1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-14 07:56:45 +00:00
Atmosphere/stratosphere/dmnt.gen2/source/dmnt2_debug_process.cpp
2021-09-11 19:36:07 -07:00

507 lines
No EOL
18 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "dmnt2_debug_log.hpp"
#include "dmnt2_debug_process.hpp"
namespace ams::dmnt {
namespace {
s32 SignExtend(u32 value, u32 bits) {
return static_cast<s32>(value << (32 - bits)) >> (32 - bits);
}
}
Result DebugProcess::Attach(os::ProcessId process_id) {
/* Attach to the process. */
R_TRY(svc::DebugActiveProcess(std::addressof(m_debug_handle), process_id.value));
/* Collect initial information. */
R_TRY(this->Start());
/* Get the attached modules. */
R_TRY(this->CollectModules());
/* Get our process id. */
u64 pid_value = 0;
svc::GetProcessId(std::addressof(pid_value), m_debug_handle);
m_process_id = { pid_value };
return ResultSuccess();
}
void DebugProcess::Detach() {
if (m_is_valid) {
m_software_breakpoints.ClearAll();
m_hardware_breakpoints.ClearAll();
m_hardware_watchpoints.ClearAll();
R_ABORT_UNLESS(svc::CloseHandle(m_debug_handle));
m_debug_handle = svc::InvalidHandle;
}
m_is_valid = false;
}
Result DebugProcess::Start() {
/* Process the initial debug events. */
s32 num_threads = 0;
bool attached = false;
while (num_threads == 0 || !attached) {
/* Wait for debug events to be available. */
s32 dummy_index;
R_ABORT_UNLESS(svc::WaitSynchronization(std::addressof(dummy_index), std::addressof(m_debug_handle), 1, svc::WaitInfinite));
/* Get debug event. */
svc::DebugEventInfo d;
R_ABORT_UNLESS(svc::GetDebugEvent(std::addressof(d), m_debug_handle));
/* Handle the debug event. */
switch (d.type) {
case svc::DebugEvent_CreateProcess:
{
/* Set our create process info. */
m_create_process_info = d.info.create_process;
/* Cache our bools. */
m_is_64_bit = (m_create_process_info.flags & svc::CreateProcessFlag_Is64Bit);
m_is_64_bit_address_space = (m_create_process_info.flags & svc::CreateProcessFlag_AddressSpaceMask) == svc::CreateProcessFlag_AddressSpace64Bit;
}
break;
case svc::DebugEvent_CreateThread:
{
++num_threads;
if (const s32 index = this->ThreadCreate(d.thread_id); index >= 0) {
const Result result = osdbg::InitializeThreadInfo(std::addressof(m_thread_infos[index]), m_debug_handle, std::addressof(m_create_process_info), std::addressof(d.info.create_thread));
if (R_FAILED(result)) {
AMS_DMNT2_GDB_LOG_WARN("DebugProcess::Start: InitializeThreadInfo(%lx) failed: %08x\n", d.thread_id, result.GetValue());
}
}
}
break;
case svc::DebugEvent_ExitThread:
{
--num_threads;
this->ThreadExit(d.thread_id);
}
break;
case svc::DebugEvent_Exception:
{
if (d.info.exception.type == svc::DebugException_DebuggerAttached) {
attached = true;
}
}
break;
default:
break;
}
}
/* Set ourselves as valid. */
m_is_valid = true;
this->SetDebugBreaked();
return ResultSuccess();
}
s32 DebugProcess::ThreadCreate(u64 thread_id) {
for (size_t i = 0; i < ThreadCountMax; ++i) {
if (!m_thread_valid[i]) {
m_thread_valid[i] = true;
m_thread_ids[i] = thread_id;
this->SetLastThreadId(thread_id);
this->SetLastSignal(GdbSignal_BreakpointTrap);
++m_thread_count;
return i;
}
}
return -1;
}
void DebugProcess::ThreadExit(u64 thread_id) {
for (size_t i = 0; i < ThreadCountMax; ++i) {
if (m_thread_valid[i] && m_thread_ids[i] == thread_id) {
m_thread_valid[i] = false;
m_thread_ids[i] = 0;
this->SetLastThreadId(thread_id);
this->SetLastSignal(GdbSignal_BreakpointTrap);
