mirror of
https://github.com/Atmosphere-NX/Atmosphere.git
synced 2024-11-23 20:32:10 +00:00
2879 lines
150 KiB
C++
2879 lines
150 KiB
C++
/*
|
|
* Copyright (c) 2018-2020 Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <exosphere.hpp>
|
|
#include "../fusee_fatal.hpp"
|
|
#include "fusee_mtc.hpp"
|
|
#include "fusee_mtc_timing_table_erista.hpp"
|
|
|
|
namespace ams::nxboot {
|
|
|
|
namespace {
|
|
|
|
constexpr inline const uintptr_t CLKRST = secmon::MemoryRegionPhysicalDeviceClkRst.GetAddress();
|
|
constexpr inline const uintptr_t MC = MC_BASE;
|
|
constexpr inline const uintptr_t EMC = EMC_BASE;
|
|
constexpr inline const uintptr_t EMC0 = EMC0_BASE;
|
|
constexpr inline const uintptr_t EMC1 = EMC1_BASE;
|
|
|
|
static constinit bool g_next_pll = false;
|
|
static constinit bool g_did_first_training = false;
|
|
static constinit bool g_fsp_for_next_freq = false;
|
|
|
|
#include "fusee_mtc_tables_erista.inc"
|
|
#include "fusee_mtc_ram_training_pattern.inc"
|
|
|
|
#define DECLARE_OFFSET_HANDLER(BASE, REG, NAME) REG,
|
|
#define DECLARE_REGISTER_HANDLER(BASE, REG, NAME) BASE + REG,
|
|
|
|
constexpr inline const u16 BurstRegistersOffsets[] = {
|
|
FOREACH_BURST_REG(DECLARE_OFFSET_HANDLER)
|
|
};
|
|
|
|
constexpr inline const u32 TrimRegisters[] = {
|
|
FOREACH_TRIM_REG(DECLARE_REGISTER_HANDLER)
|
|
};
|
|
|
|
constexpr inline const u32 BurstMcRegisters[] = {
|
|
FOREACH_BURST_MC_REG(DECLARE_REGISTER_HANDLER)
|
|
};
|
|
|
|
constexpr inline const u32 LaScaleRegisters[] = {
|
|
FOREACH_LA_SCALE_REG(DECLARE_REGISTER_HANDLER)
|
|
};
|
|
|
|
constexpr inline const u32 PerChannelTrimRegisters[] = {
|
|
FOREACH_PER_CHANNEL_TRIM_REG(DECLARE_REGISTER_HANDLER)
|
|
};
|
|
|
|
constexpr inline const u32 PerChannelBurstRegisters[] = {
|
|
FOREACH_PER_CHANNEL_BURST_REG(DECLARE_REGISTER_HANDLER)
|
|
};
|
|
|
|
constexpr inline const u32 PerChannelVrefRegisters[] = {
|
|
FOREACH_PER_CHANNEL_VREF_REG(DECLARE_REGISTER_HANDLER)
|
|
};
|
|
|
|
constexpr inline const u32 PerChannelTrainingModRegisters[] = {
|
|
FOREACH_PER_CHANNEL_TRAINING_MOD_REG(DECLARE_REGISTER_HANDLER)
|
|
};
|
|
|
|
using EmcDvfsTimingTable = erista::EmcDvfsTimingTable;
|
|
|
|
EmcDvfsTimingTable *GetEmcDvfsTimingTables(int index, void *mtc_tables_buffer) {
|
|
switch (index) {
|
|
case 0:
|
|
case 3:
|
|
//std::memcpy(mtc_tables_buffer, T210SdevEmcDvfsTableS4gb01, sizeof(T210SdevEmcDvfsTableS4gb01));
|
|
return reinterpret_cast<EmcDvfsTimingTable *>(const_cast<u8 *>(T210SdevEmcDvfsTableS4gb01));
|
|
case 1:
|
|
//std::memcpy(mtc_tables_buffer, T210SdevEmcDvfsTableS6gb01, sizeof(T210SdevEmcDvfsTableS6gb01));
|
|
return reinterpret_cast<EmcDvfsTimingTable *>(const_cast<u8 *>(T210SdevEmcDvfsTableS6gb01));
|
|
case 2:
|
|
//std::memcpy(mtc_tables_buffer, T210SdevEmcDvfsTableH4gb01, sizeof(T210SdevEmcDvfsTableH4gb01));
|
|
return reinterpret_cast<EmcDvfsTimingTable *>(const_cast<u8 *>(T210SdevEmcDvfsTableH4gb01));
|
|
default:
|
|
ShowFatalError("Unknown EmcDvfsTimingTableIndex: %d\n", index);
