1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-25 05:12:15 +00:00
Atmosphere/exosphere/mariko_fatal/source/fatal_device_page_table.cpp

352 lines
15 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
namespace ams::secmon::fatal {
namespace {
/* Definitions. */
constexpr size_t PageDirectorySize = mmu::PageSize;
constexpr size_t PageTableSize = mmu::PageSize;
static_assert(PageDirectorySize == mmu::PageSize);
using DeviceVirtualAddress = u64;
constexpr size_t AsidCount = 0x80;
constexpr size_t PhysicalAddressBits = 34;
constexpr size_t PhysicalAddressMask = (1ul << PhysicalAddressBits) - 1ul;
constexpr size_t DeviceVirtualAddressBits = 34;
constexpr size_t DeviceVirtualAddressMask = (1ul << DeviceVirtualAddressBits) - 1ul;
constexpr size_t DevicePageBits = 12;
constexpr size_t DevicePageSize = (1ul << DevicePageBits);
static_assert(DevicePageSize == mmu::PageSize);
constexpr size_t DeviceLargePageBits = 22;
constexpr size_t DeviceLargePageSize = (1ul << DeviceLargePageBits);
static_assert(DeviceLargePageSize % DevicePageSize == 0);
constexpr size_t DeviceRegionBits = 32;
constexpr size_t DeviceRegionSize = (1ul << DeviceRegionBits);
static_assert(DeviceRegionSize % DeviceLargePageSize == 0);
constexpr const uintptr_t MC = secmon::MemoryRegionVirtualDeviceMemoryController.GetAddress();
constexpr size_t TableCount = (1ul << DeviceVirtualAddressBits) / DeviceRegionSize;
consteval u32 EncodeAsidRegisterValue(u8 asid) {
u32 value = 0x80000000u;
for (size_t t = 0; t < TableCount; t++) {
value |= (asid << (BITSIZEOF(u8) * t));
}
return value;
}
constexpr u8 SdmmcAsid = 1;
constexpr u8 DcAsid = 2;
constexpr u32 SdmmcAsidRegisterValue = EncodeAsidRegisterValue(SdmmcAsid);
constexpr u32 DcAsidRegisterValue = EncodeAsidRegisterValue(DcAsid);
constexpr dd::PhysicalAddress DcL0PageTablePhysical = MemoryRegionPhysicalDramDcL0DevicePageTable.GetAddress();
constexpr dd::PhysicalAddress SdmmcL0PageTablePhysical = MemoryRegionPhysicalDramSdmmc1L0DevicePageTable.GetAddress();
constexpr dd::PhysicalAddress SdmmcL1PageTablePhysical = MemoryRegionPhysicalDramSdmmc1L1DevicePageTable.GetAddress();
/* Types. */
class EntryBase {
protected:
enum Bit : u32 {
Bit_Table = 28,
Bit_NonSecure = 29,
Bit_Writeable = 30,
Bit_Readable = 31,
};
private:
u32 m_value;
protected:
constexpr ALWAYS_INLINE u32 SelectBit(Bit n) const {
return (m_value & (1u << n));
}
constexpr ALWAYS_INLINE bool GetBit(Bit n) const {
return this->SelectBit(n) != 0;
}
static constexpr ALWAYS_INLINE u32 EncodeBit(Bit n, bool en) {
return en ? (1u << n) : 0;
}
static constexpr ALWAYS_INLINE u32 EncodeValue(bool r, bool w, bool ns, dd::PhysicalAddress addr, bool t) {
return EncodeBit(Bit_Readable, r) | EncodeBit(Bit_Writeable, w) | EncodeBit(Bit_NonSecure, ns) | EncodeBit(Bit_Table, t) | static_cast<u32>(addr >> DevicePageBits);
}
ALWAYS_INLINE void SetValue(u32 v) {
