1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-29 23:32:23 +00:00
Atmosphere/fusee/fusee-secondary/src/nxfs.c

753 lines
24 KiB
C

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <errno.h>
#include <string.h>
#include "nxfs.h"
#include "mc.h"
#include "gpt.h"
#include "se.h"
#include "utils.h"
#include "fs_utils.h"
#include "../../../fusee/common/sdmmc/sdmmc.h"
#include "../../../fusee/common/log.h"
#include "../../../fusee/common/fatfs/ff.h"
static bool g_ahb_redirect_enabled = false;
static bool g_sd_device_initialized = false;
static bool g_emmc_device_initialized = false;
static bool g_fsdev_ready = false;
static bool g_rawdev_ready = false;
static bool g_is_emummc = false;
static sdmmc_t g_sd_sdmmc = {0};
static sdmmc_t g_emmc_sdmmc = {0};
static sdmmc_device_t g_sd_device = {0};
static sdmmc_device_t g_emmc_device = {0};
typedef struct mmc_partition_info_t {
sdmmc_device_t *device;
SdmmcControllerNum controller;
SdmmcPartitionNum partition;
} mmc_partition_info_t;
static mmc_partition_info_t g_sd_mmcpart = {&g_sd_device, SDMMC_1, SDMMC_PARTITION_USER};
static mmc_partition_info_t g_emmc_boot0_mmcpart = {&g_emmc_device, SDMMC_4, SDMMC_PARTITION_BOOT0};
static mmc_partition_info_t g_emmc_boot1_mmcpart = {&g_emmc_device, SDMMC_4, SDMMC_PARTITION_BOOT1};
static mmc_partition_info_t g_emmc_user_mmcpart = {&g_emmc_device, SDMMC_4, SDMMC_PARTITION_USER};
SdmmcPartitionNum g_current_emmc_partition = SDMMC_PARTITION_INVALID;
static int mmc_partition_initialize(device_partition_t *devpart) {
mmc_partition_info_t *mmcpart = (mmc_partition_info_t *)devpart->device_struct;
/* Allocate the crypto work buffer. */
if ((devpart->read_cipher != NULL) || (devpart->write_cipher != NULL)) {
devpart->crypto_work_buffer = memalign(16, devpart->sector_size * 16);
if (devpart->crypto_work_buffer == NULL) {
return ENOMEM;
} else {
devpart->crypto_work_buffer_num_sectors = devpart->sector_size * 16;
}
} else {
devpart->crypto_work_buffer = NULL;
devpart->crypto_work_buffer_num_sectors = 0;
}
/* Enable AHB redirection if necessary. */
if (!g_ahb_redirect_enabled) {
mc_enable_ahb_redirect();
g_ahb_redirect_enabled = true;
}
/* Initialize hardware. */
if (mmcpart->device == &g_sd_device) {
if (!g_sd_device_initialized) {
int rc = sdmmc_device_sd_init(mmcpart->device, &g_sd_sdmmc, SDMMC_BUS_WIDTH_4BIT, SDMMC_SPEED_EMU_SDR104) ? 0 : EIO;
if (rc)
return rc;
g_sd_device_initialized = true;
}
devpart->initialized = true;
return 0;
} else if (mmcpart->device == &g_emmc_device) {
if (!g_emmc_device_initialized) {
int rc = sdmmc_device_mmc_init(mmcpart->device, &g_emmc_sdmmc, SDMMC_BUS_WIDTH_8BIT, SDMMC_SPEED_MMC_HS400) ? 0 : EIO;
if (rc)
return rc;
g_emmc_device_initialized = true;
}
devpart->initialized = true;
return 0;
}
return 0;
}
static void mmc_partition_finalize(device_partition_t *devpart) {
mmc_partition_info_t *mmcpart = (mmc_partition_info_t *)devpart->device_struct;
/* Finalize hardware. */
if (mmcpart->device == &g_sd_device) {
if (g_is_emummc) {
return;
}
if (g_sd_device_initialized) {
sdmmc_device_finish(&g_sd_device);
g_sd_device_initialized = false;
}
devpart->initialized = false;
} else if (mmcpart->device == &g_emmc_device) {
if (g_emmc_device_initialized) {
sdmmc_device_finish(&g_emmc_device);
g_emmc_device_initialized = false;
}
devpart->initialized = false;
}
