1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-10 11:26:15 +00:00
Atmosphere/stratosphere/ams_mitm/source/amsmitm_prodinfo_utils.cpp

637 lines
32 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "amsmitm_fs_utils.hpp"
#include "amsmitm_prodinfo_utils.hpp"
namespace ams::mitm {
namespace {
constexpr inline u16 Crc16InitialValue = 0x55AA;
constexpr inline u16 Crc16Table[] = {
0x0000, 0xCC01, 0xD801, 0x1400,
0xF001, 0x3C00, 0x2800, 0xE401,
0xA001, 0x6C00, 0x7800, 0xB401,
0x5000, 0x9C01, 0x8801, 0x4400,
};
u16 GetCrc16(const void *data, size_t size) {
AMS_ASSERT(data != nullptr);
AMS_ASSERT(size > 0);
const u8 *src = static_cast<const u8 *>(data);
u16 crc = Crc16InitialValue;
u16 tmp = 0;
while ((size--) > 0) {
tmp = Crc16Table[crc & 0xF];
crc = ((crc >> 4) & 0x0FFF) ^ tmp ^ Crc16Table[*src & 0xF];
tmp = Crc16Table[crc & 0xF];
crc = ((crc >> 4) & 0x0FFF) ^ tmp ^ Crc16Table[(*(src++) >> 4) & 0xF];
}
return crc;
}
bool IsBlank(const void *data, size_t size) {
AMS_ASSERT(data != nullptr);
AMS_ASSERT(size > 0);
const u8 *src = static_cast<const u8 *>(data);
while ((size--) > 0) {
if (*(src++) != 0) {
return false;
}
}
return true;
}
constexpr inline u32 CalibrationMagic = util::FourCC<'C','A','L','0'>::Code;
struct Sha256Hash {
u8 data[crypto::Sha256Generator::HashSize];
};
struct CalibrationInfoHeader {
u32 magic;
u32 version;
u32 body_size;
u16 model;
u16 update_count;
u8 pad[0xE];
u16 crc;
Sha256Hash body_hash;
};
static_assert(sizeof(CalibrationInfoHeader) == 0x40);
constexpr inline size_t CalibrationInfoBodySizeMax = CalibrationBinarySize - sizeof(CalibrationInfoHeader);
struct CalibrationInfo {
CalibrationInfoHeader header;
u8 body[CalibrationInfoBodySizeMax]; /* TODO: CalibrationInfoBody body; */
template<typename Block>
Block &GetBlock() {
static_assert(Block::Offset >= sizeof(CalibrationInfoHeader));
static_assert(Block::Offset < sizeof(CalibrationInfo));
static_assert(Block::Offset + Block::Size <= sizeof(CalibrationInfo));
return *static_cast<Block *>(static_cast<void *>(std::addressof(this->body[Block::Offset - sizeof(this->header)])));
}
template<typename Block>
const Block &GetBlock() const {
static_assert(Block::Offset >= sizeof(CalibrationInfoHeader));
static_assert(Block::Offset < sizeof(CalibrationInfo));
static_assert(Block::Offset + Block::Size <= sizeof(CalibrationInfo));
return *static_cast<const Block *>(static_cast<const void *>(std::addressof(this->body[Block::Offset - sizeof(this->header)])));
}
};
static_assert(sizeof(CalibrationInfo) == CalibrationBinarySize);
struct SecureCalibrationInfoBackup {
CalibrationInfo info;
Sha256Hash hash;
u8 pad[SecureCalibrationBinaryBackupSize - sizeof(info) - sizeof(hash)];
};
static_assert(sizeof(SecureCalibrationInfoBackup) == SecureCalibrationBinaryBackupSize);
bool IsValidSha256Hash(const Sha256Hash &hash, const void *data, size_t data_size) {
Sha256Hash calc_hash;
ON_SCOPE_EXIT { ::ams::crypto::ClearMemory(std::addressof(calc_hash), sizeof(calc_hash)); };
::ams::crypto::GenerateSha256Hash(std::addressof(calc_hash), sizeof(calc_hash), data, data_size);
