues(ResourceLimitGroup group, u64 new_memory_limit) {
/* First, set memory limit. */
R_TRY(SetMemoryResourceLimitLimitValue(group, new_memory_limit));
/* Set other limit values. */
for (size_t i = 0; i < svc::LimitableResource_Count; i++) {
const auto resource = LimitableResources[i];
if (resource == svc::LimitableResource_PhysicalMemoryMax) {
continue;
}
R_TRY(svc::SetResourceLimitLimitValue(GetResourceLimitHandle(group), resource, g_resource_limits[group][resource]));
}
R_SUCCEED();
}
inline ResourceLimitGroup GetResourceLimitGroup(const ldr::ProgramInfo *info) {
switch (info->flags & ldr::ProgramInfoFlag_ApplicationTypeMask) {
case ldr::ProgramInfoFlag_Application:
return ResourceLimitGroup_Application;
case ldr::ProgramInfoFlag_Applet:
return ResourceLimitGroup_Applet;
default:
return ResourceLimitGroup_System;
}
}
void WaitResourceAvailable(ResourceLimitGroup group) {
const auto reslimit_hnd = GetResourceLimitHandle(group);
for (size_t i = 0; i < svc::LimitableResource_Count; i++) {
const auto resource = LimitableResources[i];
s64 value = 0;
while (true) {
R_ABORT_UNLESS(svc::GetResourceLimitCurrentValue(&value, reslimit_hnd, resource));
if (value == 0) {
break;
}
os::SleepThread(TimeSpan::FromMilliSeconds(1));
}
}
}
void WaitApplicationMemoryAvailable() {
u64 value = 0;
while (true) {
R_ABORT_UNLESS(svc::GetSystemInfo(&value, svc::SystemInfoType_UsedPhysicalMemorySize, svc::InvalidHandle, svc::PhysicalMemorySystemInfo_Application));
if (value == 0) {
break;
}
os::SleepThread(TimeSpan::FromMilliSeconds(1));
}
}
bool IsKTraceEnabled() {
u64 value = 0;
R_ABORT_UNLESS(svc::GetInfo(std::addressof(value), svc::InfoType_MesosphereMeta, svc::InvalidHandle, svc::MesosphereMetaInfo_IsKTraceEnabled));
return value != 0;
}
ALWAYS_INLINE Result BoostThreadResourceLimitLocked(ResourceLimitGroup group) {
AMS_ASSERT(g_resource_limit_lock.IsLockedByCurrentThread());
/* Set new limit. */
const s64 new_thread_count = g_resource_limits[group][svc::LimitableResource_ThreadCountMax] + g_extra_threads_available[group];
R_TRY(svc::SetResourceLimitLimitValue(GetResourceLimitHandle(group), svc::LimitableResource_ThreadCountMax, new_thread_count));
/* Record that we did so. */
g_resource_limits[group][svc::LimitableResource_ThreadCountMax] = new_thread_count;
g_extra_threads_available[group] = 0;
R_SUCCEED();
}
template<auto GetResourceLimitValueImpl>
ALWAYS_INLINE Result GetResourceLimitValuesImpl(ResourceLimitGroup group, pm::ResourceLimitValues *out) {
/* Sanity check group. */
AMS_ABORT_UNLESS(group < ResourceLimitGroup_Count);
/* Get handle. */
const auto handle = GetResourceLimitHandle(group);
/* Get values. */
int64_t values[svc::LimitableResource_Count];
R_ABORT_UNLESS(GetResourceLimitValueImpl(std::addressof(values[svc::LimitableResource_PhysicalMemoryMax]), handle, svc::LimitableResource_PhysicalMemoryMax));
R_ABORT_UNLESS(GetResourceLimitValueImpl(std::addressof(values[svc::LimitableResource_ThreadCountMax]), handle, svc::LimitableResource_ThreadCountMax));
R_ABORT_UNLESS(GetResourceLimitValueImpl(std::addressof(values[svc::LimitableResource_EventCountMax]), handle, svc::LimitableResource_EventCountMax));
R_ABORT_UNLESS(GetResourceLimitValueImpl(std::addressof(values[svc::LimitableResource_TransferMemoryCountMax]), handle, svc::LimitableResource_TransferMemoryCountMax));
R_ABORT_UNLESS(GetResourceLimitValueImpl(std::addressof(values[svc::LimitableResource_SessionCountMax]), handle, svc::LimitableResource_SessionCountMax));
/* Set to output. */
out->physical_memory = values[svc::LimitableResource_PhysicalMemoryMax];
out->thread_count = values[svc::LimitableResource_ThreadCountMax];
out->event_count = values[svc::LimitableResource_EventCountMax];
out->transfer_memory_count = values[svc::LimitableResource_TransferMemoryCountMax];
out->session_count = values[svc::LimitableResource_SessionCountMax];
R_SUCCEED();
}
}
/* Resource API. */
Result InitializeResourceManager() {
/* Create resource limit handles. */
for (size_t i = 0; i < ResourceLimitGroup_Count; i++) {
if (i == ResourceLimitGroup_System) {
u64 value = 0;
R_ABORT_UNLESS(svc::GetInfo(&value, svc::InfoType_ResourceLimit, svc::InvalidHandle, 0));
g_resource_limit_handles[i] = static_cast<svc::Handle>(value);
} else {
R_ABORT_UNLESS(svc::CreateResourceLimit(g_resource_limit_handles + i));
}
}
/* Adjust memory limits based on hos firmware version. */
const auto hos_version = hos::GetVersion();
if (hos_version >= hos::Version_4_0_0) {
/* 4.0.0 took memory away from applet and gave it to system, for the Standard and StandardForSystemDev profiles. */
g_memory_resource_limits[spl::MemoryArrangement_Standard][ResourceLimitGroup_System] += ExtraSystemMemorySize400;