/* Disable AHB redirection if necessary. */
if (g_ahb_redirect_enabled) {
mc_disable_ahb_redirect();
g_ahb_redirect_enabled = false;
}
/* Free the crypto work buffer. */
if (devpart->crypto_work_buffer != NULL) {
free(devpart->crypto_work_buffer);
}
}
static int mmc_partition_read(device_partition_t *devpart, void *dst, uint64_t sector, uint64_t num_sectors) {
mmc_partition_info_t *mmcpart = (mmc_partition_info_t *)devpart->device_struct;
if ((mmcpart->device == &g_emmc_device) && (g_current_emmc_partition != mmcpart->partition)) {
if (!sdmmc_mmc_select_partition(mmcpart->device, mmcpart->partition))
return EIO;
g_current_emmc_partition = mmcpart->partition;
}
return sdmmc_device_read(mmcpart->device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, dst) ? 0 : EIO;
}
static int mmc_partition_write(device_partition_t *devpart, const void *src, uint64_t sector, uint64_t num_sectors) {
mmc_partition_info_t *mmcpart = (mmc_partition_info_t *)devpart->device_struct;
if ((mmcpart->device == &g_emmc_device) && (g_current_emmc_partition != mmcpart->partition)) {
if (!sdmmc_mmc_select_partition(mmcpart->device, mmcpart->partition))
return EIO;
g_current_emmc_partition = mmcpart->partition;
}
return sdmmc_device_write(mmcpart->device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, (void *)src) ? 0 : EIO;
}
static int emummc_partition_initialize(device_partition_t *devpart) {
/* Allocate the crypto work buffer. */
if ((devpart->read_cipher != NULL) || (devpart->write_cipher != NULL)) {
devpart->crypto_work_buffer = memalign(16, devpart->sector_size * 16);
if (devpart->crypto_work_buffer == NULL) {
return ENOMEM;
} else {
devpart->crypto_work_buffer_num_sectors = devpart->sector_size * 16;
}
} else {
devpart->crypto_work_buffer = NULL;
devpart->crypto_work_buffer_num_sectors = 0;
}
devpart->initialized = true;
return 0;
}
static void emummc_partition_finalize(device_partition_t *devpart) {
/* Free the crypto work buffer. */
if (devpart->crypto_work_buffer != NULL) {
free(devpart->crypto_work_buffer);
}
}
static int emummc_partition_read(device_partition_t *devpart, void *dst, uint64_t sector, uint64_t num_sectors) {
if (devpart->emu_use_file) {
/* Read partition data using our backing file. */
int rc = 0;
FILE *emummc_file = fopen(devpart->emu_file_path, "rb");
fseek(emummc_file, (devpart->start_sector + sector) * devpart->sector_size, SEEK_CUR);
rc = (fread(dst, devpart->sector_size, num_sectors, emummc_file) > 0) ? 0 : -1;
fclose(emummc_file);
return rc;
} else {
/* Read partition data directly from the SD card device. */
return sdmmc_device_read(&g_sd_device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, dst) ? 0 : EIO;
}
}
static int emummc_partition_write(device_partition_t *devpart, const void *src, uint64_t sector, uint64_t num_sectors) {
if (devpart->emu_use_file) {
/* Write partition data using our backing file. */
int rc = 0;
FILE *emummc_file = fopen(devpart->emu_file_path, "wb");
fseek(emummc_file, (devpart->start_sector + sector) * devpart->sector_size, SEEK_CUR);
rc = (fwrite(src, devpart->sector_size, num_sectors, emummc_file) > 0) ? 0 : -1;
fclose(emummc_file);
return rc;
} else {
/* Write partition data directly to the SD card device. */
return sdmmc_device_write(&g_sd_device, (uint32_t)(devpart->start_sector + sector), (uint32_t)num_sectors, (void *)src) ? 0 : EIO;
}