return ::ams::crypto::IsSameBytes(std::addressof(calc_hash), std::addressof(hash), sizeof(Sha256Hash));
}
bool IsValid(const CalibrationInfoHeader &header) {
return header.magic == CalibrationMagic && GetCrc16(std::addressof(header), OFFSETOF(CalibrationInfoHeader, crc)) == header.crc;
}
bool IsValid(const CalibrationInfoHeader &header, const void *body) {
return IsValid(header) && IsValidSha256Hash(header.body_hash, body, header.body_size);
}
#define DEFINE_CALIBRATION_CRC_BLOCK(_TypeName, _Offset, _Size, _Decl, _MemberName) \
struct _TypeName { \
static constexpr size_t Offset = _Offset; \
static constexpr size_t Size = _Size; \
static constexpr bool IsCrcBlock = true; \
static constexpr bool IsShaBlock = false; \
_Decl; \
static_assert(Size >= sizeof(_MemberName) + sizeof(u16)); \
u8 pad[Size - sizeof(_MemberName) - sizeof(u16)]; \
u16 crc; \
}; \
static_assert(sizeof(_TypeName) == _TypeName::Size)
#define DEFINE_CALIBRATION_SHA_BLOCK(_TypeName, _Offset, _Size, _Decl, _MemberName) \
struct _TypeName { \
static constexpr size_t Offset = _Offset; \
static constexpr size_t Size = _Size; \
static constexpr bool IsCrcBlock = false; \
static constexpr bool IsShaBlock = true; \
_Decl; \
static_assert(Size == sizeof(_MemberName) + sizeof(Sha256Hash)); \
Sha256Hash sha256_hash; \
}; \
static_assert(sizeof(_TypeName) == _TypeName::Size)
DEFINE_CALIBRATION_CRC_BLOCK(SerialNumberBlock, 0x0250, 0x020, ::ams::settings::factory::SerialNumber serial_number, serial_number);
DEFINE_CALIBRATION_CRC_BLOCK(EccB233DeviceCertificateBlock, 0x0480, 0x190, ::ams::settings::factory::EccB233DeviceCertificate device_certificate, device_certificate);
DEFINE_CALIBRATION_CRC_BLOCK(SslKeyBlock, 0x09B0, 0x120, u8 ssl_key[0x110], ssl_key);
DEFINE_CALIBRATION_CRC_BLOCK(SslCertificateSizeBlock, 0x0AD0, 0x010, u64 ssl_certificate_size, ssl_certificate_size);
DEFINE_CALIBRATION_SHA_BLOCK(SslCertificateBlock, 0x0AE0, 0x820, u8 ssl_certificate[0x800], ssl_certificate);
DEFINE_CALIBRATION_CRC_BLOCK(EcqvEcdsaAmiiboRootCertificateBlock, 0x35A0, 0x080, u8 data[0x70], data);
DEFINE_CALIBRATION_CRC_BLOCK(EcqvBlsAmiiboRootCertificateBlock, 0x36A0, 0x0A0, u8 data[0x90], data);
DEFINE_CALIBRATION_CRC_BLOCK(ExtendedSslKeyBlock, 0x3AE0, 0x140, u8 ssl_key[0x134], ssl_key);
DEFINE_CALIBRATION_CRC_BLOCK(Rsa2048DeviceKeyBlock, 0x3D70, 0x250, u8 device_key[0x240], device_key);
DEFINE_CALIBRATION_CRC_BLOCK(Rsa2048DeviceCertificateBlock, 0x3FC0, 0x250, ::ams::settings::factory::Rsa2048DeviceCertificate device_certificate, device_certificate);
#undef DEFINE_CALIBRATION_CRC_BLOCK
#undef DEFINE_CALIBRATION_SHA_BLOCK
constexpr inline const char BlankSerialNumberString[] = "XAW00000000000";
template<typename Block>
void Blank(Block &block) {
if constexpr (std::is_same<Block, SerialNumberBlock>::value) {
static_assert(sizeof(BlankSerialNumberString) <= sizeof(SerialNumberBlock::serial_number));
std::memset(std::addressof(block), 0, Block::Size - sizeof(block.crc));