|
|
}
|
|
}
|
|
|
|
bool IsSamePll(u32 next_2x, u32 prev_2x) {
|
|
if (next_2x == prev_2x) {
|
|
return true;
|
|
} else if ((next_2x == PLLM_OUT0 || next_2x == PLLM_UD) && (prev_2x == PLLM_OUT0 || prev_2x == PLLM_UD)) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool PllReprogram(u32 next_rate_khz, u32 next_clk_src, u32 prev_rate_khz, u32 prev_clk_src) {
|
|
/* Get current pll/divp value. */
|
|
u32 pll_base, pll_p;
|
|
switch (reg::GetValue(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) {
|
|
case PLLM_UD:
|
|
case PLLM_OUT0:
|
|
pll_base = reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE);
|
|
pll_p = reg::GetField(pll_base, CLK_RST_REG_BITS_MASK(PLLM_BASE_PLLM_DIVP));
|
|
break;
|
|
case PLLMB_UD:
|
|
case PLLMB_OUT0:
|
|
pll_base = reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE);
|
|
pll_p = reg::GetField(pll_base, CLK_RST_REG_BITS_MASK(PLLMB_BASE_PLLMB_DIVP));
|
|
break;
|
|
default:
|
|
pll_base = 0;
|
|
pll_p = 0;
|
|
}
|
|
|
|
/* Check pll divp. */
|
|
if (pll_p > 5) {
|
|
ShowFatalError("Invalid PLL divp: %" PRIu32 "\n", pll_p);
|
|
}
|
|
|
|
/* Get clk src/divisor. */
|
|
const u32 next_2x = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
|
|
const u32 prev_2x = reg::GetField(prev_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
|
|
u32 next_div = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR));
|
|
u32 prev_div = reg::GetField(prev_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_DIVISOR));
|
|
|
|
/* Update divisor, if necessary. */
|
|
if (next_2x == PLLM_UD || next_2x == PLLMB_UD) {
|
|
next_div = 0;
|
|
}
|
|
if (prev_2x == PLLM_UD || prev_2x == PLLMB_UD) {
|
|
prev_div = 0;
|
|
}
|
|
|
|
/* If the pll is different, reprogramming is necessary. */
|
|
if (!IsSamePll(next_2x, prev_2x)) {
|
|
return true;
|
|
}
|
|
|
|
/* Return whether the ratios are different. */
|
|
const float next_freq = next_rate_khz * (1 + (next_div >> 1) + (0.5 * (next_div & 1))) * (pll_p + 1);
|
|
const float prev_freq = prev_rate_khz * (1 + (prev_div >> 1) + (0.5 * (prev_div & 1))) * (pll_p + 1);
|
|
|
|
const float ratio = prev_freq / next_freq;
|
|
|
|
return ratio > 1.01 || ratio < 0.99;
|
|
}
|
|
|
|
u32 ProgramPllm(u32 next_rate_khz, u32 next_clk_src, bool is_pllmb) {
|
|
/* Hardcode values for 1600MHz. */
|
|
u32 divn, divm, divp;
|
|
if (next_rate_khz == 1600000) {
|
|
divn = 0x7D;
|
|
divm = 0x03;
|
|
divp = 0x00;
|
|
} else if (next_rate_khz == 800000) {
|
|
divn = 0x7D;
|
|
divm = 0x03;
|
|
divp = 0x01;
|
|
} else {
|
|
ShowFatalError("Unexpected ProgramPllm next rate %" PRIu32 "\n", next_rate_khz);
|
|
}
|
|
|
|
const auto next_2x = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
|
|
if (is_pllmb) {
|
|
/* Set divisors. */
|
|
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, CLK_RST_REG_BITS_VALUE(PLLMB_BASE_PLLMB_DIVM, divm),
|
|
CLK_RST_REG_BITS_VALUE(PLLMB_BASE_PLLMB_DIVN, divn),
|
|
CLK_RST_REG_BITS_VALUE(PLLMB_BASE_PLLMB_DIVP, divp));
|
|
reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE);
|
|
|
|
/* Set enable. */
|
|
reg::ReadWrite(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, CLK_RST_REG_BITS_ENUM(PLLMB_BASE_PLLMB_ENABLE, ENABLE));
|
|
|
|
/* Adjust next clock source. */
|
|
if (next_2x == PLLM_UD) {
|
|
reg::SetField(next_clk_src, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_UD));
|
|
} else if (next_2x == PLLM_OUT0) {
|
|
reg::SetField(next_clk_src, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_OUT0));
|
|
}
|
|
|
|
/* Wait for pll to lock. */
|
|
while (!reg::HasValue(CLKRST + CLK_RST_CONTROLLER_PLLMB_BASE, CLK_RST_REG_BITS_ENUM(PLLMB_BASE_PLLMB_LOCK, LOCK))) {
|
|
/* ... */
|
|
}
|
|
} else {
|
|
/* Set divisors. */
|
|
reg::Write(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, CLK_RST_REG_BITS_VALUE(PLLM_BASE_PLLM_DIVM, divm),
|
|
CLK_RST_REG_BITS_VALUE(PLLM_BASE_PLLM_DIVN, divn),
|
|
CLK_RST_REG_BITS_VALUE(PLLM_BASE_PLLM_DIVP, divp));
|
|
reg::Read(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE);
|
|
|
|
/* Set LKCDET. */
|
|
reg::ReadWrite(CLKRST + CLK_RST_CONTROLLER_PLLM_MISC2, CLK_RST_REG_BITS_ENUM(PLLM_MISC2_PLLM_EN_LCKDET, ENABLE));
|
|
|
|
/* Set enable. */
|
|
reg::ReadWrite(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, CLK_RST_REG_BITS_ENUM(PLLM_BASE_PLLM_ENABLE, ENABLE));
|
|
|
|
/* Adjust next clock source. */
|
|
if (next_2x == PLLM_UD) {
|
|
reg::SetField(next_clk_src, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLM_UD));
|
|
} else if (next_2x == PLLM_OUT0) {
|
|
reg::SetField(next_clk_src, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLM_OUT0));
|
|
}
|
|
|
|
/* Wait for pll to lock. */
|
|
while (!reg::HasValue(CLKRST + CLK_RST_CONTROLLER_PLLM_BASE, CLK_RST_REG_BITS_ENUM(PLLM_BASE_PLLM_LOCK, LOCK))) {
|
|
/* ... */
|
|
}
|
|
}
|
|
|
|
return next_clk_src;
|
|
}
|
|
|
|
u32 GetDllState(EmcDvfsTimingTable *timing) {
|
|
return (!(timing->emc_emrs & 0x1)) ? DLL_ON : DLL_OFF;
|
|
}
|
|
|
|
int WaitForUpdate(u32 reg_offset, u32 mask, bool updated, u32 fbio_cfg7) {
|
|
constexpr int StatusUpdateTimeout = 1000;
|
|
|
|
int result = 0;
|
|
|
|
if (true /* reg::HasValue(fbio_cfg7, EMC_REG_BITS_ENUM(FBIO_CFG7_CH0_ENABLE, ENABLE)) */) {
|
|
bool success = false;
|
|
for (int i = 0; i < StatusUpdateTimeout; ++i) {
|
|
if (((reg::Read(EMC + reg_offset) & mask) != 0) == updated) {
|
|
success = true;
|
|
break;
|
|
}
|
|
util::WaitMicroSeconds(1);
|
|
}
|
|
result |= success ? 0 : 4;
|
|
}
|
|
|
|
if (reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE) {
|
|
bool success = false;
|
|
for (int i = 0; i < StatusUpdateTimeout; ++i) {
|
|
if (((reg::Read(EMC1 + reg_offset) & mask) != 0) == updated) {
|
|
success = true;
|
|
break;
|
|
}
|
|
util::WaitMicroSeconds(1);
|
|
}
|
|
result |= success ? 0 : 4;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void TimingUpdate(u32 fbio_cfg7) {
|
|
/* Trigger the timing update event. */
|
|
reg::Write(EMC + EMC_TIMING_CONTROL, 1);
|
|
|
|
/* Wait for the update to finish. */