}
static int nxfs_bis_crypto_decrypt(device_partition_t *devpart, uint64_t sector, uint64_t num_sectors) {
unsigned int keyslot_a = 4; /* These keyslots are never used by exosphere, and should be safe. */
unsigned int keyslot_b = 5;
size_t size = num_sectors * devpart->sector_size;
switch (devpart->crypto_mode) {
case DevicePartitionCryptoMode_Ctr:
set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10);
se_aes_ctr_crypt(keyslot_a, devpart->crypto_work_buffer, size, devpart->crypto_work_buffer, size, devpart->iv, 0x10);
return 0;
case DevicePartitionCryptoMode_Xts:
set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10);
set_aes_keyslot(keyslot_b, devpart->keys[1], 0x10);
se_aes_128_xts_nintendo_decrypt(keyslot_a, keyslot_b, sector, devpart->crypto_work_buffer, devpart->crypto_work_buffer, size, devpart->sector_size, devpart->crypto_sector_size);
return 0;
case DevicePartitionCryptoMode_None:
default:
return 0;
}
}
static int nxfs_bis_crypto_encrypt(device_partition_t *devpart, uint64_t sector, uint64_t num_sectors) {
unsigned int keyslot_a = 4; /* These keyslots are never used by exosphere, and should be safe. */
unsigned int keyslot_b = 5;
size_t size = num_sectors * devpart->sector_size;
switch (devpart->crypto_mode) {
case DevicePartitionCryptoMode_Ctr:
set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10);
se_aes_ctr_crypt(keyslot_a, devpart->crypto_work_buffer, size, devpart->crypto_work_buffer, size, devpart->iv, 0x10);
return 0;
case DevicePartitionCryptoMode_Xts:
set_aes_keyslot(keyslot_a, devpart->keys[0], 0x10);
set_aes_keyslot(keyslot_b, devpart->keys[1], 0x10);
se_aes_128_xts_nintendo_encrypt(keyslot_a, keyslot_b, sector, devpart->crypto_work_buffer, devpart->crypto_work_buffer, size, devpart->sector_size, devpart->crypto_sector_size);
return 0;
case DevicePartitionCryptoMode_None:
default:
return 0;
}
}
static const device_partition_t g_mmc_devpart_template = {
.crypto_sector_size = 0x4000,
.sector_size = 512,
.initializer = mmc_partition_initialize,
.finalizer = mmc_partition_finalize,
.reader = mmc_partition_read,
.writer = mmc_partition_write,
};
static const device_partition_t g_emummc_devpart_template = {
.crypto_sector_size = 0x4000,
.sector_size = 512,
.initializer = emummc_partition_initialize,
.finalizer = emummc_partition_finalize,
.reader = emummc_partition_read,
.writer = emummc_partition_write,
};
static int nxfs_mount_partition_gpt_callback(const efi_entry_t *entry, void *param, size_t entry_offset, FILE *disk) {
(void)entry_offset;
(void)disk;
device_partition_t *parent = (device_partition_t *)param;
device_partition_t devpart = *parent;
char name_buffer[128];
const uint16_t *utf16name = entry->name;
uint32_t name_len;
int rc;
static const struct {
const char *partition_name;
const char *mount_point;
bool is_fat;
bool is_encrypted;
bool register_immediately;
} known_partitions[] = {
{"PRODINFO", "prodinfo", false, true, false},
{"PRODINFOF", "prodinfof", true, true, false},
{"BCPKG2-1-Normal-Main", "bcpkg21", false, false, true},
{"BCPKG2-2-Normal-Sub", "bcpkg22", false, false, false},
{"BCPKG2-3-SafeMode-Main", "bcpkg23", false, false, false},
{"BCPKG2-4-SafeMode-Sub", "bcpkg24", false, false, false},
{"BCPKG2-5-Repair-Main", "bcpkg25", false, false, false},
{"BCPKG2-6-Repair-Sub", "bcpkg26", false, false, false},
{"SAFE", "safe", true, true, false},