g_memory_resource_limits[spl::MemoryArrangement_Standard][ResourceLimitGroup_Applet] -= ExtraSystemMemorySize400;
g_memory_resource_limits[spl::MemoryArrangement_StandardForSystemDev][ResourceLimitGroup_System] += ExtraSystemMemorySize400;
g_memory_resource_limits[spl::MemoryArrangement_StandardForSystemDev][ResourceLimitGroup_Applet] -= ExtraSystemMemorySize400;
}
/* Determine system resource counts. */
{
/* Get the total resource counts. */
s64 total_events, total_transfer_memories, total_sessions;
R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_events), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_EventCountMax));
R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_transfer_memories), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_TransferMemoryCountMax));
R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_sessions), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_SessionCountMax));
/* Determine system counts. */
const s64 sys_events = total_events - (g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_EventCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_EventCountMax]);
const s64 sys_transfer_memories = total_transfer_memories - (g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_TransferMemoryCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_TransferMemoryCountMax]);
const s64 sys_sessions = total_sessions - (g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_SessionCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_SessionCountMax]);
/* Check system counts. */
AMS_ABORT_UNLESS(sys_events >= 0);
AMS_ABORT_UNLESS(sys_transfer_memories >= 0);
AMS_ABORT_UNLESS(sys_sessions >= 0);
/* Set system counts. */
g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_EventCountMax] = sys_events;
g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_TransferMemoryCountMax] = sys_transfer_memories;
g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_SessionCountMax] = sys_sessions;
}
/* Determine extra application threads. */
{
/* Get total threads available. */
s64 total_threads;
R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_threads), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_ThreadCountMax));
/* Check that we have enough threads. */
const s64 required_threads = g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_ThreadCountMax] + g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_ThreadCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_ThreadCountMax];
AMS_ABORT_UNLESS(total_threads >= required_threads);
/* Set the number of extra threads. */
const s64 extra_threads = total_threads - required_threads;
if constexpr (true /* TODO: Should we expose the old "all extra threads are application" behavior? Seems pointless. */) {
if (extra_threads > 0) {
/* If we have any extra threads at all, require that we have enough. */
AMS_ABORT_UNLESS(extra_threads >= (ExtraSystemThreads + ExtraApplicationThreads + ExtraAppletThreads));
g_extra_threads_available[ResourceLimitGroup_System] += ExtraSystemThreads;
g_extra_threads_available[ResourceLimitGroup_Application] += ExtraApplicationThreads;
g_extra_threads_available[ResourceLimitGroup_Applet] += ExtraAppletThreads;
}
} else {
g_extra_threads_available[ResourceLimitGroup_Application] = extra_threads;
}
}
/* Choose and initialize memory arrangement. */
const bool use_dynamic_memory_arrangement = (hos_version >= hos::Version_5_0_0);
if (use_dynamic_memory_arrangement) {
/* 6.0.0 retrieves memory limit information from the kernel, rather than using a hardcoded profile. */
g_memory_arrangement = spl::MemoryArrangement_Dynamic;
/* Get total memory available. */
s64 total_memory = 0;
R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(&total_memory, GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_PhysicalMemoryMax));
/* Get and save application + applet memory. */
R_ABORT_UNLESS(svc::GetSystemInfo(std::addressof(g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Application]), svc::SystemInfoType_TotalPhysicalMemorySize, svc::InvalidHandle, svc::PhysicalMemorySystemInfo_Application));
R_ABORT_UNLESS(svc::GetSystemInfo(std::addressof(g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Applet]), svc::SystemInfoType_TotalPhysicalMemorySize, svc::InvalidHandle, svc::PhysicalMemorySystemInfo_Applet));
const s64 application_size = g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Application];
const s64 applet_size = g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Applet];
const s64 reserved_non_system_size = (application_size + applet_size + ReservedMemorySize600);
/* Ensure there's enough memory for the system region. */
AMS_ABORT_UNLESS(reserved_non_system_size < total_memory);
g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_System] = total_memory - reserved_non_system_size;
