1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-24 04:42:11 +00:00
Atmosphere/libraries/libexosphere/source/se/se_rsa.cpp

230 lines
9.8 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "se_execute.hpp"
namespace ams::se {
namespace {
struct RsaKeyInfo {
int modulus_size_val;
int exponent_size_val;
};
constinit RsaKeyInfo g_rsa_key_infos[RsaKeySlotCount] = {};
void ClearRsaKeySlot(volatile SecurityEngineRegisters *SE, int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod) {
constexpr int NumWords = se::RsaSize / sizeof(u32);
for (int i = 0; i < NumWords; ++i) {
/* Select the keyslot word. */
reg::Write(SE->SE_RSA_KEYTABLE_ADDR, SE_REG_BITS_ENUM (RSA_KEYTABLE_ADDR_INPUT_MODE, REGISTER),
SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_KEY_SLOT, slot),
SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_EXPMOD_SEL, expmod),
SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_WORD_ADDR, i));
/* Clear the keyslot word. */
SE->SE_RSA_KEYTABLE_DATA = 0;
}
}
void SetRsaKey(volatile SecurityEngineRegisters *SE, int slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL expmod, const void *key, size_t key_size) {
const int num_words = key_size / sizeof(u32);
for (int i = 0; i < num_words; ++i) {
/* Select the keyslot word. */
reg::Write(SE->SE_RSA_KEYTABLE_ADDR, SE_REG_BITS_ENUM (RSA_KEYTABLE_ADDR_INPUT_MODE, REGISTER),
SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_KEY_SLOT, slot),
SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_EXPMOD_SEL, expmod),
SE_REG_BITS_VALUE(RSA_KEYTABLE_ADDR_WORD_ADDR, i));
/* Get the word. */
const u32 word = util::LoadBigEndian(static_cast<const u32 *>(key) + (num_words - 1 - i));
/* Write the keyslot word. */
SE->SE_RSA_KEYTABLE_DATA = word;
}
}
void GetRsaResult(volatile SecurityEngineRegisters *SE, void *dst, size_t size) {
/* Copy out the words. */
const int num_words = size / sizeof(u32);
for (int i = 0; i < num_words; ++i) {
const u32 word = reg::Read(SE->SE_RSA_OUTPUT[i]);
util::StoreBigEndian(static_cast<u32 *>(dst) + num_words - 1 - i, word);
}
}
void WaitForInputReadComplete(volatile SecurityEngineRegisters *SE) {
while (reg::HasValue(SE->SE_INT_STATUS, SE_REG_BITS_ENUM(INT_STATUS_IN_DONE, CLEAR))) { /* ... */ }
}
}
void ClearRsaKeySlot(int slot) {
/* Validate the key slot. */
AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount);
/* Clear the info. */
g_rsa_key_infos[slot] = {};
/* Get the engine. */
auto *SE = GetRegisters();
/* Clear the modulus. */
ClearRsaKeySlot(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS);
/* Clear the exponent. */
ClearRsaKeySlot(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT);
}
void LockRsaKeySlot(int slot, u32 flags) {
/* Validate the key slot. */
AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount);
/* Get the engine. */
auto *SE = GetRegisters();
/* Set non per-key flags. */
if ((flags & ~KeySlotLockFlags_PerKey) != 0) {
/* Pack the flags into the expected format. */
u32 value = 0;
value |= ((flags & KeySlotLockFlags_KeyRead) == 0) ? (1u << 0) : 0;
value |= ((flags & KeySlotLockFlags_KeyRead) == 0) ? (1u << 1) : 0;
value |= ((flags & KeySlotLockFlags_KeyRead) == 0) ? (1u << 2) : 0;
reg::Write(SE->SE_RSA_KEYTABLE_ACCESS[slot], SE_REG_BITS_ENUM_SEL(RSA_KEYTABLE_ACCESS_KEYREAD, (flags & KeySlotLockFlags_KeyRead) != 0, DISABLE, ENABLE),
SE_REG_BITS_ENUM_SEL(RSA_KEYTABLE_ACCESS_KEYUPDATE, (flags & KeySlotLockFlags_KeyWrite) != 0, DISABLE, ENABLE),
SE_REG_BITS_ENUM_SEL(RSA_KEYTABLE_ACCESS_KEYUSE, (flags & KeySlotLockFlags_KeyUse) != 0, DISABLE, ENABLE));
}
/* Set per-key flag. */
if ((flags & KeySlotLockFlags_PerKey) != 0) {