{"SYSTEM", "system", true, true, false},
{"USER", "user", true, true, false},
};
/* Convert the partition name to ASCII, for comparison. */
for (name_len = 0; name_len < sizeof(entry->name) && *utf16name != 0; name_len++) {
name_buffer[name_len] = (char)*utf16name++;
}
name_buffer[name_len] = '\0';
/* Mount the partition, if we know about it. */
for (size_t i = 0; i < sizeof(known_partitions)/sizeof(known_partitions[0]); i++) {
if (strcmp(name_buffer, known_partitions[i].partition_name) == 0) {
devpart.start_sector += entry->first_lba;
devpart.num_sectors = (entry->last_lba + 1) - entry->first_lba;
if (parent->num_sectors < devpart.num_sectors) {
errno = EINVAL;
return -1;
}
if (known_partitions[i].is_encrypted) {
devpart.read_cipher = nxfs_bis_crypto_decrypt;
devpart.write_cipher = nxfs_bis_crypto_encrypt;
devpart.crypto_mode = DevicePartitionCryptoMode_Xts;
}
if (known_partitions[i].is_fat) {
rc = fsdev_mount_device(known_partitions[i].mount_point, &devpart, false);
if (rc == -1) {
return -1;
}
if (known_partitions[i].register_immediately) {
rc = fsdev_register_device(known_partitions[i].mount_point);
if (rc == -1) {
return -1;
}
}
} else {
rc = rawdev_mount_device(known_partitions[i].mount_point, &devpart, false);
if (rc == -1) {
return -1;
}
if (known_partitions[i].register_immediately) {
rc = rawdev_register_device(known_partitions[i].mount_point);
if (rc == -1) {
return -1;
}
}
}
}
}
return 0;
}
int nxfs_mount_sd() {
device_partition_t model;
int rc;
/* Setup a template for the SD card. */
model = g_mmc_devpart_template;
model.device_struct = &g_sd_mmcpart;
model.start_sector = 0;
model.num_sectors = 1u << 30; /* arbitrary numbers of sectors. TODO: find the size of the SD in sectors. */
model.is_emulated = false;
/* Mount the SD card device. */
rc = fsdev_mount_device("sdmc", &model, true);
if (rc == -1) {
return -1;
}
/* Register the SD card device. */
rc = fsdev_register_device("sdmc");
if (rc == -1) {
return -1;
}
/* All fs devices are ready. */
if (rc == 0) {
g_fsdev_ready = true;
}
return rc;
}
int nxfs_mount_emmc() {
device_partition_t model;
int rc;
FILE *rawnand;
/* Setup a template for boot0. */
model = g_mmc_devpart_template;
model.device_struct = &g_emmc_boot0_mmcpart;
model.start_sector = 0;
model.num_sectors = 0x184000 / model.sector_size;
model.is_emulated = false;
/* Mount boot0 device. */
rc = rawdev_mount_device("boot0", &model, true);
if (rc == -1) {
return -1;
}
/* Register boot0 device. */
rc = rawdev_register_device("boot0");
if (rc == -1) {
return -1;
}
/* Setup a template for boot1. */
model = g_mmc_devpart_template;
model.device_struct = &g_emmc_boot1_mmcpart;
model.start_sector = 0;
model.num_sectors = 0x80000 / model.sector_size;
model.is_emulated = false;
/* Mount boot1 device. */
rc = rawdev_mount_device("boot1", &model, false);
if (rc == -1) {
return -1;
}
/* Don't register boot1 for now. */
/* Setup a template for raw NAND. */
model = g_mmc_devpart_template;
model.device_struct = &g_emmc_user_mmcpart;
model.start_sector = 0;
model.num_sectors = (256ull << 30) / model.sector_size;
model.is_emulated = false;
/* Mount raw NAND device. */
rc = rawdev_mount_device("rawnand", &model, false);
if (rc == -1) {
return -1;
}
/* Register raw NAND device. */
rc = rawdev_register_device("rawnand");
if (rc == -1) {
return -1;
}
