mirror of
https://github.com/Atmosphere-NX/Atmosphere.git
synced 2024-11-26 13:52:21 +00:00
349 lines
18 KiB
C++
349 lines
18 KiB
C++
/*
|
|
* Copyright (c) 2018-2020 Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <mesosphere.hpp>
|
|
|
|
namespace ams::kern {
|
|
|
|
namespace {
|
|
|
|
struct InitialProcessInfo {
|
|
KProcess *process;
|
|
size_t stack_size;
|
|
s32 priority;
|
|
};
|
|
|
|
constinit KVirtualAddress g_initial_process_binary_address = Null<KVirtualAddress>;
|
|
constinit InitialProcessBinaryHeader g_initial_process_binary_header = {};
|
|
constinit size_t g_initial_process_secure_memory_size = 0;
|
|
constinit u64 g_initial_process_id_min = std::numeric_limits<u64>::max();
|
|
constinit u64 g_initial_process_id_max = std::numeric_limits<u64>::min();
|
|
|
|
void LoadInitialProcessBinaryHeader(KVirtualAddress virt_addr = Null<KVirtualAddress>) {
|
|
if (g_initial_process_binary_header.magic != InitialProcessBinaryMagic) {
|
|
/* Get the virtual address, if it's not overridden. */
|
|
if (virt_addr == Null<KVirtualAddress>) {
|
|
virt_addr = GetInitialProcessBinaryAddress();
|
|
}
|
|
|
|
/* Copy and validate the header. */
|
|
g_initial_process_binary_header = *GetPointer<InitialProcessBinaryHeader>(virt_addr);
|
|
MESOSPHERE_ABORT_UNLESS(g_initial_process_binary_header.magic == InitialProcessBinaryMagic);
|
|
MESOSPHERE_ABORT_UNLESS(g_initial_process_binary_header.num_processes <= init::GetSlabResourceCounts().num_KProcess);
|
|
|
|
/* Set the image address. */
|
|
g_initial_process_binary_address = virt_addr;
|
|
|
|
/* Process/calculate the secure memory size. */
|
|
KVirtualAddress current = g_initial_process_binary_address + sizeof(InitialProcessBinaryHeader);
|
|
const KVirtualAddress end = g_initial_process_binary_address + g_initial_process_binary_header.size;
|
|
const size_t num_processes = g_initial_process_binary_header.num_processes;
|
|
for (size_t i = 0; i < num_processes; ++i) {
|
|
/* Validate that we can read the current KIP. */
|
|
MESOSPHERE_ABORT_UNLESS(current <= end - sizeof(KInitialProcessHeader));
|
|
|
|
/* Attach to the current KIP. */
|
|
KInitialProcessReader reader;
|
|
KVirtualAddress data = reader.Attach(current);
|
|
MESOSPHERE_ABORT_UNLESS(data != Null<KVirtualAddress>);
|
|
|
|
/* If the process uses secure memory, account for that. */
|
|
if (reader.UsesSecureMemory()) {
|
|
g_initial_process_secure_memory_size += reader.GetSize() + util::AlignUp(reader.GetStackSize(), PageSize);
|
|
}
|
|
|
|
/* Advance to the next KIP. */
|
|
current = data + reader.GetBinarySize();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CreateProcesses(InitialProcessInfo *infos) {
|
|
/* Determine process image extents. */
|
|
KVirtualAddress current = g_initial_process_binary_address + sizeof(InitialProcessBinaryHeader);
|
|
KVirtualAddress end = g_initial_process_binary_address + g_initial_process_binary_header.size;
|
|
|
|
/* Decide on pools to use. */
|
|
const auto unsafe_pool = static_cast<KMemoryManager::Pool>(KSystemControl::GetCreateProcessMemoryPool());
|
|
const auto secure_pool = (GetTargetFirmware() >= TargetFirmware_2_0_0) ? KMemoryManager::Pool_Secure : unsafe_pool;
|
|
|
|
const size_t num_processes = g_initial_process_binary_header.num_processes;
|
|
for (size_t i = 0; i < num_processes; ++i) {
|
|
/* Validate that we can read the current KIP header. */
|
|
MESOSPHERE_ABORT_UNLESS(current <= end - sizeof(KInitialProcessHeader));
|
|
|
|
/* Attach to the current kip. */
|
|
KInitialProcessReader reader;
|
|
KVirtualAddress data = reader.Attach(current);
|
|
MESOSPHERE_ABORT_UNLESS(data != Null<KVirtualAddress>);
|
|
|
|
/* Ensure that the remainder of our parse is page aligned. */
|
|
if (!util::IsAligned(GetInteger(data), PageSize)) {