/* Prevent re-ordering around entry modifications. */
__asm__ __volatile__("" ::: "memory");
m_value = v;
__asm__ __volatile__("" ::: "memory");
}
public:
static constexpr ALWAYS_INLINE u32 EncodePtbDataValue(dd::PhysicalAddress addr) {
return EncodeValue(true, true, true, addr, false);
}
public:
constexpr ALWAYS_INLINE bool IsNonSecure() const { return this->GetBit(Bit_NonSecure); }
constexpr ALWAYS_INLINE bool IsWriteable() const { return this->GetBit(Bit_Writeable); }
constexpr ALWAYS_INLINE bool IsReadable() const { return this->GetBit(Bit_Readable); }
constexpr ALWAYS_INLINE bool IsValid() const { return this->IsWriteable() || this->IsReadable(); }
constexpr ALWAYS_INLINE u32 GetAttributes() const { return this->SelectBit(Bit_NonSecure) | this->SelectBit(Bit_Writeable) | this->SelectBit(Bit_Readable); }
constexpr ALWAYS_INLINE dd::PhysicalAddress GetPhysicalAddress() const { return (static_cast<u64>(m_value) << DevicePageBits) & PhysicalAddressMask; }
ALWAYS_INLINE void Invalidate() { this->SetValue(0); }
};
class PageDirectoryEntry : public EntryBase {
public:
constexpr ALWAYS_INLINE bool IsTable() const { return this->GetBit(Bit_Table); }
ALWAYS_INLINE void SetTable(bool r, bool w, bool ns, dd::PhysicalAddress addr) {
AMS_ASSERT(util::IsAligned(addr, DevicePageSize));
this->SetValue(EncodeValue(r, w, ns, addr, true));
}
ALWAYS_INLINE void SetLargePage(bool r, bool w, bool ns, dd::PhysicalAddress addr) {
AMS_ASSERT(util::IsAligned(addr, DeviceLargePageSize));
this->SetValue(EncodeValue(r, w, ns, addr, false));
}
};
class PageTableEntry : public EntryBase {
public:
ALWAYS_INLINE void SetPage(bool r, bool w, bool ns, dd::PhysicalAddress addr) {
AMS_ASSERT(util::IsAligned(addr, DevicePageSize));
this->SetValue(EncodeValue(r, w, ns, addr, true));
}
};
/* Memory controller access functionality. */
void WriteMcRegister(size_t offset, u32 value) {
reg::Write(MC + offset, value);
}
u32 ReadMcRegister(size_t offset) {
return reg::Read(MC + offset);
}
/* Memory controller utilities. */
void SmmuSynchronizationBarrier() {
ReadMcRegister(MC_SMMU_CONFIG);
}
void InvalidatePtc() {
WriteMcRegister(MC_SMMU_PTC_FLUSH_0, 0);
}
void InvalidatePtc(dd::PhysicalAddress address) {
WriteMcRegister(MC_SMMU_PTC_FLUSH_1, (static_cast<u64>(address) >> 32));
WriteMcRegister(MC_SMMU_PTC_FLUSH_0, (address & 0xFFFFFFF0u) | 1u);
}
enum TlbFlushVaMatch : u32 {
TlbFlushVaMatch_All = 0,
TlbFlushVaMatch_Section = 2,
TlbFlushVaMatch_Group = 3,
};
static constexpr ALWAYS_INLINE u32 EncodeTlbFlushValue(bool match_asid, u8 asid, dd::PhysicalAddress address, TlbFlushVaMatch match) {
return ((match_asid ? 1u : 0u) << 31) | ((asid & 0x7F) << 24) | (((address & 0xFFC00000u) >> DevicePageBits)) | (match);
}
void InvalidateTlb() {
return WriteMcRegister(MC_SMMU_TLB_FLUSH, EncodeTlbFlushValue(false, 0, 0, TlbFlushVaMatch_All));
}
void InvalidateTlb(u8 asid) {