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x800000, false, fbio_cfg7);
|
|
}
|
|
|
|
void DllDisable(u32 fbio_cfg7) {
|
|
/* Disable dll. */
|
|
reg::ClearBits(EMC + EMC_CFG_DIG_DLL, 0x1);
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
/* Wait until CFG_DLL_EN is cleared. */
|
|
WaitForUpdate(EMC_CFG_DIG_DLL, 0x1, false, fbio_cfg7);
|
|
}
|
|
|
|
void DllEnableStall(u32 fbio_cfg7) {
|
|
/* Enable DLL */
|
|
uint32_t emc_cfg_dig_dll = (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFF24) | 0x89;
|
|
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll);
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
/* Wait until CFG_DLL_EN is set for EMC */
|
|
WaitForUpdate(EMC_CFG_DIG_DLL, 0x1, true, fbio_cfg7);
|
|
}
|
|
|
|
void ChangeDllSrc(EmcDvfsTimingTable *dst_timing, u32 next_clk_src) {
|
|
u32 dll_setting = ((next_clk_src & 0xE00000FF) | (dst_timing->dll_clk_src & 0x1FFFFF00)) & 0xFFFFF3FF;
|
|
switch (reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC))) {
|
|
case PLLMB_UD:
|
|
dll_setting |= 0x400; /* PLLM_VCOB */
|
|
break;
|
|
case PLLM_UD:
|
|
dll_setting |= 0x000; /* PLLM_VCOA */
|
|
break;
|
|
default:
|
|
dll_setting |= 0x800; /* EMC_DLL_SWITCH_OUT */
|
|
break;
|
|
}
|
|
|
|
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL, dll_setting);
|
|
reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_OUT_ENB_X);
|
|
util::WaitMicroSeconds(2);
|
|
|
|
if (dst_timing->clk_out_enb_x_0_clk_enb_emc_dll) {
|
|
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_ENB_X_SET, CLK_RST_REG_BITS_ENUM(CLK_ENB_X_CLK_ENB_EMC_DLL, ENABLE));
|
|
} else {
|
|
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_ENB_X_CLR, CLK_RST_REG_BITS_ENUM(CLK_ENB_X_CLK_ENB_EMC_DLL, ENABLE));
|
|
}
|
|
reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_OUT_ENB_X);
|
|
util::WaitMicroSeconds(2);
|
|
}
|
|
|
|
void SetShadowBypass(u32 val) {
|
|
reg::ReadWrite(EMC + EMC_DBG, EMC_REG_BITS_VALUE(DBG_WRITE_MUX, val));
|
|
}
|
|
|
|
u32 DllPrelock(EmcDvfsTimingTable *dst_timing, bool training_enabled, u32 next_clk_src) {
|
|
/* Check for dual channel LPDDR4 */
|
|
u32 fbio_cfg7 = reg::Read(EMC + EMC_FBIO_CFG7);
|
|
|
|
uint32_t emc_dig_dll_status = 0;
|
|
uint32_t emc_cfg_dig_dll = (reg::Read(EMC1 + EMC_CFG_DIG_DLL) & 0xFFFFF824) | 0x3C8;
|
|
|
|
/* Update EMC_CFG_DIG_DLL_0 */
|
|
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll);
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
/* Wait until CFG_DLL_EN is cleared for EMC */
|
|
WaitForUpdate(EMC_CFG_DIG_DLL, 0x1, false, fbio_cfg7);
|
|
|
|
reg::Write(EMC + EMC_DLL_CFG_0, dst_timing->burst_regs.emc_dll_cfg_0);
|
|
reg::Write(EMC + EMC_DLL_CFG_1, dst_timing->burst_regs.emc_dll_cfg_1);
|
|
|
|
/* Configure the clock and reset controller for EMC DLL */
|
|
ChangeDllSrc(dst_timing, next_clk_src);
|
|
|
|
/* Enable DLL */
|
|
reg::SetBits(EMC + EMC_CFG_DIG_DLL, 0x1);
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
/* Wait until CFG_DLL_EN is set for EMC */
|
|