--m_thread_count;
break;
}
}
}
Result DebugProcess::CollectModules() {
/* Traverse the address space, looking for modules. */
uintptr_t address = 0;
while (true) {
/* Query the current address. */
svc::MemoryInfo memory_info;
svc::PageInfo page_info;
if (R_SUCCEEDED(svc::QueryDebugProcessMemory(std::addressof(memory_info), std::addressof(page_info), m_debug_handle, address))) {
if (memory_info.perm == svc::MemoryPermission_ReadExecute && (memory_info.state == svc::MemoryState_Code || memory_info.state == svc::MemoryState_AliasCode)) {
/* Check that we can add the module. */
AMS_ABORT_UNLESS(m_module_count < ModuleCountMax);
/* Get module definition. */
auto &module = m_module_definitions[m_module_count++];
/* Set module address/size. */
module.SetAddressSize(memory_info.addr, memory_info.size);
/* Get module name buffer. */
char *module_name = module.GetNameBuffer();
module_name[0] = 0;
/* Read module path. */
struct {
u32 zero;
s32 path_length;
char path[ModuleDefinition::PathLengthMax];
} module_path;
if (R_SUCCEEDED(this->ReadMemory(std::addressof(module_path), memory_info.addr + memory_info.size, sizeof(module_path)))) {
if (module_path.zero == 0 && module_path.path_length == util::Strnlen(module_path.path, sizeof(module_path.path))) {
std::memcpy(module_name, module_path.path, ModuleDefinition::PathLengthMax);
}
}
/* Truncate module name. */
module_name[ModuleDefinition::PathLengthMax - 1] = 0;
}
}
/* Check if we're done. */
const uintptr_t next_address = memory_info.addr + memory_info.size;
if (memory_info.state == svc::MemoryState_Inaccessible) {
break;
}
if (next_address <= address) {
break;
}
address = next_address;
}
return ResultSuccess();
}
Result DebugProcess::GetThreadContext(svc::ThreadContext *out, u64 thread_id, u32 flags) {
return svc::GetDebugThreadContext(out, m_debug_handle, thread_id, flags);
}
Result DebugProcess::SetThreadContext(const svc::ThreadContext *ctx, u64 thread_id, u32 flags) {
return svc::SetDebugThreadContext(m_debug_handle, thread_id, ctx, flags);
}
Result DebugProcess::ReadMemory(void *dst, uintptr_t address, size_t size) {
return svc::ReadDebugProcessMemory(reinterpret_cast<uintptr_t>(dst), m_debug_handle, address, size);
}
Result DebugProcess::WriteMemory(const void *src, uintptr_t address, size_t size) {
return svc::WriteDebugProcessMemory(m_debug_handle, reinterpret_cast<uintptr_t>(src), address, size);
}
Result DebugProcess::Continue() {
AMS_DMNT2_GDB_LOG_DEBUG("DebugProcess::Continue() all\n");
u64 thread_ids[] = { 0 };
R_TRY(svc::ContinueDebugEvent(m_debug_handle, svc::ContinueFlag_ExceptionHandled | svc::ContinueFlag_EnableExceptionEvent | svc::ContinueFlag_ContinueAll, thread_ids, util::size(thread_ids)));
m_continue_thread_id = 0;
m_status = ProcessStatus_Running;
this->SetLastThreadId(0);
this->SetLastSignal(GdbSignal_Signal0);
return ResultSuccess();
}
Result DebugProcess::Continue(u64 thread_id) {
AMS_DMNT2_GDB_LOG_DEBUG("DebugProcess::Continue() thread_id=%lx\n", thread_id);
u64 thread_ids[] = { thread_id };
R_TRY(svc::ContinueDebugEvent(m_debug_handle, svc::ContinueFlag_ExceptionHandled | svc::ContinueFlag_EnableExceptionEvent, thread_ids, util::size(thread_ids)));
m_continue_thread_id = thread_id;
m_status = ProcessStatus_Running;
this->SetLastThreadId(0);
this->SetLastSignal(GdbSignal_Signal0);
return ResultSuccess();
}
Result DebugProcess::Step() {