std::memcpy(block.serial_number.str, BlankSerialNumberString, sizeof(BlankSerialNumberString));
block.crc = GetCrc16(std::addressof(block), Block::Size - sizeof(block.crc));
} else if constexpr (std::is_same<Block, SslCertificateBlock>::value) {
std::memset(std::addressof(block), 0, sizeof(block.ssl_certificate));
} else if constexpr (Block::IsCrcBlock) {
std::memset(std::addressof(block), 0, Block::Size - sizeof(block.crc));
block.crc = GetCrc16(std::addressof(block), Block::Size - sizeof(block.crc));
} else {
static_assert(Block::IsShaBlock);
std::memset(std::addressof(block), 0, Block::Size);
::ams::crypto::GenerateSha256Hash(std::addressof(block.sha256_hash), sizeof(block.sha256_hash), std::addressof(block), Block::Size - sizeof(block.sha256_hash));
}
}
template<typename Block>
bool IsBlank(const Block &block) {
if constexpr (std::is_same<Block, SerialNumberBlock>::value) {
static_assert(sizeof(BlankSerialNumberString) <= sizeof(SerialNumberBlock::serial_number));
return std::memcmp(block.serial_number.str, BlankSerialNumberString, sizeof(BlankSerialNumberString) - 1) == 0 || IsBlank(std::addressof(block), Block::Size - sizeof(block.crc));
} else if constexpr (Block::IsCrcBlock) {
return IsBlank(std::addressof(block), Block::Size - sizeof(block.crc));
} else {
return IsBlank(std::addressof(block), Block::Size - sizeof(block.sha256_hash));
}
}
template<typename Block>
bool IsValid(const Block &block, size_t size = 0) {
if constexpr (Block::IsCrcBlock) {
return GetCrc16(std::addressof(block), Block::Size - sizeof(block.crc)) == block.crc;
} else {
static_assert(Block::IsShaBlock);
return IsValidSha256Hash(block.sha256_hash, std::addressof(block), size != 0 ? size : Block::Size - sizeof(block.sha256_hash));
}
}
void Blank(CalibrationInfo &info) {
/* Set header. */
info.header.magic = CalibrationMagic;
info.header.body_size = sizeof(info.body);
info.header.crc = GetCrc16(std::addressof(info.header), OFFSETOF(CalibrationInfoHeader, crc));
/* Set blocks. */
Blank(info.GetBlock<SerialNumberBlock>());
Blank(info.GetBlock<SslCertificateSizeBlock>());
Blank(info.GetBlock<SslCertificateBlock>());
Blank(info.GetBlock<EcqvEcdsaAmiiboRootCertificateBlock>());
Blank(info.GetBlock<EcqvBlsAmiiboRootCertificateBlock>());
Blank(info.GetBlock<ExtendedSslKeyBlock>());
/* Set header hash. */
crypto::GenerateSha256Hash(std::addressof(info.header.body_hash), sizeof(info.header.body_hash), std::addressof(info.body), sizeof(info.body));
}
bool IsValidHeader(const CalibrationInfo &cal) {
return IsValid(cal.header) && cal.header.body_size <= CalibrationInfoBodySizeMax && IsValid(cal.header, cal.body);
}
bool IsValidSerialNumber(const char *sn) {
for (size_t i = 0; i < std::strlen(sn); i++) {
if (!std::isalnum(static_cast<unsigned char>(sn[i]))) {
return false;
}
}
return true;
}
void GetSerialNumber(char *dst, const CalibrationInfo &info) {
std::memcpy(dst, std::addressof(info.GetBlock<SerialNumberBlock>()), sizeof(info.GetBlock<SerialNumberBlock>().serial_number));
dst[sizeof(info.GetBlock<SerialNumberBlock>().serial_number) + 1] = '\x00';
}