|
|
const KVirtualAddress aligned_data = util::AlignDown(GetInteger(data), PageSize);
|
|
std::memmove(GetVoidPointer(aligned_data), GetVoidPointer(data), end - data);
|
|
|
|
data = aligned_data;
|
|
end -= (data - aligned_data);
|
|
}
|
|
|
|
/* If we crossed a page boundary, free the pages we're done using. */
|
|
if (KVirtualAddress aligned_current = util::AlignDown(GetInteger(current), PageSize); aligned_current != data) {
|
|
const size_t freed_size = data - aligned_current;
|
|
Kernel::GetMemoryManager().Close(aligned_current, freed_size / PageSize);
|
|
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, freed_size);
|
|
}
|
|
|
|
/* Parse process parameters. */
|
|
ams::svc::CreateProcessParameter params;
|
|
MESOSPHERE_R_ABORT_UNLESS(reader.MakeCreateProcessParameter(std::addressof(params), true));
|
|
|
|
/* Get the binary size for the kip. */
|
|
const size_t binary_size = reader.GetBinarySize();
|
|
const size_t binary_pages = binary_size / PageSize;
|
|
|
|
/* Get the pool for both the current (compressed) image, and the decompressed process. */
|
|
const auto src_pool = Kernel::GetMemoryManager().GetPool(data);
|
|
const auto dst_pool = reader.UsesSecureMemory() ? secure_pool : unsafe_pool;
|
|
|
|
/* Determine the process size, and how much memory isn't already reserved. */
|
|
const size_t process_size = params.code_num_pages * PageSize;
|
|
const size_t unreserved_size = process_size - (src_pool == dst_pool ? util::AlignDown(binary_size, PageSize) : 0);
|
|
|
|
/* Reserve however much memory we need to reserve. */
|
|
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, unreserved_size));
|
|
|
|
/* Create the process. */
|
|
KProcess *new_process = nullptr;
|
|
{
|
|
/* Make page groups to represent the data. */
|
|
KPageGroup pg(std::addressof(Kernel::GetBlockInfoManager()));
|
|
KPageGroup workaround_pg(std::addressof(Kernel::GetBlockInfoManager()));
|
|
|
|
/* Populate the page group to represent the data. */
|
|
{
|
|
/* Allocate the previously unreserved pages. */
|
|
KPageGroup unreserve_pg(std::addressof(Kernel::GetBlockInfoManager()));
|
|
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetMemoryManager().AllocateAndOpen(std::addressof(unreserve_pg), unreserved_size / PageSize, KMemoryManager::EncodeOption(dst_pool, KMemoryManager::Direction_FromFront)));
|
|
|
|
/* Add the previously reserved pages. */
|
|
if (src_pool == dst_pool && binary_pages != 0) {
|
|
/* NOTE: Nintendo does not check the result of this operation. */
|
|
pg.AddBlock(data, binary_pages);
|
|
}
|
|
|
|
/* Add the previously unreserved pages. */
|
|
for (const auto &block : unreserve_pg) {
|
|
/* NOTE: Nintendo does not check the result of this operation. */
|
|
pg.AddBlock(block.GetAddress(), block.GetNumPages());
|
|
}
|
|
}
|
|
MESOSPHERE_ABORT_UNLESS(pg.GetNumPages() == static_cast<size_t>(params.code_num_pages));
|
|
|
|
/* Ensure that we do not leak pages. */
|
|
KPageGroup *process_pg = std::addressof(pg);
|
|
ON_SCOPE_EXIT { process_pg->Close(); };
|
|
|
|
/* Get the temporary region. */
|
|
const auto &temp_region = KMemoryLayout::GetTempRegion();
|
|
MESOSPHERE_ABORT_UNLESS(temp_region.GetEndAddress() != 0);
|
|
|
|
/* Map the process's memory into the temporary region. */
|
|
KProcessAddress temp_address = Null<KProcessAddress>;
|
|
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetKernelPageTable().MapPageGroup(std::addressof(temp_address), pg, temp_region.GetAddress(), temp_region.GetSize() / PageSize, KMemoryState_Kernel, KMemoryPermission_KernelReadWrite));
|
|
|
|
/* Setup the new page group's memory, so that we can load the process. */
|
|
{
|
|
/* Copy the unaligned ending of the compressed binary. */
|
|