} else {
/* Older system versions retrieve memory arrangement from spl, and use hardcoded profiles. */
g_memory_arrangement = spl::GetMemoryArrangement();
/* Adjust memory limits for atmosphere. */
/* We take memory away from applet normally, but away from application on < 3.0.0 to avoid a rare hang on boot. */
const size_t extra_memory_size = ExtraSystemMemorySizeAtmosphere;
const auto src_group = hos_version >= hos::Version_3_0_0 ? ResourceLimitGroup_Applet : ResourceLimitGroup_Application;
for (size_t i = 0; i < spl::MemoryArrangement_Count; i++) {
g_memory_resource_limits[i][ResourceLimitGroup_System] += extra_memory_size;
g_memory_resource_limits[i][src_group] -= extra_memory_size;
}
/* If KTrace is enabled, account for that by subtracting the memory from the applet pool. */
if (IsKTraceEnabled()) {
constexpr size_t KTraceBufferSize = 16_MB;
for (size_t i = 0; i < spl::MemoryArrangement_Count; i++) {
g_memory_resource_limits[i][ResourceLimitGroup_Applet] -= KTraceBufferSize;
}
}
}
/* Actually set resource limits. */
{
std::scoped_lock lk(g_resource_limit_lock);
for (size_t group = 0; group < ResourceLimitGroup_Count; group++) {
R_ABORT_UNLESS(SetResourceLimitLimitValues(static_cast<ResourceLimitGroup>(group), g_memory_resource_limits[g_memory_arrangement][group]));
}
}
R_SUCCEED();
}
Result BoostSystemMemoryResourceLimit(u64 boost_size) {
/* Don't allow all application memory to be taken away. */
R_UNLESS(boost_size <= g_memory_resource_limits[g_memory_arrangement][ResourceLimitGroup_Application], pm::ResultInvalidSize());
const u64 new_app_size = g_memory_resource_limits[g_memory_arrangement][ResourceLimitGroup_Application] - boost_size;
{
std::scoped_lock lk(g_resource_limit_lock);
if (hos::GetVersion() >= hos::Version_5_0_0) {
/* Starting in 5.0.0, PM does not allow for only one of the sets to fail. */
if (boost_size < g_system_memory_boost_size) {
R_TRY(svc::SetUnsafeLimit(boost_size));
R_ABORT_UNLESS(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size));
} else {
R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size));
R_ABORT_UNLESS(svc::SetUnsafeLimit(boost_size));
}
} else {
const u64 new_sys_size = g_memory_resource_limits[g_memory_arrangement][ResourceLimitGroup_System] + boost_size;
if (boost_size < g_system_memory_boost_size) {
R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_System, new_sys_size));
R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size));
} else {
R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size));
R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_System, new_sys_size));
}
}
g_system_memory_boost_size = boost_size;
}
R_SUCCEED();
}
Result BoostApplicationThreadResourceLimit() {
std::scoped_lock lk(g_resource_limit_lock);
/* Boost the limit. */
R_TRY(BoostThreadResourceLimitLocked(ResourceLimitGroup_Application));
R_SUCCEED();
}
Result BoostSystemThreadResourceLimit() {
std::scoped_lock lk(g_resource_limit_lock);
/* Boost the limits. */
R_TRY(BoostThreadResourceLimitLocked(ResourceLimitGroup_Applet));
R_TRY(BoostThreadResourceLimitLocked(ResourceLimitGroup_System));
R_SUCCEED();
}
os::NativeHandle GetResourceLimitHandle(ResourceLimitGroup group) {
return g_resource_limit_handles[group];
}
os::NativeHandle GetResourceLimitHandle(const ldr::ProgramInfo *info) {
return GetResourceLimitHandle(GetResourceLimitGroup(info));
}
void WaitResourceAvailable(const ldr::ProgramInfo *info) {
if (GetResourceLimitGroup(info) == ResourceLimitGroup_Application) {
WaitResourceAvailable(ResourceLimitGroup_Application);
if (hos::GetVersion() >= hos::Version_5_0_0) {
WaitApplicationMemoryAvailable();
}
}
}
Result GetCurrentResourceLimitValues(ResourceLimitGroup group, pm::ResourceLimitValues *out) {
R_RETURN(GetResourceLimitValuesImpl<::ams::svc::GetResourceLimitCurrentValue>(group, out));
}
Result GetPeakResourceLimitValues(ResourceLimitGroup group, pm::ResourceLimitValues *out) {
R_RETURN(GetResourceLimitValuesImpl<::ams::svc::GetResourceLimitPeakValue>(group, out));
}
Result GetLimitResourceLimitValues(ResourceLimitGroup group, pm::ResourceLimitValues *out) {
R_RETURN(GetResourceLimitValuesImpl<::ams::svc::GetResourceLimitLimitValue>(group, out));
}
Result GetResourceLimitValues(s64 *out_cur, s64 *out_lim, ResourceLimitGroup group, svc::LimitableResource resource) {
/* Do not allow out of bounds access. */
AMS_ABORT_UNLESS(group < ResourceLimitGroup_Count);
AMS_ABORT_UNLESS(resource < svc::LimitableResource_Count);
const auto reslimit_hnd = GetResourceLimitHandle(group);
R_TRY(svc::GetResourceLimitCurrentValue(out_cur, reslimit_hnd, resource));
R_TRY(svc::GetResourceLimitLimitValue(out_lim, reslimit_hnd, resource));
R_SUCCEED();
}
}