WaitForUpdate(EMC_CFG_DIG_DLL, 0x1, true, fbio_cfg7);
|
|
|
|
/* Wait until DLL_PRIV_UPDATED or DLL_LOCK have been cleared */
|
|
do {
|
|
emc_dig_dll_status = reg::Read(EMC + EMC_DIG_DLL_STATUS);
|
|
} while ((~emc_dig_dll_status & 0x28000) != 0);
|
|
|
|
if (training_enabled) {
|
|
/* Set WRITE_MUX to ACTIVE */
|
|
SetShadowBypass(ACTIVE);
|
|
|
|
/* Disable DLL */
|
|
reg::ClearBits(EMC + EMC_CFG_DIG_DLL, 0x1);
|
|
|
|
/* Set WRITE_MUX to ASSEMBLY */
|
|
SetShadowBypass(ASSEMBLY);
|
|
|
|
/* Wait until CFG_DLL_EN is cleared for EMC */
|
|
WaitForUpdate(EMC_CFG_DIG_DLL, 0x1, false, fbio_cfg7);
|
|
}
|
|
|
|
/* Return the DLL_OUT value */
|
|
return (reg::Read(EMC1 + EMC_DIG_DLL_STATUS) & 0x7FF);
|
|
}
|
|
|
|
void CcfifoWrite(u32 addr, u32 data, u32 wait) {
|
|
reg::Write(EMC + EMC_CCFIFO_DATA, data);
|
|
reg::Write(EMC + EMC_CCFIFO_ADDR, (addr & 0xFFFF) | ((wait & 0x7FFF) << 16) | 0x80000000);
|
|
}
|
|
|
|
u32 ActualOscClocks(u32 in) {
|
|
if (in < 0x40) {
|
|
return in * 0x10;
|
|
} else if (in < 0x80) {
|
|
return 0x800;
|
|
} else if (in < 0xC0) {
|
|
return 0x1000;
|
|
} else {
|
|
return 0x2000;
|
|
}
|
|
}
|
|
|
|
void StartPeriodicCompensation() {
|
|
reg::Write(EMC + EMC_MPC, 0x4B);
|
|
reg::Read(EMC + EMC_MPC);
|
|
}
|
|
|
|
u32 UpdateClockTreeDelay(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 dram_dev_num, u32 fbio_cfg7, int type) {
|
|
uint32_t mrr_req = 0, mrr_data = 0;
|
|
uint32_t temp0_0 = 0, temp0_1 = 0, temp1_0 = 0, temp1_1 = 0;
|
|
int tdel = 0, tmdel = 0, adel = 0;
|
|
uint32_t cval;
|
|
uint32_t src_timing_rate_mhz = (src_timing->rate_khz / 1000);
|
|
uint32_t dst_timing_rate_mhz = (dst_timing->rate_khz / 1000);
|
|
bool dvfs_pt1 = (type == DVFS_PT1);
|
|
bool training_pt1 = (type == TRAINING_PT1);
|
|
bool dvfs_update = (type == DVFS_UPDATE);
|
|
bool training_update = (type == TRAINING_UPDATE);
|
|
bool periodic_training_update = (type == PERIODIC_TRAINING_UPDATE);
|
|
|
|
const bool dual_channel = reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE;
|
|
|
|
/* Dev0 MSB. */
|
|
if (dvfs_pt1 || training_pt1 || periodic_training_update) {
|
|
mrr_req = ((2 << 30) | (19 << 16));
|
|
reg::Write(EMC + EMC_MRR, mrr_req);
|
|
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x100000, true, fbio_cfg7);
|
|
|
|
mrr_data = ((reg::Read(EMC + EMC_MRR) & 0xFFFF) << 0);
|
|
|
|
temp0_0 = ((mrr_data & 0xff) << 8);
|
|
temp0_1 = (mrr_data & 0xff00);
|
|
|
|
if (dual_channel) {
|
|
mrr_data = ((reg::Read(EMC1 + EMC_MRR) & 0xFFFF) << 0);
|
|
temp1_0 = ((mrr_data & 0xff) << 8);
|
|
temp1_1 = (mrr_data & 0xff00);
|
|
}
|
|
|
|
/* Dev0 LSB. */
|
|
mrr_req = ((mrr_req & ~0xFF0000) | (18 << 16));
|
|
reg::Write(EMC + EMC_MRR, mrr_req);
|
|
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x100000, true, fbio_cfg7);
|
|
|
|
mrr_data = ((reg::Read(EMC + EMC_MRR) & 0xFFFF) << 0);
|
|
|
|
temp0_0 |= (mrr_data & 0xff);
|
|
temp0_1 |= ((mrr_data & 0xff00) >> 8);
|
|
|
|
if (dual_channel) {
|
|
mrr_data = ((reg::Read(EMC1 + EMC_MRR) & 0xFFFF) << 0);