bool IsValidSerialNumber(const CalibrationInfo &cal) {
char sn[0x20] = {};
ON_SCOPE_EXIT { std::memset(sn, 0, sizeof(sn)); };
GetSerialNumber(sn, cal);
return IsValidSerialNumber(sn);
}
bool IsValid(const CalibrationInfo &cal) {
return IsValidHeader(cal) &&
IsValid(cal.GetBlock<SerialNumberBlock>()) &&
IsValid(cal.GetBlock<EccB233DeviceCertificateBlock>()) &&
IsValid(cal.GetBlock<SslKeyBlock>()) &&
IsValid(cal.GetBlock<SslCertificateSizeBlock>()) &&
cal.GetBlock<SslCertificateSizeBlock>().ssl_certificate_size <= sizeof(cal.GetBlock<SslCertificateBlock>().ssl_certificate) &&
IsValid(cal.GetBlock<SslCertificateBlock>(), cal.GetBlock<SslCertificateSizeBlock>().ssl_certificate_size) &&
IsValid(cal.GetBlock<EcqvEcdsaAmiiboRootCertificateBlock>()) &&
IsValid(cal.GetBlock<EcqvBlsAmiiboRootCertificateBlock>()) &&
IsValid(cal.GetBlock<ExtendedSslKeyBlock>()) &&
IsValidSerialNumber(cal);
}
bool ContainsCorrectDeviceId(const EccB233DeviceCertificateBlock &block, u64 device_id) {
static constexpr size_t DeviceIdOffset = 0xC6;
char found_device_id_str[sizeof("0011223344556677")] = {};
ON_SCOPE_EXIT { std::memset(found_device_id_str, 0, sizeof(found_device_id_str)); };
std::memcpy(found_device_id_str, std::addressof(block.device_certificate.data[DeviceIdOffset]), sizeof(found_device_id_str) - 1);
static constexpr u64 DeviceIdLowMask = 0x00FFFFFFFFFFFFFFul;
return (std::strtoul(found_device_id_str, nullptr, 16) & DeviceIdLowMask) == (device_id & DeviceIdLowMask);
}
bool ContainsCorrectDeviceId(const CalibrationInfo &cal) {
return ContainsCorrectDeviceId(cal.GetBlock<EccB233DeviceCertificateBlock>(), exosphere::GetDeviceId());
}
bool IsValidForSecureBackup(const CalibrationInfo &cal) {
return IsValid(cal) && ContainsCorrectDeviceId(cal);
}
bool IsBlank(const CalibrationInfo &cal) {
return IsBlank(cal.GetBlock<SerialNumberBlock>()) ||
IsBlank(cal.GetBlock<SslCertificateSizeBlock>()) ||
IsBlank(cal.GetBlock<SslCertificateBlock>()) ||
IsBlank(cal.GetBlock<EcqvEcdsaAmiiboRootCertificateBlock>()) ||
IsBlank(cal.GetBlock<EcqvBlsAmiiboRootCertificateBlock>()) ||
IsBlank(cal.GetBlock<ExtendedSslKeyBlock>());
}
void ReadStorageCalibrationBinary(CalibrationInfo *out) {
FsStorage calibration_binary_storage;
R_ABORT_UNLESS(fsOpenBisStorage(&calibration_binary_storage, FsBisPartitionId_CalibrationBinary));
ON_SCOPE_EXIT { fsStorageClose(&calibration_binary_storage); };
R_ABORT_UNLESS(fsStorageRead(&calibration_binary_storage, 0, out, sizeof(*out)));
}
constexpr inline const u8 SecureCalibrationBinaryBackupIv[crypto::Aes128CtrDecryptor::IvSize] = {};
void ReadStorageEncryptedSecureCalibrationBinaryBackupUnsafe(SecureCalibrationInfoBackup *out) {
FsStorage calibration_binary_storage;
R_ABORT_UNLESS(fsOpenBisStorage(&calibration_binary_storage, FsBisPartitionId_CalibrationBinary));
ON_SCOPE_EXIT { fsStorageClose(&calibration_binary_storage); };
R_ABORT_UNLESS(fsStorageRead(&calibration_binary_storage, SecureCalibrationInfoBackupOffset, out, sizeof(*out)));
}
void WriteStorageEncryptedSecureCalibrationBinaryBackupUnsafe(const SecureCalibrationInfoBackup *src) {