if (const size_t unaligned_size = binary_size - util::AlignDown(binary_size, PageSize); unaligned_size != 0) {
|
|
std::memcpy(GetVoidPointer(temp_address + process_size - unaligned_size), GetVoidPointer(data + binary_size - unaligned_size), unaligned_size);
|
|
}
|
|
|
|
/* Copy the aligned part of the compressed binary. */
|
|
if (const size_t aligned_size = util::AlignDown(binary_size, PageSize); aligned_size != 0 && src_pool == dst_pool) {
|
|
std::memmove(GetVoidPointer(temp_address + process_size - binary_size), GetVoidPointer(temp_address), aligned_size);
|
|
} else {
|
|
if (src_pool != dst_pool) {
|
|
std::memcpy(GetVoidPointer(temp_address + process_size - binary_size), GetVoidPointer(data), aligned_size);
|
|
Kernel::GetMemoryManager().Close(data, aligned_size / PageSize);
|
|
}
|
|
}
|
|
|
|
/* Clear the first part of the memory. */
|
|
std::memset(GetVoidPointer(temp_address), 0, process_size - binary_size);
|
|
}
|
|
|
|
/* Load the process. */
|
|
MESOSPHERE_R_ABORT_UNLESS(reader.Load(temp_address, params, temp_address + process_size - binary_size));
|
|
|
|
/* Unmap the temporary mapping. */
|
|
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetKernelPageTable().UnmapPageGroup(temp_address, pg, KMemoryState_Kernel));
|
|
|
|
/* Create a KProcess object. */
|
|
new_process = KProcess::Create();
|
|
MESOSPHERE_ABORT_UNLESS(new_process != nullptr);
|
|
|
|
/* Ensure the page group is usable for the process. */
|
|
/* If the pool is the same, we need to use the workaround page group. */
|
|
if (src_pool == dst_pool) {
|
|
/* Allocate a new, usable group for the process. */
|
|
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetMemoryManager().AllocateAndOpen(std::addressof(workaround_pg), static_cast<size_t>(params.code_num_pages), KMemoryManager::EncodeOption(dst_pool, KMemoryManager::Direction_FromFront)));
|
|
|
|
/* Copy data from the working page group to the usable one. */
|
|
auto work_it = pg.begin();
|
|
MESOSPHERE_ABORT_UNLESS(work_it != pg.end());
|
|
{
|
|
auto work_address = work_it->GetAddress();
|
|
auto work_remaining = work_it->GetNumPages();
|
|
for (const auto &block : workaround_pg) {
|
|
auto block_address = block.GetAddress();
|
|
auto block_remaining = block.GetNumPages();
|
|
while (block_remaining > 0) {
|
|
if (work_remaining == 0) {
|
|
++work_it;
|
|
work_address = work_it->GetAddress();
|
|
work_remaining = work_it->GetNumPages();
|
|
}
|
|
|
|
const size_t cur_pages = std::min(block_remaining, work_remaining);
|
|
const size_t cur_size = cur_pages * PageSize;
|
|
std::memcpy(GetVoidPointer(block_address), GetVoidPointer(work_address), cur_size);
|
|
|
|
block_address += cur_size;
|
|
work_address += cur_size;
|
|
|
|
block_remaining -= cur_pages;
|
|
work_remaining -= cur_pages;
|
|
}
|
|
}
|
|
|
|
++work_it;
|
|
}
|
|
MESOSPHERE_ABORT_UNLESS(work_it == pg.end());
|
|
|
|
/* We want to use the new page group. */
|
|
process_pg = std::addressof(workaround_pg);
|
|
pg.Close();
|
|
}
|
|
|
|
/* Initialize the process. */
|
|
MESOSPHERE_R_ABORT_UNLESS(new_process->Initialize(params, *process_pg, reader.GetCapabilities(), reader.GetNumCapabilities(), std::addressof(Kernel::GetSystemResourceLimit()), dst_pool, reader.IsImmortal()));
|
|
}
|
|
|
|
/* Release the memory that was previously reserved. */
|
|
if (const size_t aligned_bin_size = util::AlignDown(binary_size, PageSize); aligned_bin_size != 0 && src_pool != dst_pool) {
|
|
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, aligned_bin_size);
|
|
}
|
|
|
|
/* Set the process's memory permissions. */
|
|
MESOSPHERE_R_ABORT_UNLESS(reader.SetMemoryPermissions(new_process->GetPageTable(), params));
|
|
|
|
/* Register the process. */
|
|
KProcess::Register(new_process);
|
|
|
