1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-24 11:16:11 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_memory_manager.cpp

488 lines
21 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
if ((type | KMemoryRegionType_DramApplicationPool) == type) {
return KMemoryManager::Pool_Application;
} else if ((type | KMemoryRegionType_DramAppletPool) == type) {
return KMemoryManager::Pool_Applet;
} else if ((type | KMemoryRegionType_DramSystemPool) == type) {
return KMemoryManager::Pool_System;
} else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
return KMemoryManager::Pool_SystemNonSecure;
} else {
MESOSPHERE_PANIC("InvalidMemoryRegionType for conversion to Pool");
}
}
}
void KMemoryManager::Initialize(KVirtualAddress management_region, size_t management_region_size) {
/* Clear the management region to zero. */
const KVirtualAddress management_region_end = management_region + management_region_size;
std::memset(GetVoidPointer(management_region), 0, management_region_size);
/* Reset our manager count. */
m_num_managers = 0;
/* Traverse the virtual memory layout tree, initializing each manager as appropriate. */
while (m_num_managers != MaxManagerCount) {
/* Locate the region that should initialize the current manager. */
KPhysicalAddress region_address = Null<KPhysicalAddress>;
size_t region_size = 0;
Pool region_pool = Pool_Count;
for (const auto &it : KMemoryLayout::GetPhysicalMemoryRegionTree()) {
/* We only care about regions that we need to create managers for. */
if (!it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
continue;
}
/* We want to initialize the managers in order. */
if (it.GetAttributes() != m_num_managers) {
continue;
}
const KPhysicalAddress cur_start = it.GetAddress();
const KPhysicalAddress cur_end = it.GetEndAddress();
/* Validate the region. */
MESOSPHERE_ABORT_UNLESS(cur_end != Null<KPhysicalAddress>);
MESOSPHERE_ASSERT(cur_start != Null<KPhysicalAddress>);
MESOSPHERE_ASSERT(it.GetSize() > 0);
/* Update the region's extents. */
if (region_address == Null<KPhysicalAddress>) {
region_address = cur_start;
region_size = it.GetSize();
region_pool = GetPoolFromMemoryRegionType(it.GetType());
} else {
MESOSPHERE_ASSERT(cur_start == region_address + region_size);
/* Update the size. */
region_size = cur_end - region_address;
MESOSPHERE_ABORT_UNLESS(GetPoolFromMemoryRegionType(it.GetType()) == region_pool);
}
}
/* If we didn't find a region, we're done. */
if (region_size == 0) {
break;
}
/* Initialize a new manager for the region. */
Impl *manager = std::addressof(m_managers[m_num_managers++]);
MESOSPHERE_ABORT_UNLESS(m_num_managers <= util::size(m_managers));
const size_t cur_size = manager->Initialize(region_address, region_size, management_region, management_region_end, region_pool);
management_region += cur_size;
MESOSPHERE_ABORT_UNLESS(management_region <= management_region_end);
/* Insert the manager into the pool list. */
if (m_pool_managers_tail[region_pool] == nullptr) {
m_pool_managers_head[region_pool] = manager;
} else {
m_pool_managers_tail[region_pool]->SetNext(manager);
manager->SetPrev(m_pool_managers_tail[region_pool]);
}
m_pool_managers_tail[region_pool] = manager;
}
/* Free each region to its corresponding heap. */
size_t reserved_sizes[MaxManagerCount] = {};
const KPhysicalAddress ini_start = GetInitialProcessBinaryPhysicalAddress();
const size_t ini_size = GetInitialProcessBinarySize();
const KPhysicalAddress ini_end = ini_start + ini_size;
const KPhysicalAddress ini_last = ini_end - 1;
for (const auto &it : KMemoryLayout::GetPhysicalMemoryRegionTree()) {
if (it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
/* Get the manager for the region. */
auto &manager = m_managers[it.GetAttributes()];
const KPhysicalAddress cur_start = it.GetAddress();
const KPhysicalAddress cur_last = it.GetLastAddress();
const KPhysicalAddress cur_end = it.GetEndAddress();
if (cur_start <= ini_start && ini_last <= cur_last) {