FsStorage calibration_binary_storage;
R_ABORT_UNLESS(fsOpenBisStorage(&calibration_binary_storage, FsBisPartitionId_CalibrationBinary));
ON_SCOPE_EXIT { fsStorageClose(&calibration_binary_storage); };
R_ABORT_UNLESS(fsStorageWrite(&calibration_binary_storage, SecureCalibrationInfoBackupOffset, src, sizeof(*src)));
}
void GenerateSecureCalibrationBinaryBackupKey(void *dst, size_t dst_size) {
static constexpr const u8 SecureCalibrationBinaryBackupKeySource[crypto::Aes128CtrDecryptor::KeySize] = { '|', '-', 'A', 'M', 'S', '-', 'C', 'A', 'L', '0', '-', 'K', 'E', 'Y', '-', '|' };
spl::AccessKey access_key;
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(access_key), sizeof(access_key)); };
/* Generate a personalized kek. */
R_ABORT_UNLESS(spl::GenerateAesKek(std::addressof(access_key), SecureCalibrationBinaryBackupKeySource, sizeof(SecureCalibrationBinaryBackupKeySource), 0, 1));
/* Generate a personalized key. */
R_ABORT_UNLESS(spl::GenerateAesKey(dst, dst_size, access_key, SecureCalibrationBinaryBackupKeySource, sizeof(SecureCalibrationBinaryBackupKeySource)));
}
bool ReadStorageSecureCalibrationBinaryBackup(SecureCalibrationInfoBackup *out) {
/* Read the data. */
ReadStorageEncryptedSecureCalibrationBinaryBackupUnsafe(out);
/* Don't leak any data unless we validate. */
auto clear_guard = SCOPE_GUARD { std::memset(out, 0, sizeof(*out)); };
{
/* Create a buffer to hold our key. */
u8 key[crypto::Aes128CtrDecryptor::KeySize];
ON_SCOPE_EXIT { crypto::ClearMemory(key, sizeof(key)); };
/* Generate the key. */
GenerateSecureCalibrationBinaryBackupKey(key, sizeof(key));
/* Decrypt the data in place. */
crypto::DecryptAes128Ctr(out, sizeof(*out), key, sizeof(key), SecureCalibrationBinaryBackupIv, sizeof(SecureCalibrationBinaryBackupIv), out, sizeof(*out));
}
/* Generate a hash for the data. */
if (!IsValidSha256Hash(out->hash, std::addressof(out->info), sizeof(out->info))) {
return false;
}
/* Validate the backup. */
if (!IsValidForSecureBackup(out->info)) {
return false;
}
/* Our backup is valid. */
clear_guard.Cancel();
return true;
}
void WriteStorageSecureCalibrationBinaryBackup(SecureCalibrationInfoBackup *src) {
/* Clear the input once we've written it. */
ON_SCOPE_EXIT { std::memset(src, 0, sizeof(*src)); };
/* Ensure that the input is valid. */
AMS_ABORT_UNLESS(IsValidForSecureBackup(src->info));
/* Set the Sha256 hash. */
crypto::GenerateSha256Hash(std::addressof(src->hash), sizeof(src->hash), std::addressof(src->info), sizeof(src->info));
/* Validate the hash. */
AMS_ABORT_UNLESS(IsValidSha256Hash(src->hash, std::addressof(src->info), sizeof(src->info)));
/* Encrypt the data. */
{
/* Create a buffer to hold our key. */
u8 key[crypto::Aes128CtrDecryptor::KeySize];
ON_SCOPE_EXIT { crypto::ClearMemory(key, sizeof(key)); };
/* Generate the key. */
GenerateSecureCalibrationBinaryBackupKey(key, sizeof(key));
/* Encrypt the data in place. */
crypto::EncryptAes128Ctr(src, sizeof(*src), key, sizeof(key), SecureCalibrationBinaryBackupIv, sizeof(SecureCalibrationBinaryBackupIv), src, sizeof(*src));