/* Open raw NAND device. */
rawnand = fopen("rawnand:/", "rb");
if (rawnand == NULL) {
return -1;
}
/* Iterate the GPT and mount each raw NAND partition. */
rc = gpt_iterate_through_entries(rawnand, model.sector_size, nxfs_mount_partition_gpt_callback, &model);
/* Close raw NAND device. */
fclose(rawnand);
/* All raw devices are ready. */
if (rc == 0) {
g_rawdev_ready = true;
}
return rc;
}
int nxfs_mount_emummc_partition(uint64_t emummc_start_sector) {
device_partition_t model;
int rc;
FILE *rawnand;
/* Setup an emulation template for boot0. */
model = g_emummc_devpart_template;
model.start_sector = emummc_start_sector + (0x400000 * 0 / model.sector_size);
model.num_sectors = 0x400000 / model.sector_size;
model.is_emulated = true;
model.emu_use_file = false;
/* Mount emulated boot0 device. */
rc = rawdev_mount_device("boot0", &model, true);
/* Failed to mount boot0 device. */
if (rc == -1) {
return -1;
}
/* Register emulated boot0 device. */
rc = rawdev_register_device("boot0");
/* Failed to register boot0 device. */
if (rc == -1) {
return -2;
}
/* Setup an emulation template for boot1. */
model = g_emummc_devpart_template;
model.start_sector = emummc_start_sector + (0x400000 * 1 / model.sector_size);
model.num_sectors = 0x400000 / model.sector_size;
model.is_emulated = true;
model.emu_use_file = false;
/* Mount emulated boot1 device. */
rc = rawdev_mount_device("boot1", &model, false);
/* Failed to mount boot1. */
if (rc == -1) {
return -3;
}
/* Don't register emulated boot1 for now. */
/* Setup a template for raw NAND. */
model = g_emummc_devpart_template;
model.start_sector = emummc_start_sector + (0x400000 * 2 / model.sector_size);
model.num_sectors = (256ull << 30) / model.sector_size;
model.is_emulated = true;
model.emu_use_file = false;
/* Mount emulated raw NAND device. */
rc = rawdev_mount_device("rawnand", &model, false);
/* Failed to mount raw NAND. */
if (rc == -1) {
return -4;
}
/* Register emulated raw NAND device. */
rc = rawdev_register_device("rawnand");
/* Failed to register raw NAND device. */
if (rc == -1) {
return -5;
}
/* Open emulated raw NAND device. */
rawnand = fopen("rawnand:/", "rb");
/* Failed to open emulated raw NAND device. */
if (rawnand == NULL) {
return -6;
}
/* Iterate the GPT and mount each emulated raw NAND partition. */
rc = gpt_iterate_through_entries(rawnand, model.sector_size, nxfs_mount_partition_gpt_callback, &model);
/* Close emulated raw NAND device. */
fclose(rawnand);
/* All emulated devices are ready. */
if (rc == 0) {
g_rawdev_ready = true;
g_is_emummc = true;
}
return rc;
}
int nxfs_mount_emummc_file(const char *emummc_path, int num_parts, uint64_t part_limit) {
device_partition_t model;
int rc;
FILE *rawnand;
char emummc_boot0_path[0x300 + 1] = {0};
char emummc_boot1_path[0x300 + 1] = {0};
/* Check if the SD card is EXFAT formatted. */
rc = fsdev_is_exfat("sdmc");
/* Failed to detect file system type. */
if (rc == -1) {
return -1;
}
/* We want a folder with the archive bit set. */
rc = fsdev_get_attr(emummc_path);
/* Failed to get file DOS attributes. */
if (rc == -1) {
return -2;
}
/* Our path is not a directory. */
if (!(rc & AM_DIR)) {
return -3;
}
/* Check if the archive bit is not set. */
if (!(rc & AM_ARC)) {
/* Try to set the archive bit. */
rc = fsdev_set_attr(emummc_path, AM_ARC, AM_ARC);
/* Failed to set file DOS attributes. */
