1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-22 17:17:06 +00:00
Atmosphere/fusee/program/source/fusee_emummc.cpp

485 lines
No EOL
19 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "fusee_emummc.hpp"
#include "fusee_mmc.hpp"
#include "fusee_sd_card.hpp"
#include "fusee_fatal.hpp"
#include "fusee_malloc.hpp"
#include "fs/fusee_fs_api.hpp"
#include "fs/fusee_fs_storage.hpp"
namespace ams::nxboot {
namespace {
class SdCardStorage : public fs::IStorage {
public:
virtual Result Read(s64 offset, void *buffer, size_t size) override {
if (!util::IsAligned(offset, sdmmc::SectorSize) || !util::IsAligned(size, sdmmc::SectorSize)) {
ShowFatalError("SdCard: unaligned access to %" PRIx64 ", size=%" PRIx64"\n", static_cast<u64>(offset), static_cast<u64>(size));
}
return ReadSdCard(buffer, size, offset / sdmmc::SectorSize, size / sdmmc::SectorSize);
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result GetSize(s64 *out) override {
u32 num_sectors;
R_TRY(GetSdCardMemoryCapacity(std::addressof(num_sectors)));
*out = static_cast<s64>(num_sectors) * static_cast<s64>(sdmmc::SectorSize);
return ResultSuccess();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperation();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperation();
}
};
template<sdmmc::MmcPartition Partition>
class MmcPartitionStorage : public fs::IStorage {
public:
constexpr MmcPartitionStorage() { /* ... */ }
virtual Result Read(s64 offset, void *buffer, size_t size) override {
if (!util::IsAligned(offset, sdmmc::SectorSize) || !util::IsAligned(size, sdmmc::SectorSize)) {
ShowFatalError("SdCard: unaligned access to %" PRIx64 ", size=%" PRIx64"\n", static_cast<u64>(offset), static_cast<u64>(size));
}
return ReadMmc(buffer, size, Partition, offset / sdmmc::SectorSize, size / sdmmc::SectorSize);
}
virtual Result Flush() override {
return ResultSuccess();
}
virtual Result GetSize(s64 *out) override {
u32 num_sectors;
R_TRY(GetMmcMemoryCapacity(std::addressof(num_sectors), Partition));
*out = num_sectors * sdmmc::SectorSize;
return ResultSuccess();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperation();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperation();
}
};
using MmcBoot0Storage = MmcPartitionStorage<sdmmc::MmcPartition_BootPartition1>;
using MmcUserStorage = MmcPartitionStorage<sdmmc::MmcPartition_UserData>;
constinit char g_emummc_path[0x300];
class EmummcFileStorage : public fs::IStorage {
private:
s64 m_file_size;
fs::FileHandle m_handles[64];
bool m_open[64];
int m_file_path_ofs;
private:
void EnsureFile(int id) {
if (!m_open[id]) {
/* Update path. */
g_emummc_path[m_file_path_ofs + 1] = '0' + (id % 10);
g_emummc_path[m_file_path_ofs + 0] = '0' + (id / 10);
/* Open new file. */
const Result result = fs::OpenFile(m_handles + id, g_emummc_path, fs::OpenMode_Read);
if (R_FAILED(result)) {
ShowFatalError("Failed to open emummc user %02d file: 0x%08" PRIx32 "!\n", id, result.GetValue());
}
m_open[id] = true;
}
}
public:
EmummcFileStorage(fs::FileHandle user00, int ofs) : m_file_path_ofs(ofs) {
const Result result = fs::GetFileSize(std::addressof(m_file_size), user00);
if (R_FAILED(result)) {
ShowFatalError("Failed to get emummc file size: 0x%08" PRIx32 "!\n", result.GetValue());
}
for (size_t i = 0; i < util::size(m_handles); ++i) {