}
/* Write the encrypted data. */
WriteStorageEncryptedSecureCalibrationBinaryBackupUnsafe(src);
}
void GetBackupFileName(char *dst, size_t dst_size, const CalibrationInfo &info) {
char sn[0x20] = {};
ON_SCOPE_EXIT { std::memset(sn, 0, sizeof(sn)); };
if (IsValidForSecureBackup(info)) {
GetSerialNumber(sn, info);
util::SNPrintf(dst, dst_size, "automatic_backups/%s_PRODINFO.bin", sn);
} else {
Sha256Hash hash;
crypto::GenerateSha256Hash(std::addressof(hash), sizeof(hash), std::addressof(info), sizeof(info));
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(hash), sizeof(hash)); };
if (IsValid(info)) {
if (IsBlank(info)) {
util::SNPrintf(dst, dst_size, "automatic_backups/BLANK_PRODINFO_%02X%02X%02X%02X.bin", hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
} else {
GetSerialNumber(sn, info);
util::SNPrintf(dst, dst_size, "automatic_backups/%s_PRODINFO_%02X%02X%02X%02X.bin", sn, hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
}
} else {
util::SNPrintf(dst, dst_size, "automatic_backups/INVALID_PRODINFO_%02X%02X%02X%02X.bin", hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
}
}
}
void SafeRead(ams::fs::fsa::IFile *file, s64 offset, void *dst, size_t size) {
size_t read_size = 0;
R_ABORT_UNLESS(file->Read(std::addressof(read_size), offset, dst, size));
AMS_ABORT_UNLESS(read_size == size);
}
alignas(os::MemoryPageSize) CalibrationInfo g_temp_calibration_info = {};
void SaveProdInfoBackup(util::optional<ams::fs::FileStorage> *dst, const CalibrationInfo &info) {
char backup_fn[0x100];
GetBackupFileName(backup_fn, sizeof(backup_fn), info);
/* Create the file, in case it does not exist. */
mitm::fs::CreateAtmosphereSdFile(backup_fn, sizeof(CalibrationInfo), ams::fs::CreateOption_None);
/* Open the file. */
FsFile libnx_file;
R_ABORT_UNLESS(mitm::fs::OpenAtmosphereSdFile(std::addressof(libnx_file), backup_fn, ams::fs::OpenMode_ReadWrite));
/* Create our accessor. */
std::unique_ptr<ams::fs::fsa::IFile> file = std::make_unique<ams::fs::RemoteFile>(libnx_file);
AMS_ABORT_UNLESS(file != nullptr);
/* Check if we're valid already. */
bool valid = false;
s64 size;
R_ABORT_UNLESS(file->GetSize(std::addressof(size)));
if (size == sizeof(CalibrationInfo)) {
SafeRead(file.get(), 0, std::addressof(g_temp_calibration_info), sizeof(g_temp_calibration_info));
ON_SCOPE_EXIT { std::memset(std::addressof(g_temp_calibration_info), 0, sizeof(g_temp_calibration_info)); };
if (std::memcmp(std::addressof(info), std::addressof(g_temp_calibration_info), sizeof(CalibrationInfo)) == 0) {
valid = true;
}
}
/* If we're not valid, we need to save. */
if (!valid) {
R_ABORT_UNLESS(file->Write(0, std::addressof(info), sizeof(info), ams::fs::WriteOption::Flush));
}
/* Save our storage to output. */
if (dst != nullptr) {
dst->emplace(std::move(file));
}
}
void GetRandomEntropy(Sha256Hash *dst) {
AMS_ASSERT(dst != nullptr);
u64 data_buffer[3] = {};
ON_SCOPE_EXIT { crypto::ClearMemory(data_buffer, sizeof(data_buffer)); };
data_buffer[0] = os::GetSystemTick().GetInt64Value();