return WriteMcRegister(MC_SMMU_TLB_FLUSH, EncodeTlbFlushValue(true, asid, 0, TlbFlushVaMatch_All));
}
void InvalidateTlbSection(u8 asid, dd::PhysicalAddress address) {
return WriteMcRegister(MC_SMMU_TLB_FLUSH, EncodeTlbFlushValue(true, asid, address, TlbFlushVaMatch_Section));
}
void SetTable(u8 asid, dd::PhysicalAddress address) {
/* Write the table address. */
{
WriteMcRegister(MC_SMMU_PTB_ASID, asid);
WriteMcRegister(MC_SMMU_PTB_DATA, EntryBase::EncodePtbDataValue(address));
SmmuSynchronizationBarrier();
}
/* Ensure consistency. */
InvalidatePtc();
InvalidateTlb(asid);
SmmuSynchronizationBarrier();
}
void MapImpl(dd::PhysicalAddress phys_addr, size_t size, DeviceVirtualAddress address, u8 asid, void *l0_table, dd::PhysicalAddress l0_phys, void *l1_table, dd::PhysicalAddress l1_phys) {
/* Validate L0. */
AMS_ABORT_UNLESS(l0_table != nullptr);
AMS_ABORT_UNLESS(l0_phys != 0);
/* Cache permissions. */
const bool read = true;
const bool write = true;
/* Walk the directory. */
u64 remaining = size;
while (remaining > 0) {
const size_t l1_index = (address % DeviceRegionSize) / DeviceLargePageSize;
const size_t l2_index = (address % DeviceLargePageSize) / DevicePageSize;
/* Get and validate l1. */
PageDirectoryEntry *l1 = static_cast<PageDirectoryEntry *>(l0_table);
AMS_ASSERT(l1 != nullptr);
/* Setup an l1 table/entry, if needed. */
if (!l1[l1_index].IsTable()) {
/* Check that an entry doesn't already exist. */
AMS_ASSERT(!l1[l1_index].IsValid());
/* If we can make an l1 entry, do so. */
if (l2_index == 0 && util::IsAligned(phys_addr, DeviceLargePageSize) && remaining >= DeviceLargePageSize) {
/* Set the large page. */
l1[l1_index].SetLargePage(read, write, true, phys_addr);
hw::FlushDataCache(std::addressof(l1[l1_index]), sizeof(PageDirectoryEntry));
/* Synchronize. */
InvalidatePtc(l0_phys + l1_index * sizeof(PageDirectoryEntry));
InvalidateTlbSection(asid, address);
SmmuSynchronizationBarrier();
/* Advance. */
phys_addr += DeviceLargePageSize;
address += DeviceLargePageSize;
remaining -= DeviceLargePageSize;
continue;
} else {
/* Make an l1 table. */
AMS_ABORT_UNLESS(l1_table != nullptr);
AMS_ABORT_UNLESS(l1_phys != 0);
/* Clear the l1 table. */
std::memset(l1_table, 0, mmu::PageSize);
hw::FlushDataCache(l1_table, mmu::PageSize);
/* Set the l1 table. */
l1[l1_index].SetTable(true, true, true, l1_phys);
hw::FlushDataCache(std::addressof(l1[l1_index]), sizeof(PageDirectoryEntry));
/* Synchronize. */
InvalidatePtc(l0_phys + l1_index * sizeof(PageDirectoryEntry));
InvalidateTlbSection(asid, address);
SmmuSynchronizationBarrier();
}
}
/* If we get to this point, l1 must be a table. */
AMS_ASSERT(l1[l1_index].IsTable());
AMS_ABORT_UNLESS(l1_table != nullptr);
AMS_ABORT_UNLESS(l1_phys != 0);
/* Map l2 entries. */
{
PageTableEntry *l2 = static_cast<PageTableEntry *>(l1_table);
const size_t remaining_in_entry = (PageTableSize / sizeof(PageTableEntry)) - l2_index;