/* Free memory before the ini to the heap. */
if (cur_start != ini_start) {
manager.Free(cur_start, (ini_start - cur_start) / PageSize);
}
/* Open/reserve the ini memory. */
manager.OpenFirst(ini_start, ini_size / PageSize);
reserved_sizes[it.GetAttributes()] += ini_size;
/* Free memory after the ini to the heap. */
if (ini_last != cur_last) {
MESOSPHERE_ABORT_UNLESS(cur_end != Null<KPhysicalAddress>);
manager.Free(ini_end, (cur_end - ini_end) / PageSize);
}
} else {
/* Ensure there's no partial overlap with the ini image. */
if (cur_start <= ini_last) {
MESOSPHERE_ABORT_UNLESS(cur_last < ini_start);
} else {
/* Otherwise, check the region for general validity. */
MESOSPHERE_ABORT_UNLESS(cur_end != Null<KPhysicalAddress>);
}
/* Free the memory to the heap. */
manager.Free(cur_start, it.GetSize() / PageSize);
}
}
}
/* Update the used size for all managers. */
for (size_t i = 0; i < m_num_managers; ++i) {
m_managers[i].SetInitialUsedHeapSize(reserved_sizes[i]);
}
}
Result KMemoryManager::InitializeOptimizedMemory(u64 process_id, Pool pool) {
/* Lock the pool. */
KScopedLightLock lk(m_pool_locks[pool]);
/* Check that we don't already have an optimized process. */
R_UNLESS(!m_has_optimized_process[pool], svc::ResultBusy());
/* Set the optimized process id. */
m_optimized_process_ids[pool] = process_id;
m_has_optimized_process[pool] = true;
/* Clear the management area for the optimized process. */
for (auto *manager = this->GetFirstManager(pool, Direction_FromFront); manager != nullptr; manager = this->GetNextManager(manager, Direction_FromFront)) {
manager->InitializeOptimizedMemory();
}
R_SUCCEED();
}
void KMemoryManager::FinalizeOptimizedMemory(u64 process_id, Pool pool) {
/* Lock the pool. */
KScopedLightLock lk(m_pool_locks[pool]);
/* If the process was optimized, clear it. */
if (m_has_optimized_process[pool] && m_optimized_process_ids[pool] == process_id) {
m_has_optimized_process[pool] = false;
}
}
KPhysicalAddress KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages, u32 option) {
/* Early return if we're allocating no pages. */
if (num_pages == 0) {
return Null<KPhysicalAddress>;
}
/* Lock the pool that we're allocating from. */
const auto [pool, dir] = DecodeOption(option);
KScopedLightLock lk(m_pool_locks[pool]);
/* Choose a heap based on our page size request. */
const s32 heap_index = KPageHeap::GetAlignedBlockIndex(num_pages, align_pages);
/* Loop, trying to iterate from each block. */
Impl *chosen_manager = nullptr;
KPhysicalAddress allocated_block = Null<KPhysicalAddress>;
for (chosen_manager = this->GetFirstManager(pool, dir); chosen_manager != nullptr; chosen_manager = this->GetNextManager(chosen_manager, dir)) {
allocated_block = chosen_manager->AllocateAligned(heap_index, num_pages, align_pages);
if (allocated_block != Null<KPhysicalAddress>) {
break;
}
}
/* If we failed to allocate, quit now. */
if (allocated_block == Null<KPhysicalAddress>) {
return Null<KPhysicalAddress>;
}
/* Maintain the optimized memory bitmap, if we should. */
if (m_has_optimized_process[pool]) {
chosen_manager->TrackUnoptimizedAllocation(allocated_block, num_pages);
}
/* Open the first reference to the pages. */
chosen_manager->OpenFirst(allocated_block, num_pages);
return allocated_block;
}
Result KMemoryManager::AllocatePageGroupImpl(KPageGroup *out, size_t num_pages, Pool pool, Direction dir, bool unoptimized, bool random) {
/* Choose a heap based on our page size request. */
const s32 heap_index = KPageHeap::GetBlockIndex(num_pages);
R_UNLESS(0 <= heap_index, svc::ResultOutOfMemory());
/* Ensure that we don't leave anything un-freed. */
ON_RESULT_FAILURE {
for (const auto &it : *out) {
auto &manager = this->GetManager(it.GetAddress());
const size_t num_pages = std::min(it.GetNumPages(), (manager.GetEndAddress() - it.GetAddress()) / PageSize);
manager.Free(it.GetAddress(), num_pages);
}
out->Finalize();
};
/* Keep allocating until we've allocated all our pages. */