|
|
temp1_0 |= (mrr_data & 0xff);
|
|
temp1_1 |= ((mrr_data & 0xff00) >> 8);
|
|
}
|
|
}
|
|
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) / (src_timing_rate_mhz * 2 * temp0_0));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c0d0u0, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c0d0u0);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c0d0u0);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c0d0u0, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = (dst_timing->current_dram_clktree_c0d0u0 - __MOVAVG_AC(dst_timing, c0d0u0));
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
adel = tmdel;
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c0d0u0 = __MOVAVG_AC(dst_timing, c0d0u0);
|
|
}
|
|
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) /
|
|
(src_timing_rate_mhz * 2 * temp0_1));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c0d0u1, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c0d0u1);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c0d0u1);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c0d0u1, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = dst_timing->current_dram_clktree_c0d0u1 - __MOVAVG_AC(dst_timing, c0d0u1);
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
|
|
if (tmdel > adel)
|
|
adel = tmdel;
|
|
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c0d0u1 = __MOVAVG_AC(dst_timing, c0d0u1);
|
|
}
|
|
|
|
if (dual_channel) {
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) / (src_timing_rate_mhz * 2 * temp1_0));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c1d0u0, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c1d0u0);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c1d0u0);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c1d0u0, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = dst_timing->current_dram_clktree_c1d0u0 - __MOVAVG_AC(dst_timing, c1d0u0);
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
|
|
if (tmdel > adel)
|
|
adel = tmdel;
|
|
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c1d0u0 = __MOVAVG_AC(dst_timing, c1d0u0);
|
|
}
|
|
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) / (src_timing_rate_mhz * 2 * temp1_1));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c1d0u1, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c1d0u1);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c1d0u1);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c1d0u1, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = dst_timing->current_dram_clktree_c1d0u1 - __MOVAVG_AC(dst_timing, c1d0u1);
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
|
|
if (tmdel > adel)
|
|
adel = tmdel;
|
|
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c1d0u1 = __MOVAVG_AC(dst_timing, c1d0u1);
|
|
}
|
|
}
|
|
|
|
if (dram_dev_num != TWO_RANK)
|
|
return adel;
|
|
|
|
/* Dev1 MSB. */
|
|
if (dvfs_pt1 || training_pt1 || periodic_training_update) {
|
|
mrr_req = ((1 << 30) | (19 << 16));
|
|