const size_t map_count = std::min<size_t>(remaining_in_entry, remaining / DevicePageSize);
/* Set the entries. */
for (size_t i = 0; i < map_count; ++i) {
AMS_ASSERT(!l2[l2_index + i].IsValid());
l2[l2_index + i].SetPage(read, write, true, phys_addr + DevicePageSize * i);
}
hw::FlushDataCache(std::addressof(l2[l2_index]), map_count * sizeof(PageTableEntry));
/* Invalidate the page table cache. */
for (size_t i = util::AlignDown(l2_index, 4); i <= util::AlignDown(l2_index + map_count - 1, 4); i += 4) {
InvalidatePtc(l1_phys + i * sizeof(PageTableEntry));
}
/* Synchronize. */
InvalidateTlbSection(asid, address);
SmmuSynchronizationBarrier();
/* Advance. */
phys_addr += map_count * DevicePageSize;
address += map_count * DevicePageSize;
remaining -= map_count * DevicePageSize;
}
}
}
}
void InitializeDevicePageTableForSdmmc1() {
/* Configure sdmmc to use our new page table. */
WriteMcRegister(MC_SMMU_SDMMC1A_ASID, SdmmcAsidRegisterValue);
SmmuSynchronizationBarrier();
/* Ensure consistency. */
InvalidatePtc();
InvalidateTlb();
SmmuSynchronizationBarrier();
/* Clear the L0 Page Table. */
std::memset(MemoryRegionVirtualDramSdmmc1L0DevicePageTable.GetPointer<void>(), 0, mmu::PageSize);
hw::FlushDataCache(MemoryRegionVirtualDramSdmmc1L0DevicePageTable.GetPointer<void>(), mmu::PageSize);
/* Set the page table for the sdmmc asid. */
SetTable(SdmmcAsid, SdmmcL0PageTablePhysical);
/* Map the appropriate region into the asid. */
MapImpl(MemoryRegionPhysicalDramSdmmcMappedData.GetAddress(), MemoryRegionPhysicalDramSdmmcMappedData.GetSize(), MemoryRegionVirtualDramSdmmcMappedData.GetAddress(),
SdmmcAsid,
MemoryRegionVirtualDramSdmmc1L0DevicePageTable.GetPointer<void>(), SdmmcL0PageTablePhysical,
MemoryRegionVirtualDramSdmmc1L1DevicePageTable.GetPointer<void>(), SdmmcL1PageTablePhysical);
}
void InitializeDevicePageTableForDc() {
/* Configure dc to use our new page table. */
WriteMcRegister(MC_SMMU_DC_ASID, DcAsidRegisterValue);
SmmuSynchronizationBarrier();
/* Ensure consistency. */
InvalidatePtc();
InvalidateTlb();
SmmuSynchronizationBarrier();
/* Clear the L0 Page Table. */
std::memset(MemoryRegionVirtualDramDcL0DevicePageTable.GetPointer<void>(), 0, mmu::PageSize);
hw::FlushDataCache(MemoryRegionVirtualDramDcL0DevicePageTable.GetPointer<void>(), mmu::PageSize);
/* Set the page table for the dc asid. */
SetTable(DcAsid, DcL0PageTablePhysical);
/* Map the appropriate region into the asid. */
static_assert(util::IsAligned(MemoryRegionDramDcFramebuffer.GetAddress(), DeviceLargePageSize));
static_assert(util::IsAligned(MemoryRegionDramDcFramebuffer.GetSize(), DeviceLargePageSize));
MapImpl(MemoryRegionDramDcFramebuffer.GetAddress(), MemoryRegionDramDcFramebuffer.GetSize(), MemoryRegionDramDcFramebuffer.GetAddress(),
DcAsid,
MemoryRegionVirtualDramDcL0DevicePageTable.GetPointer<void>(), DcL0PageTablePhysical,
nullptr, 0);
}
}