|
/* Set the ideal core id. */
|
|
new_process->SetIdealCoreId(reader.GetIdealCoreId());
|
|
|
|
/* Save the process info. */
|
|
infos[i].process = new_process;
|
|
infos[i].stack_size = reader.GetStackSize();
|
|
infos[i].priority = reader.GetPriority();
|
|
|
|
/* Advance the reader. */
|
|
current = data + binary_size;
|
|
}
|
|
|
|
/* Release remaining memory used by the image. */
|
|
{
|
|
const size_t remaining_size = util::AlignUp(GetInteger(g_initial_process_binary_address) + g_initial_process_binary_header.size, PageSize) - util::AlignDown(GetInteger(current), PageSize);
|
|
const size_t remaining_pages = remaining_size / PageSize;
|
|
Kernel::GetMemoryManager().Close(util::AlignDown(GetInteger(current), PageSize), remaining_pages);
|
|
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, remaining_size);
|
|
}
|
|
}
|
|
|
|
ALWAYS_INLINE KVirtualAddress GetInitialProcessBinaryAddress(KVirtualAddress pool_end) {
|
|
return pool_end - InitialProcessBinarySizeMax;
|
|
}
|
|
|
|
}
|
|
|
|
u64 GetInitialProcessIdMin() {
|
|
return g_initial_process_id_min;
|
|
}
|
|
|
|
u64 GetInitialProcessIdMax() {
|
|
return g_initial_process_id_max;
|
|
}
|
|
|
|
KVirtualAddress GetInitialProcessBinaryAddress() {
|
|
/* Get, validate the pool region. */
|
|
const auto *pool_region = KMemoryLayout::GetVirtualMemoryRegionTree().FindLastDerived(KMemoryRegionType_VirtualDramUserPool);
|
|
MESOSPHERE_INIT_ABORT_UNLESS(pool_region != nullptr);
|
|
MESOSPHERE_INIT_ABORT_UNLESS(pool_region->GetEndAddress() != 0);
|
|
MESOSPHERE_ABORT_UNLESS(pool_region->GetSize() >= InitialProcessBinarySizeMax);
|
|
return GetInitialProcessBinaryAddress(pool_region->GetEndAddress());
|
|
}
|
|
|
|
size_t GetInitialProcessesSecureMemorySize() {
|
|
LoadInitialProcessBinaryHeader();
|
|
|
|
return g_initial_process_secure_memory_size;
|
|
}
|
|
|
|
size_t CopyInitialProcessBinaryToKernelMemory() {
|
|
LoadInitialProcessBinaryHeader();
|
|
|
|
if (g_initial_process_binary_header.num_processes > 0) {
|
|
/* Reserve pages for the initial process binary from the system resource limit. */
|
|
const size_t total_size = util::AlignUp(g_initial_process_binary_header.size, PageSize);
|
|
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, total_size));
|
|
|
|
/* The initial process binary is potentially over-allocated, so free any extra pages. */
|
|
if (total_size < InitialProcessBinarySizeMax) {
|
|
Kernel::GetMemoryManager().Close(g_initial_process_binary_address + total_size, (InitialProcessBinarySizeMax - total_size) / PageSize);
|
|
}
|
|
|
|
return total_size;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void LoadInitialProcessBinaryHeaderDeprecated(KPhysicalAddress pool_end) {
|
|
LoadInitialProcessBinaryHeader(GetInitialProcessBinaryAddress(KMemoryLayout::GetLinearVirtualAddress(pool_end)));
|
|
}
|
|
|
|
void CreateAndRunInitialProcesses() {
|
|
/* Allocate space for the processes. */
|
|
InitialProcessInfo *infos = static_cast<InitialProcessInfo *>(__builtin_alloca(sizeof(InitialProcessInfo) * g_initial_process_binary_header.num_processes));
|
|
|
|
/* Create the processes. */
|
|
CreateProcesses(infos);
|
|
|
|
/* Determine the initial process id range. */
|
|
for (size_t i = 0; i < g_initial_process_binary_header.num_processes; i++) {
|
|
const auto pid = infos[i].process->GetId();
|
|
g_initial_process_id_min = std::min(g_initial_process_id_min, pid);
|
|
g_initial_process_id_max = std::max(g_initial_process_id_max, pid);
|
|
}
|
|
|
|
/* Run the processes. */
|
|
for (size_t i = 0; i < g_initial_process_binary_header.num_processes; i++) {
|
|
MESOSPHERE_R_ABORT_UNLESS(infos[i].process->Run(infos[i].priority, infos[i].stack_size));
|
|
infos[i].process->Close();
|
|
}
|
|
}
|
|
|
|
}
|