reg::Write(EMC + EMC_MRR, mrr_req);
|
|
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x100000, true, fbio_cfg7);
|
|
|
|
mrr_data = ((reg::Read(EMC + EMC_MRR) & 0xFFFF) << 0);
|
|
|
|
temp0_0 = ((mrr_data & 0xff) << 8);
|
|
temp0_1 = (mrr_data & 0xff00);
|
|
|
|
if (dual_channel) {
|
|
mrr_data = ((reg::Read(EMC1 + EMC_MRR) & 0xFFFF) << 0);
|
|
temp1_0 = ((mrr_data & 0xff) << 8);
|
|
temp1_1 = (mrr_data & 0xff00);
|
|
}
|
|
|
|
/* Dev1 LSB. */
|
|
mrr_req = ((mrr_req & ~0xFF0000) | (18 << 16));
|
|
reg::Write(EMC + EMC_MRR, mrr_req);
|
|
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x100000, true, fbio_cfg7);
|
|
|
|
mrr_data = ((reg::Read(EMC + EMC_MRR) & 0xFFFF) << 0);
|
|
|
|
temp0_0 |= (mrr_data & 0xff);
|
|
temp0_1 |= ((mrr_data & 0xff00) >> 8);
|
|
|
|
if (dual_channel) {
|
|
mrr_data = ((reg::Read(EMC1 + EMC_MRR) & 0xFFFF) << 0);
|
|
temp1_0 |= (mrr_data & 0xff);
|
|
temp1_1 |= ((mrr_data & 0xff00) >> 8);
|
|
}
|
|
}
|
|
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) / (src_timing_rate_mhz * 2 * temp0_0));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c0d1u0, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c0d1u0);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c0d1u0);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c0d1u0, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = dst_timing->current_dram_clktree_c0d1u0 - __MOVAVG_AC(dst_timing, c0d1u0);
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
|
|
if (tmdel > adel)
|
|
adel = tmdel;
|
|
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c0d1u0 = __MOVAVG_AC(dst_timing, c0d1u0);
|
|
}
|
|
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) / (src_timing_rate_mhz * 2 * temp0_1));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c0d1u1, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c0d1u1);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c0d1u1);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c0d1u1, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = dst_timing->current_dram_clktree_c0d1u1 - __MOVAVG_AC(dst_timing, c0d1u1);
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
|
|
if (tmdel > adel)
|
|
adel = tmdel;
|
|
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c0d1u1 = __MOVAVG_AC(dst_timing, c0d1u1);
|
|
}
|
|
|
|
if (dual_channel) {
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) / (src_timing_rate_mhz * 2 * temp1_0));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c1d1u0, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c1d1u0);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c1d1u0);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c1d1u0, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = dst_timing->current_dram_clktree_c1d1u0 - __MOVAVG_AC(dst_timing, c1d1u0);
|
|
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
|
|
if (tmdel > adel)
|
|
adel = tmdel;
|
|
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c1d1u0 = __MOVAVG_AC(dst_timing, c1d1u0);
|
|
}
|
|
|
|