R_ABORT_UNLESS(svc::GetInfo(data_buffer + 1, svc::InfoType_AliasRegionAddress, svc::PseudoHandle::CurrentProcess, 0));
if (hos::GetVersion() >= hos::Version_2_0_0) {
R_ABORT_UNLESS(svc::GetInfo(data_buffer + 2, svc::InfoType_RandomEntropy, svc::InvalidHandle, (data_buffer[0] ^ (data_buffer[1] >> 24)) & 3));
} else {
data_buffer[2] = os::GetSystemTick().GetInt64Value();
}
return crypto::GenerateSha256Hash(dst, sizeof(*dst), data_buffer, sizeof(data_buffer));
}
void FillWithGarbage(void *dst, size_t dst_size) {
/* Get random entropy. */
Sha256Hash entropy;
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(entropy), sizeof(entropy)); };
GetRandomEntropy(std::addressof(entropy));
/* Clear dst. */
std::memset(dst, 0xCC, dst_size);
/* Encrypt dst. */
static_assert(sizeof(entropy) == crypto::Aes128CtrEncryptor::KeySize + crypto::Aes128CtrEncryptor::IvSize);
crypto::EncryptAes128Ctr(dst, dst_size, entropy.data, crypto::Aes128CtrEncryptor::KeySize, entropy.data + crypto::Aes128CtrEncryptor::KeySize, crypto::Aes128CtrEncryptor::IvSize, dst, dst_size);
}
alignas(os::MemoryPageSize) constinit CalibrationInfo g_calibration_info = {};
alignas(os::MemoryPageSize) constinit CalibrationInfo g_blank_calibration_info = {};
alignas(os::MemoryPageSize) constinit SecureCalibrationInfoBackup g_secure_calibration_info_backup = {};
constinit util::optional<ams::fs::FileStorage> g_prodinfo_backup_file;
constinit util::optional<ams::fs::MemoryStorage> g_blank_prodinfo_storage;
constinit util::optional<ams::fs::MemoryStorage> g_fake_secure_backup_storage;
constinit bool g_allow_writes = false;
constinit bool g_has_secure_backup = false;
constinit os::SdkMutex g_prodinfo_management_lock;
}
void InitializeProdInfoManagement() {
std::scoped_lock lk(g_prodinfo_management_lock);
/* First, get our options. */
const bool should_blank = exosphere::ShouldBlankProdInfo();
bool allow_writes = exosphere::ShouldAllowWritesToProdInfo();
/* Next, read our prodinfo. */
ReadStorageCalibrationBinary(std::addressof(g_calibration_info));
/* Next, check if we have a secure backup. */
bool has_secure_backup = ReadStorageSecureCalibrationBinaryBackup(std::addressof(g_secure_calibration_info_backup));
/* Only allow writes if we have a secure backup. */
if (allow_writes && !has_secure_backup) {
/* If we can make a secure backup, great. */
if (IsValidForSecureBackup(g_calibration_info)) {
g_secure_calibration_info_backup.info = g_calibration_info;
WriteStorageSecureCalibrationBinaryBackup(std::addressof(g_secure_calibration_info_backup));
g_secure_calibration_info_backup.info = g_calibration_info;
has_secure_backup = true;
} else {
/* Don't allow writes if we can't make a secure backup. */
allow_writes = false;
}
}
/* Ensure our preconditions are met. */
AMS_ABORT_UNLESS(!allow_writes || has_secure_backup);
/* Set globals. */
g_allow_writes = allow_writes;
g_has_secure_backup = has_secure_backup;
/* If we should blank, do so. */
if (should_blank) {
g_blank_calibration_info = g_calibration_info;
Blank(g_blank_calibration_info);