for (s32 index = heap_index; index >= 0 && num_pages > 0; index--) {
const size_t pages_per_alloc = KPageHeap::GetBlockNumPages(index);
for (Impl *cur_manager = this->GetFirstManager(pool, dir); cur_manager != nullptr; cur_manager = this->GetNextManager(cur_manager, dir)) {
while (num_pages >= pages_per_alloc) {
/* Allocate a block. */
KPhysicalAddress allocated_block = cur_manager->AllocateBlock(index, random);
if (allocated_block == Null<KPhysicalAddress>) {
break;
}
/* Ensure we don't leak the block if we fail. */
ON_RESULT_FAILURE { cur_manager->Free(allocated_block, pages_per_alloc); };
/* Add the block to our group. */
R_TRY(out->AddBlock(allocated_block, pages_per_alloc));
/* Maintain the optimized memory bitmap, if we should. */
if (unoptimized) {
cur_manager->TrackUnoptimizedAllocation(allocated_block, pages_per_alloc);
}
num_pages -= pages_per_alloc;
}
}
}
/* Only succeed if we allocated as many pages as we wanted. */
R_UNLESS(num_pages == 0, svc::ResultOutOfMemory());
/* We succeeded! */
R_SUCCEED();
}
Result KMemoryManager::AllocateAndOpen(KPageGroup *out, size_t num_pages, u32 option) {
MESOSPHERE_ASSERT(out != nullptr);
MESOSPHERE_ASSERT(out->GetNumPages() == 0);
/* Early return if we're allocating no pages. */
R_SUCCEED_IF(num_pages == 0);
/* Lock the pool that we're allocating from. */
const auto [pool, dir] = DecodeOption(option);
KScopedLightLock lk(m_pool_locks[pool]);
/* Allocate the page group. */
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, m_has_optimized_process[pool], true));
/* Open the first reference to the pages. */
for (const auto &block : *out) {
KPhysicalAddress cur_address = block.GetAddress();
size_t remaining_pages = block.GetNumPages();
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
/* Process part or all of the block. */
const size_t cur_pages = std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
manager.OpenFirst(cur_address, cur_pages);
/* Advance. */
cur_address += cur_pages * PageSize;
remaining_pages -= cur_pages;
}
}
R_SUCCEED();
}
Result KMemoryManager::AllocateForProcess(KPageGroup *out, size_t num_pages, u32 option, u64 process_id, u8 fill_pattern) {
MESOSPHERE_ASSERT(out != nullptr);
MESOSPHERE_ASSERT(out->GetNumPages() == 0);
/* Decode the option. */
const auto [pool, dir] = DecodeOption(option);
/* Allocate the memory. */
bool optimized;
{
/* Lock the pool that we're allocating from. */
KScopedLightLock lk(m_pool_locks[pool]);
/* Check if we have an optimized process. */
const bool has_optimized = m_has_optimized_process[pool];
const bool is_optimized = m_optimized_process_ids[pool] == process_id;
/* Allocate the page group. */
R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, has_optimized && !is_optimized, false));
/* Set whether we should optimize. */
optimized = has_optimized && is_optimized;
}
/* Perform optimized memory tracking, if we should. */
if (optimized) {
/* Iterate over the allocated blocks. */
for (const auto &block : *out) {
/* Get the block extents. */
const KPhysicalAddress block_address = block.GetAddress();
const size_t block_pages = block.GetNumPages();
/* If it has no pages, we don't need to do anything. */
if (block_pages == 0) {
continue;
}
/* Fill all the pages that we need to fill. */
bool any_new = false;
{
KPhysicalAddress cur_address = block_address;
size_t remaining_pages = block_pages;
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
/* Process part or all of the block. */
const size_t cur_pages = std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
any_new = manager.ProcessOptimizedAllocation(cur_address, cur_pages, fill_pattern);
/* Advance. */
cur_address += cur_pages * PageSize;
remaining_pages -= cur_pages;
}
}
/* If there are new pages, update tracking for the allocation. */
if (any_new) {
/* Update tracking for the allocation. */
KPhysicalAddress cur_address = block_address;
size_t remaining_pages = block_pages;
while (remaining_pages > 0) {