reg::ReadWrite(SE->SE_RSA_SECURITY_PERKEY, REG_BITS_VALUE(slot, 1, 0));
}
}
void SetRsaKey(int slot, const void *mod, size_t mod_size, const void *exp, size_t exp_size) {
/* Validate the key slot and sizes. */
AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount);
AMS_ABORT_UNLESS(mod_size <= RsaSize);
AMS_ABORT_UNLESS(exp_size <= RsaSize);
/* Set the sizes in the info. */
auto &info = g_rsa_key_infos[slot];
info.modulus_size_val = (mod_size / 64) - 1;
info.exponent_size_val = (exp_size / 4);
/* Get the engine. */
auto *SE = GetRegisters();
/* Set the modulus and exponent. */
SetRsaKey(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_MODULUS, mod, mod_size);
SetRsaKey(SE, slot, SE_RSA_KEYTABLE_ADDR_EXPMOD_SEL_EXPONENT, exp, exp_size);
}
void ModularExponentiate(void *dst, size_t dst_size, int slot, const void *src, size_t src_size) {
/* Validate the slot and sizes. */
AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount);
AMS_ABORT_UNLESS(src_size <= RsaSize);
AMS_ABORT_UNLESS(dst_size <= RsaSize);
/* Get the engine. */
auto *SE = GetRegisters();
/* Create a work buffer. */
u8 work[RsaSize];
util::ClearMemory(work, sizeof(work));
/* Copy the input into the work buffer (reversing endianness). */
const u8 *src_u8 = static_cast<const u8 *>(src);
for (size_t i = 0; i < src_size; ++i) {
work[src_size - 1 - i] = src_u8[i];
}
/* Flush the work buffer to ensure the SE sees correct results. */
hw::FlushDataCache(work, sizeof(work));
hw::DataSynchronizationBarrierInnerShareable();
/* Configure the engine to perform RSA encryption. */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_ENC_ALG, RSA),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DST, RSA_REG));
/* Configure the engine to use the keyslot and correct modulus/exp sizes. */
const auto &info = g_rsa_key_infos[slot];
reg::Write(SE->SE_RSA_CONFIG, SE_REG_BITS_VALUE(RSA_CONFIG_KEY_SLOT, slot));
reg::Write(SE->SE_RSA_KEY_SIZE, info.modulus_size_val);
reg::Write(SE->SE_RSA_EXP_SIZE, info.exponent_size_val);
/* Execute the operation. */
ExecuteOperation(SE, SE_OPERATION_OP_START, nullptr, 0, work, src_size);
/* Copy out the result. */
GetRsaResult(SE, dst, dst_size);
}
void ModularExponentiateAsync(int slot, const void *src, size_t src_size, DoneHandler handler) {
/* Validate the slot and size. */
AMS_ABORT_UNLESS(0 <= slot && slot < RsaKeySlotCount);
AMS_ABORT_UNLESS(src_size <= RsaSize);
/* Get the engine. */
auto *SE = GetRegisters();
/* Create a work buffer. */
u8 work[RsaSize];
util::ClearMemory(work, sizeof(work));
/* Copy the input into the work buffer (reversing endianness). */
const u8 *src_u8 = static_cast<const u8 *>(src);
for (size_t i = 0; i < src_size; ++i) {
work[src_size - 1 - i] = src_u8[i];
}
/* Flush the work buffer to ensure the SE sees correct results. */
hw::FlushDataCache(work, sizeof(work));
hw::DataSynchronizationBarrierInnerShareable();
/* Configure the engine to perform RSA encryption. */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_ENC_ALG, RSA),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DST, RSA_REG));
/* Configure the engine to use the keyslot and correct modulus/exp sizes. */
const auto &info = g_rsa_key_infos[slot];
reg::Write(SE->SE_RSA_CONFIG, SE_REG_BITS_VALUE(RSA_CONFIG_KEY_SLOT, slot));
reg::Write(SE->SE_RSA_KEY_SIZE, info.modulus_size_val);
reg::Write(SE->SE_RSA_EXP_SIZE, info.exponent_size_val);
/* Set the done handler. */
SetDoneHandler(SE, handler);
/* Trigger the input operation. */
StartInputOperation(SE, work, src_size);
/* Wait for input to be read by the se. */
WaitForInputReadComplete(SE);
}
void GetRsaResult(void *dst, size_t dst_size) {
GetRsaResult(GetRegisters(), dst, dst_size);
}
}