AMS_DMNT2_GDB_LOG_DEBUG("DebugProcess::Step() all\n");
return this->Step(this->GetLastThreadId());
}
Result DebugProcess::Step(u64 thread_id) {
AMS_DMNT2_GDB_LOG_DEBUG("DebugProcess::Step() thread_id=%lx\n", thread_id);
/* Get the thread context. */
svc::ThreadContext ctx;
R_TRY(this->GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control));
/* Note that we're stepping. */
m_stepping = true;
/* Determine where we're stepping to. */
u64 current_pc = ctx.pc;
u64 step_target = 0;
this->GetBranchTarget(ctx, thread_id, current_pc, step_target);
/* Ensure we end with valid breakpoints. */
auto bp_guard = SCOPE_GUARD { this->ClearStep(); };
/* Set step breakpoint on current pc. */
/* TODO: aarch32 breakpoints. */
if (current_pc) {
R_TRY(m_step_breakpoints.SetBreakPoint(current_pc, sizeof(u32), true));
}
if (step_target) {
R_TRY(m_step_breakpoints.SetBreakPoint(step_target, sizeof(u32), true));
}
bp_guard.Cancel();
return ResultSuccess();
}
void DebugProcess::ClearStep() {
/* If we should, clear our step breakpoints. */
if (m_stepping) {
m_step_breakpoints.ClearStep();
m_stepping = false;
}
}
Result DebugProcess::Break() {
if (this->GetStatus() == ProcessStatus_Running) {
AMS_DMNT2_GDB_LOG_DEBUG("DebugProcess::Break\n");
return svc::BreakDebugProcess(m_debug_handle);
} else {
AMS_DMNT2_GDB_LOG_ERROR("DebugProcess::Break called on non-running process!\n");
return ResultSuccess();
}
}
void DebugProcess::GetBranchTarget(svc::ThreadContext &ctx, u64 thread_id, u64 &current_pc, u64 &target) {
/* Save pc, in case we modify it. */
const u64 pc = current_pc;
/* Clear the target. */
target = 0;
/* By default, we advance by four. */
current_pc += 4;
/* Get the instruction where we were. */
u32 insn = 0;
this->ReadMemory(std::addressof(insn), pc, sizeof(insn));
/* Handle by architecture. */
bool is_call = false;
if (this->Is64Bit()) {
if ((insn & 0x7C000000) == 0x14000000) {
/* Unconditional branch (b/bl) */
if (insn != 0x14000001) {
is_call = (insn & 0x80000000) == 0x80000000;
current_pc = 0;
target = SignExtend(((insn & 0x03FFFFFF) << 2), 28) + pc;
}
} else if ((insn & 0x7E000000) == 0x34000000) {
/* Compare/Branch (cbz/cbnz) */
target = SignExtend(((insn & 0x00FFFFE0) >> 3), 21) + pc;
} else if ((insn & 0x7E000000) == 0x36000000) {
/* Test and branch (tbz/tbnz) */
target = SignExtend(((insn & 0x0007FFE0) >> 3), 16) + pc;
} else if ((insn & 0xFF000010) == 0x54000000) {
/* Conditional branch (b.*) */
if ((insn & 0xF) == 0xE) {
/* Unconditional. */
current_pc = 0;
}
target = SignExtend(((insn & 0x00FFFFE0) >> 3), 21) + pc;
} else if ((insn & 0xFF8FFC1F) == 0xD60F0000) {
/* Unconditional branch */
is_call = (insn & 0x00F00000) == 0x00300000;
if (!is_call) {
current_pc = 0;
}
/* Get the register. */
svc::ThreadContext new_ctx;
if (R_SUCCEEDED(this->GetThreadContext(std::addressof(new_ctx), thread_id, svc::ThreadContextFlag_Control | svc::ThreadContextFlag_General))) {
const int reg = (insn & 0x03E0) >> 5;
if (reg < 29) {
target = new_ctx.r[reg];
} else if (reg == 29) {
target = new_ctx.fp;
} else if (reg == 30) {
target = new_ctx.lr;
} else if (reg == 31) {
target = new_ctx.sp;
}
}
}
} else {
/* TODO aarch32 branch decoding */
}
}
Result DebugProcess::SetBreakPoint(uintptr_t address, size_t size, bool is_step) {
return m_software_breakpoints.SetBreakPoint(address, size, is_step);
}
Result DebugProcess::ClearBreakPoint(uintptr_t address, size_t size) {