m_open[i] = false;
}
m_handles[0] = user00;
m_open[0] = true;
}
virtual Result Read(s64 offset, void *buffer, size_t size) override {
int file = offset / m_file_size;
s64 subofs = offset % m_file_size;
u8 *cur_dst = static_cast<u8 *>(buffer);
for (/* ... */; size > 0; ++file) {
/* Ensure the current file is open. */
EnsureFile(file);
/* Perform the current read. */
const size_t cur_size = std::min<size_t>(m_file_size - subofs, size);
R_TRY(fs::ReadFile(m_handles[file], subofs, cur_dst, cur_size));
/* Advance. */
cur_dst += cur_size;
size -= cur_size;
subofs = 0;
}
return ResultSuccess();
}
virtual Result Flush() override {
return fs::ResultUnsupportedOperation();
}
virtual Result GetSize(s64 *out) override {
return fs::ResultUnsupportedOperation();
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperation();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperation();
}
};
constinit SdCardStorage g_sd_card_storage;
constinit MmcBoot0Storage g_mmc_boot0_storage;
constinit MmcUserStorage g_mmc_user_storage;
constinit fs::IStorage *g_boot0_storage = nullptr;
constinit fs::IStorage *g_user_storage = nullptr;
class SystemPartitionStorage : public fs::IStorage {
private:
static constexpr size_t CacheEntries = BITSIZEOF(u32);
static constexpr size_t SectorSize = 0x4000;
private:
fs::SubStorage m_storage;
u8 *m_sector_cache;
u32 *m_sector_ids;
u32 m_sector_flags;
u32 m_next_idx;
private:
Result LoadSector(u8 *sector, u32 sector_id) {
/* Read the sector data. */
R_TRY(m_storage.Read(static_cast<s64>(sector_id) * SectorSize, sector, SectorSize));
/* Decrypt the sector. */
se::DecryptAes128Xts(sector, SectorSize, pkg1::AesKeySlot_BootloaderSystem0, pkg1::AesKeySlot_BootloaderSystem1, sector, SectorSize, sector_id);
/* Mark the sector as freshly loaded. */
m_sector_flags &= ~(1u << (sector_id % CacheEntries));
return ResultSuccess();
}
Result GetSector(u8 **out_sector, u32 sector_id) {
/* Try to find in the cache. */
for (size_t i = 0; i < CacheEntries; ++i) {
if (m_sector_ids[i] == sector_id) {
m_sector_flags &= ~(1u << i);
*out_sector = m_sector_cache + SectorSize * i;
return ResultSuccess();
}
}
/* Find a sector to evict. */
while ((m_sector_flags & (1u << m_next_idx)) == 0) {
m_sector_flags |= (1u << m_next_idx);
m_next_idx = (m_next_idx + 1) % CacheEntries;
}
/* Get the chosen sector. */
*out_sector = m_sector_cache + SectorSize * m_next_idx;
m_next_idx = (m_next_idx + 1) % CacheEntries;
/* Load the sector. */
return this->LoadSector(*out_sector, sector_id);
}
public:
SystemPartitionStorage(s64 ofs, s64 size) : m_storage(*g_user_storage, ofs, size) {
/* Allocate sector cache. */
m_sector_cache = static_cast<u8 *>(AllocateAligned(CacheEntries * SectorSize, SectorSize));
/* Allocate sector ids. */
m_sector_ids = static_cast<u32 *>(AllocateAligned(CacheEntries * sizeof(u32), alignof(u32)));
for (size_t i = 0; i < CacheEntries; ++i) {
m_sector_ids[i] = std::numeric_limits<u32>::max();
}
/* All sectors are dirty. */
m_sector_flags = ~0u;
/* Next sector is 0. */
m_next_idx = 0;
}
virtual Result Read(s64 offset, void *buffer, size_t size) override {
u32 sector_id = offset / SectorSize;
s64 subofs = offset % SectorSize;
u8 *cur_dst = static_cast<u8 *>(buffer);
while (size > 0) {
/* Get the current sector. */