/* Get the manager for the current address. */
auto &manager = this->GetManager(cur_address);
/* Lock the pool for the manager. */
KScopedLightLock lk(m_pool_locks[manager.GetPool()]);
/* Track some or all of the current pages. */
const size_t cur_pages = std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
manager.TrackOptimizedAllocation(cur_address, cur_pages);
/* Advance. */
cur_address += cur_pages * PageSize;
remaining_pages -= cur_pages;
}
}
}
} else {
/* Set all the allocated memory. */
for (const auto &block : *out) {
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block.GetAddress())), fill_pattern, block.GetSize());
}
}
R_SUCCEED();
}
size_t KMemoryManager::Impl::Initialize(KPhysicalAddress address, size_t size, KVirtualAddress management, KVirtualAddress management_end, Pool p) {
/* Calculate management sizes. */
const size_t ref_count_size = (size / PageSize) * sizeof(u16);
const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);
const size_t manager_size = util::AlignUp(optimize_map_size + ref_count_size, PageSize);
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(size);
const size_t total_management_size = manager_size + page_heap_size;
MESOSPHERE_ABORT_UNLESS(manager_size <= total_management_size);
MESOSPHERE_ABORT_UNLESS(management + total_management_size <= management_end);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(total_management_size, PageSize));
/* Setup region. */
m_pool = p;
m_management_region = management;
m_page_reference_counts = GetPointer<RefCount>(management + optimize_map_size);
MESOSPHERE_ABORT_UNLESS(util::IsAligned(GetInteger(m_management_region), PageSize));
/* Initialize the manager's KPageHeap. */
m_heap.Initialize(address, size, management + manager_size, page_heap_size);
return total_management_size;
}
void KMemoryManager::Impl::TrackUnoptimizedAllocation(KPhysicalAddress block, size_t num_pages) {
/* Get the range we're tracking. */
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
/* Track. */
u64 *optimize_map = GetPointer<u64>(m_management_region);
while (offset <= last) {
/* Mark the page as not being optimized-allocated. */
optimize_map[offset / BITSIZEOF(u64)] &= ~(u64(1) << (offset % BITSIZEOF(u64)));
offset++;
}
}
void KMemoryManager::Impl::TrackOptimizedAllocation(KPhysicalAddress block, size_t num_pages) {
/* Get the range we're tracking. */
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
/* Track. */
u64 *optimize_map = GetPointer<u64>(m_management_region);
while (offset <= last) {
/* Mark the page as being optimized-allocated. */
optimize_map[offset / BITSIZEOF(u64)] |= (u64(1) << (offset % BITSIZEOF(u64)));
offset++;
}
}
bool KMemoryManager::Impl::ProcessOptimizedAllocation(KPhysicalAddress block, size_t num_pages, u8 fill_pattern) {
/* We want to return whether any pages were newly allocated. */
bool any_new = false;
/* Get the range we're processing. */
size_t offset = this->GetPageOffset(block);
const size_t last = offset + num_pages - 1;
/* Process. */
u64 *optimize_map = GetPointer<u64>(m_management_region);
while (offset <= last) {
/* Check if the page has been optimized-allocated before. */
if ((optimize_map[offset / BITSIZEOF(u64)] & (u64(1) << (offset % BITSIZEOF(u64)))) == 0) {
/* If not, it's new. */
any_new = true;
/* Fill the page. */
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(m_heap.GetAddress()) + offset * PageSize), fill_pattern, PageSize);
}
offset++;
}
/* Return the number of pages we processed. */
return any_new;
}
size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) {
const size_t ref_count_size = (region_size / PageSize) * sizeof(u16);
const size_t optimize_map_size = (util::AlignUp((region_size / PageSize), BITSIZEOF(u64)) / BITSIZEOF(u64)) * sizeof(u64);
const size_t manager_meta_size = util::AlignUp(optimize_map_size + ref_count_size, PageSize);
const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
return manager_meta_size + page_heap_size;
}
}