m_software_breakpoints.ClearBreakPoint(address, size);
return ResultSuccess();
}
Result DebugProcess::SetHardwareBreakPoint(uintptr_t address, size_t size, bool is_step) {
return m_hardware_breakpoints.SetBreakPoint(address, size, is_step);
}
Result DebugProcess::ClearHardwareBreakPoint(uintptr_t address, size_t size) {
m_hardware_breakpoints.ClearBreakPoint(address, size);
return ResultSuccess();
}
Result DebugProcess::SetWatchPoint(u64 address, u64 size, bool read, bool write) {
return m_hardware_watchpoints.SetWatchPoint(address, size, read, write);
}
Result DebugProcess::ClearWatchPoint(u64 address, u64 size) {
return m_hardware_watchpoints.ClearBreakPoint(address, size);
}
Result DebugProcess::GetWatchPointInfo(u64 address, bool &read, bool &write) {
return m_hardware_watchpoints.GetWatchPointInfo(address, read, write);
}
bool DebugProcess::IsValidWatchPoint(u64 address, u64 size) {
return HardwareWatchPointManager::IsValidWatchPoint(address, size);
}
Result DebugProcess::GetThreadCurrentCore(u32 *out, u64 thread_id) {
u64 dummy_value;
u32 val32 = 0;
R_TRY(svc::GetDebugThreadParam(std::addressof(dummy_value), std::addressof(val32), m_debug_handle, thread_id, svc::DebugThreadParam_CurrentCore));
*out = val32;
return ResultSuccess();
}
Result DebugProcess::GetProcessDebugEvent(svc::DebugEventInfo *out) {
/* Get the event. */
R_TRY(svc::GetDebugEvent(out, m_debug_handle));
/* Process the event. */
switch (out->type) {
case svc::DebugEvent_CreateProcess:
{
/* Set our create process info. */
m_create_process_info = out->info.create_process;
/* Cache our bools. */
m_is_64_bit = (m_create_process_info.flags & svc::CreateProcessFlag_Is64Bit);
m_is_64_bit_address_space = (m_create_process_info.flags & svc::CreateProcessFlag_AddressSpaceMask) == svc::CreateProcessFlag_AddressSpace64Bit;
}
break;
case svc::DebugEvent_CreateThread:
{
if (const s32 index = this->ThreadCreate(out->thread_id); index >= 0) {
const Result result = osdbg::InitializeThreadInfo(std::addressof(m_thread_infos[index]), m_debug_handle, std::addressof(m_create_process_info), std::addressof(out->info.create_thread));
if (R_FAILED(result)) {
AMS_DMNT2_GDB_LOG_WARN("DebugProcess::GetProcessDebugEvent: InitializeThreadInfo(%lx) failed: %08x\n", out->thread_id, result.GetValue());
}
}
}
break;
case svc::DebugEvent_ExitThread:
{
this->ThreadExit(out->thread_id);
}
break;
default:
break;
}
if (out->flags & svc::DebugEventFlag_Stopped) {
this->SetDebugBreaked();
}
return ResultSuccess();
}
u64 DebugProcess::GetLastThreadId() {
/* Select our first valid thread id. */
if (m_last_thread_id == 0) {
for (size_t i = 0; i < ThreadCountMax; ++i) {
if (m_thread_valid[i]) {
SetLastThreadId(m_thread_ids[i]);
break;
}
}
}
return m_last_thread_id;
}
Result DebugProcess::GetThreadList(s32 *out_count, u64 *out_thread_ids, size_t max_count) {
s32 count = 0;
for (size_t i = 0; i < ThreadCountMax; ++i) {
if (m_thread_valid[i]) {
if (count < static_cast<s32>(max_count)) {
out_thread_ids[count++] = m_thread_ids[i];
}
}
}
*out_count = count;
return ResultSuccess();
}
Result DebugProcess::GetThreadInfoList(s32 *out_count, osdbg::ThreadInfo **out_infos, size_t max_count) {
s32 count = 0;
for (size_t i = 0; i < ThreadCountMax; ++i) {
if (m_thread_valid[i]) {
if (count < static_cast<s32>(max_count)) {
out_infos[count++] = std::addressof(m_thread_infos[i]);
}
}
}
*out_count = count;
return ResultSuccess();
}
}