u8 *sector;
R_TRY(this->GetSector(std::addressof(sector), sector_id++));
/* Copy the data. */
const size_t cur_size = std::min<size_t>(SectorSize - subofs, size);
std::memcpy(cur_dst, sector + subofs, cur_size);
/* Advance. */
cur_dst += cur_size;
size -= cur_size;
subofs = 0;
}
return ResultSuccess();
}
virtual Result Flush() override {
return m_storage.Flush();
}
virtual Result GetSize(s64 *out) override {
return m_storage.GetSize(out);
}
virtual Result Write(s64 offset, const void *buffer, size_t size) override {
return fs::ResultUnsupportedOperation();
}
virtual Result SetSize(s64 size) override {
return fs::ResultUnsupportedOperation();
}
};
constinit SystemPartitionStorage *g_system_storage = nullptr;
constinit fs::SubStorage *g_package2_storage = nullptr;
struct Guid {
u32 data1;
u16 data2;
u16 data3;
u8 data4[8];
};
static_assert(sizeof(Guid) == 0x10);
struct GptHeader {
char signature[8];
u32 revision;
u32 header_size;
u32 header_crc32;
u32 reserved0;
u64 my_lba;
u64 alt_lba;
u64 first_usable_lba;
u64 last_usable_lba;
Guid disk_guid;
u64 partition_entry_lba;
u32 number_of_partition_entries;
u32 size_of_partition_entry;
u32 partition_entry_array_crc32;
u32 reserved1;
};
static_assert(sizeof(GptHeader) == 0x60);
struct GptPartitionEntry {
Guid partition_type_guid;
Guid unique_partition_guid;
u64 starting_lba;
u64 ending_lba;
u64 attributes;
char partition_name[0x48];
};
static_assert(sizeof(GptPartitionEntry) == 0x80);
struct Gpt {
GptHeader header;
u8 padding[0x1A0];
GptPartitionEntry entries[128];
};
static_assert(sizeof(Gpt) == 16_KB + 0x200);
constexpr const u16 SystemPartitionName[] = {
'S', 'Y', 'S', 'T', 'E', 'M', 0
};
constexpr const u16 Package2PartitionName[] = {
'B', 'C', 'P', 'K', 'G', '2', '-', '1', '-', 'N', 'o', 'r', 'm', 'a', 'l', '-', 'M', 'a', 'i', 'n', 0
};
}
void InitializeEmummc(bool emummc_enabled, const secmon::EmummcConfiguration &emummc_cfg) {
Result result;
if (emummc_enabled) {
/* Get sd card size. */
s64 sd_card_size;
if (R_FAILED((result = g_sd_card_storage.GetSize(std::addressof(sd_card_size))))) {
ShowFatalError("Failed to get sd card size: 0x%08" PRIx32 "!\n", result.GetValue());
}
if (emummc_cfg.base_cfg.type == secmon::EmummcType_Partition) {
const s64 partition_start = emummc_cfg.partition_cfg.start_sector * sdmmc::SectorSize;
g_boot0_storage = AllocateObject<fs::SubStorage>(g_sd_card_storage, partition_start, 4_MB);
g_user_storage = AllocateObject<fs::SubStorage>(g_sd_card_storage, partition_start + 8_MB, sd_card_size - (partition_start + 8_MB));
} else if (emummc_cfg.base_cfg.type == secmon::EmummcType_File) {
/* Get the base emummc path. */
std::memcpy(g_emummc_path, emummc_cfg.file_cfg.path.str, sizeof(emummc_cfg.file_cfg.path.str));
/* Get path length. */
auto len = std::strlen(g_emummc_path);
/* Append emmc. */
std::memcpy(g_emummc_path + len, "/eMMC", 6);
len += 5;
/* Open boot0. */
fs::FileHandle boot0_file;
std::memcpy(g_emummc_path + len, "/boot0", 7);
if (R_FAILED((result = fs::OpenFile(std::addressof(boot0_file), g_emummc_path, fs::OpenMode_Read)))) {
ShowFatalError("Failed to open emummc boot0 file: 0x%08" PRIx32 "!\n", result.GetValue());
}
/* Open boot1. */
g_emummc_path[len + 5] = '1';
{
fs::DirectoryEntryType entry_type;
bool is_archive;