g_blank_prodinfo_storage.emplace(std::addressof(g_blank_calibration_info), sizeof(g_blank_calibration_info));
}
/* Ensure that we have a blank file only if we need one. */
AMS_ABORT_UNLESS(should_blank == static_cast<bool>(g_blank_prodinfo_storage));
}
void SaveProdInfoBackupsAndWipeMemory(char *out_name, size_t out_name_size) {
std::scoped_lock lk(g_prodinfo_management_lock);
ON_SCOPE_EXIT {
FillWithGarbage(std::addressof(g_calibration_info), sizeof(g_calibration_info));
FillWithGarbage(std::addressof(g_secure_calibration_info_backup), sizeof(g_secure_calibration_info_backup));
};
/* Save our backup. We always prefer to save a secure copy of data over a non-secure one. */
if (g_has_secure_backup) {
GetSerialNumber(out_name, g_secure_calibration_info_backup.info);
SaveProdInfoBackup(std::addressof(g_prodinfo_backup_file), g_secure_calibration_info_backup.info);
} else {
if (IsValid(g_calibration_info) && !IsBlank(g_calibration_info)) {
GetSerialNumber(out_name, g_calibration_info);
} else {
Sha256Hash hash;
ON_SCOPE_EXIT { crypto::ClearMemory(std::addressof(hash), sizeof(hash)); };
crypto::GenerateSha256Hash(std::addressof(hash), sizeof(hash), std::addressof(g_calibration_info), sizeof(g_calibration_info));
util::SNPrintf(out_name, out_name_size, "%02X%02X%02X%02X", hash.data[0], hash.data[1], hash.data[2], hash.data[3]);
}
SaveProdInfoBackup(std::addressof(g_prodinfo_backup_file), g_calibration_info);
}
/* Ensure we made our backup. */
AMS_ABORT_UNLESS(g_prodinfo_backup_file);
/* Setup our memory storage. */
g_fake_secure_backup_storage.emplace(std::addressof(g_secure_calibration_info_backup), sizeof(g_secure_calibration_info_backup));
/* Ensure that we have a fake storage. */
AMS_ABORT_UNLESS(static_cast<bool>(g_fake_secure_backup_storage));
}
bool ShouldReadBlankCalibrationBinary() {
std::scoped_lock lk(g_prodinfo_management_lock);
return static_cast<bool>(g_blank_prodinfo_storage);
}
bool IsWriteToCalibrationBinaryAllowed() {
std::scoped_lock lk(g_prodinfo_management_lock);
return g_allow_writes;
}
void ReadFromBlankCalibrationBinary(s64 offset, void *dst, size_t size) {
AMS_ABORT_UNLESS(ShouldReadBlankCalibrationBinary());
std::scoped_lock lk(g_prodinfo_management_lock);
R_ABORT_UNLESS(g_blank_prodinfo_storage->Read(offset, dst, size));
}
void WriteToBlankCalibrationBinary(s64 offset, const void *src, size_t size) {
AMS_ABORT_UNLESS(ShouldReadBlankCalibrationBinary());
std::scoped_lock lk(g_prodinfo_management_lock);
R_ABORT_UNLESS(g_blank_prodinfo_storage->Write(offset, src, size));
}
void ReadFromFakeSecureBackupStorage(s64 offset, void *dst, size_t size) {
AMS_ABORT_UNLESS(IsWriteToCalibrationBinaryAllowed());
std::scoped_lock lk(g_prodinfo_management_lock);
R_ABORT_UNLESS(g_fake_secure_backup_storage->Read(offset, dst, size));
}
void WriteToFakeSecureBackupStorage(s64 offset, const void *src, size_t size) {
AMS_ABORT_UNLESS(IsWriteToCalibrationBinaryAllowed());
std::scoped_lock lk(g_prodinfo_management_lock);
R_ABORT_UNLESS(g_fake_secure_backup_storage->Write(offset, src, size));
}
}