if (rc == -1) {
return -4;
}
}
/* Prepare boot0 file path. */
snprintf(emummc_boot0_path, sizeof(emummc_boot0_path) - 1, "%s/%s", emummc_path, "boot0");
/* Setup an emulation template for boot0. */
model = g_emummc_devpart_template;
model.start_sector = 0;
model.num_sectors = 0x400000 / model.sector_size;
model.is_emulated = true;
model.emu_use_file = true;
model.emu_num_parts = 0;
model.emu_part_limit = 0;
strcpy(model.emu_root_path, emummc_path);
strcpy(model.emu_file_path, emummc_boot0_path);
/* Mount emulated boot0 device. */
rc = rawdev_mount_device("boot0", &model, true);
/* Failed to mount boot0 device. */
if (rc == -1) {
return -5;
}
/* Register emulated boot0 device. */
rc = rawdev_register_device("boot0");
/* Failed to register boot0 device. */
if (rc == -1) {
return -6;
}
/* Prepare boot1 file path. */
snprintf(emummc_boot1_path, sizeof(emummc_boot1_path) - 1, "%s/%s", emummc_path, "boot1");
/* Setup an emulation template for boot1. */
model = g_emummc_devpart_template;
model.start_sector = 0;
model.num_sectors = 0x400000 / model.sector_size;
model.is_emulated = true;
model.emu_use_file = true;
model.emu_num_parts = 0;
model.emu_part_limit = 0;
strcpy(model.emu_root_path, emummc_path);
strcpy(model.emu_file_path, emummc_boot1_path);
/* Mount emulated boot1 device. */
rc = rawdev_mount_device("boot1", &model, false);
/* Failed to mount boot1. */
if (rc == -1) {
return -7;
}
/* Register emulated boot1 device. */
rc = rawdev_register_device("boot1");
/* Failed to register boot1 device. */
if (rc == -1) {
return -8;
}
/* Setup a template for raw NAND. */
model = g_emummc_devpart_template;
model.start_sector = 0;
model.num_sectors = (256ull << 30) / model.sector_size;
model.is_emulated = true;
model.emu_use_file = true;
model.emu_num_parts = num_parts;
model.emu_part_limit = part_limit;
strcpy(model.emu_root_path, emummc_path);
strcpy(model.emu_file_path, emummc_path);
/* Mount emulated raw NAND device from single or multiple parts. */
rc = rawdev_mount_device("rawnand", &model, false);
/* Failed to mount raw NAND. */
if (rc == -1) {
return -9;
}
/* Register emulated raw NAND device. */
rc = rawdev_register_device("rawnand");
/* Failed to register raw NAND device. */
if (rc == -1) {
return -10;
}
/* Open emulated raw NAND device. */
rawnand = fopen("rawnand:/", "rb");
/* Failed to open emulated raw NAND device. */
if (rawnand == NULL) {
return -11;
}
/* Iterate the GPT and mount each emulated raw NAND partition. */
rc = gpt_iterate_through_entries(rawnand, model.sector_size, nxfs_mount_partition_gpt_callback, &model);
/* Close emulated raw NAND device. */
fclose(rawnand);
/* All emulated devices are ready. */
if (rc == 0) {
g_rawdev_ready = true;
g_is_emummc = true;
}
return rc;
}
int nxfs_unmount_sd() {
int rc = 0;
/* Unmount all fs devices. */
if (g_fsdev_ready) {
rc = fsdev_unmount_all();
g_fsdev_ready = false;
}
return rc;
}
int nxfs_unmount_emmc() {
int rc = 0;
/* Unmount all raw devices. */
if (g_rawdev_ready) {
rc = rawdev_unmount_all();
g_rawdev_ready = false;
}
return rc;
}
int nxfs_init() {
int rc;
/* Mount and register the SD card. */
rc = nxfs_mount_sd();
/* Set the SD card as the default file system device. */
if (rc == 0) {
rc = fsdev_set_default_device("sdmc");
}
return rc;
}
int nxfs_end() {
return ((nxfs_unmount_sd() || nxfs_unmount_emmc()) ? -1 : 0);
}