if (R_FAILED((result = fs::GetEntryType(std::addressof(entry_type), std::addressof(is_archive), g_emummc_path)))) {
ShowFatalError("Failed to find emummc boot1 file: 0x%08" PRIx32 "!\n", result.GetValue());
}
if (entry_type != fs::DirectoryEntryType_File) {
ShowFatalError("emummc boot1 file is not a file!\n");
}
}
/* Open userdata. */
std::memcpy(g_emummc_path + len, "/00", 4);
fs::FileHandle user00_file;
if (R_FAILED((result = fs::OpenFile(std::addressof(user00_file), g_emummc_path, fs::OpenMode_Read)))) {
ShowFatalError("Failed to open emummc user %02d file: 0x%08" PRIx32 "!\n", 0, result.GetValue());
}
/* Create partitions. */
g_boot0_storage = AllocateObject<fs::FileHandleStorage>(boot0_file);
g_user_storage = AllocateObject<EmummcFileStorage>(user00_file, len + 1);
} else {
ShowFatalError("Unknown emummc type %d\n", static_cast<int>(emummc_cfg.base_cfg.type));
}
} else {
/* Initialize access to mmc. */
{
const Result result = InitializeMmc();
if (R_FAILED(result)) {
ShowFatalError("Failed to initialize mmc: 0x%08" PRIx32 "\n", result.GetValue());
}
}
/* Create storages. */
g_boot0_storage = std::addressof(g_mmc_boot0_storage);
g_user_storage = std::addressof(g_mmc_user_storage);
}
if (g_boot0_storage == nullptr) {
ShowFatalError("Failed to initialize BOOT0\n");
}
if (g_user_storage == nullptr) {
ShowFatalError("Failed to initialize Raw EMMC\n");
}
/* Read the GPT. */
Gpt *gpt = static_cast<Gpt *>(AllocateAligned(sizeof(Gpt), 0x200));
{
const Result result = g_user_storage->Read(0x200, gpt, sizeof(*gpt));
if (R_FAILED(result)) {
ShowFatalError("Failed to read GPT: 0x%08" PRIx32 "\n", result.GetValue());
}
}
/* Check the GPT. */
if (std::memcmp(gpt->header.signature, "EFI PART", 8) != 0) {
ShowFatalError("Invalid GPT signature\n");
}
if (gpt->header.number_of_partition_entries > util::size(gpt->entries)) {
ShowFatalError("Too many GPT entries\n");
}
/* Create system storage. */
for (u32 i = 0; i < gpt->header.number_of_partition_entries; ++i) {
if (gpt->entries[i].starting_lba < gpt->header.first_usable_lba) {
continue;
}
const s64 offset = INT64_C(0x200) * gpt->entries[i].starting_lba;
const u64 size = UINT64_C(0x200) * (gpt->entries[i].ending_lba + 1 - gpt->entries[i].starting_lba);
if (std::memcmp(gpt->entries[i].partition_name, SystemPartitionName, sizeof(SystemPartitionName)) == 0) {
g_system_storage = AllocateObject<SystemPartitionStorage>(offset, size);
} else if (std::memcmp(gpt->entries[i].partition_name, Package2PartitionName, sizeof(Package2PartitionName)) == 0) {
g_package2_storage = AllocateObject<fs::SubStorage>(*g_user_storage, offset, size);
}
}
/* Check that we created system storage. */
if (g_system_storage == nullptr) {
ShowFatalError("Failed to initialize SYSTEM\n");
}
/* Check that we created package2 storage. */
if (g_package2_storage == nullptr) {
ShowFatalError("Failed to initialize Package2\n");
}
/* Mount system. */
if (!fs::MountSystem()) {
ShowFatalError("Failed to mount SYSTEM\n");
}
}
Result ReadBoot0(s64 offset, void *dst, size_t size) {
return g_boot0_storage->Read(offset, dst, size);
}
Result ReadPackage2(s64 offset, void *dst, size_t size) {
return g_package2_storage->Read(offset, dst, size);
}
Result ReadSystem(s64 offset, void *dst, size_t size) {
return g_system_storage->Read(offset, dst, size);
}
}