cval = ((1000000 * ActualOscClocks(src_timing->run_clocks)) / (src_timing_rate_mhz * 2 * temp1_1));
|
|
|
|
if (dvfs_pt1 || training_pt1)
|
|
__INCREMENT_PTFV(c1d1u1, cval);
|
|
else if (dvfs_update)
|
|
__AVERAGE_PTFV(c1d1u1);
|
|
else if (training_update)
|
|
__AVERAGE_WRITE_PTFV(c1d1u1);
|
|
else if (periodic_training_update)
|
|
__WEIGHTED_UPDATE_PTFV(c1d1u1, cval);
|
|
|
|
if (dvfs_update || training_update || periodic_training_update) {
|
|
tdel = dst_timing->current_dram_clktree_c1d1u1 - __MOVAVG_AC(dst_timing, c1d1u1);
|
|
tmdel = (tdel < 0) ? -1 * tdel : tdel;
|
|
|
|
if (tmdel > adel)
|
|
adel = tmdel;
|
|
|
|
if ((tmdel * 128 * dst_timing_rate_mhz / 1000000) > dst_timing->tree_margin)
|
|
dst_timing->current_dram_clktree_c1d1u1 = __MOVAVG_AC(dst_timing, c1d1u1);
|
|
}
|
|
}
|
|
|
|
if (training_update) {
|
|
dst_timing->trained_dram_clktree_c0d0u0 = dst_timing->current_dram_clktree_c0d0u0;
|
|
dst_timing->trained_dram_clktree_c0d0u1 = dst_timing->current_dram_clktree_c0d0u1;
|
|
dst_timing->trained_dram_clktree_c0d1u0 = dst_timing->current_dram_clktree_c0d1u0;
|
|
dst_timing->trained_dram_clktree_c0d1u1 = dst_timing->current_dram_clktree_c0d1u1;
|
|
dst_timing->trained_dram_clktree_c1d0u0 = dst_timing->current_dram_clktree_c1d0u0;
|
|
dst_timing->trained_dram_clktree_c1d0u1 = dst_timing->current_dram_clktree_c1d0u1;
|
|
dst_timing->trained_dram_clktree_c1d1u0 = dst_timing->current_dram_clktree_c1d1u0;
|
|
dst_timing->trained_dram_clktree_c1d1u1 = dst_timing->current_dram_clktree_c1d1u1;
|
|
}
|
|
|
|
return adel;
|
|
|
|
}
|
|
|
|
u32 PeriodicCompensationHandler(int type, u32 dram_dev_num, u32 fbio_cfg7, EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing) {
|
|
#define __COPY_EMA(nt, lt, dev) \
|
|
({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) * \
|
|
(nt)->ptfv_dvfs_samples; })
|
|
|
|
uint32_t adel = 0;
|
|
uint32_t samples = dst_timing->ptfv_dvfs_samples;
|
|
uint32_t samples_write = dst_timing->ptfv_write_samples;
|
|
uint32_t delay = 2 + (1000 * ActualOscClocks(src_timing->run_clocks) / src_timing->rate_khz);
|
|
|
|
if (!dst_timing->periodic_training)
|
|
return 0;
|
|
|
|
if (type == DVFS_SEQUENCE) {
|
|
if (src_timing->periodic_training && (dst_timing->ptfv_config_ctrl & 1)) {
|
|
/*
|
|
* If the previous frequency was using periodic
|
|
* calibration then we can reuse the previous
|
|
* frequencies EMA data.
|
|
*/
|
|
__COPY_EMA(dst_timing, src_timing, c0d0u0);
|
|
__COPY_EMA(dst_timing, src_timing, c0d0u1);
|
|
__COPY_EMA(dst_timing, src_timing, c1d0u0);
|
|
__COPY_EMA(dst_timing, src_timing, c1d0u1);
|
|
__COPY_EMA(dst_timing, src_timing, c0d1u0);
|
|
__COPY_EMA(dst_timing, src_timing, c0d1u1);
|
|
__COPY_EMA(dst_timing, src_timing, c1d1u0);
|
|
__COPY_EMA(dst_timing, src_timing, c1d1u1);
|
|
} else {
|
|
/* Reset the EMA.*/
|
|
__MOVAVG(dst_timing, c0d0u0) = 0;
|
|
__MOVAVG(dst_timing, c0d0u1) = 0;
|
|
__MOVAVG(dst_timing, c1d0u0) = 0;
|
|
__MOVAVG(dst_timing, c1d0u1) = 0;
|
|
__MOVAVG(dst_timing, c0d1u0) = 0;
|
|
__MOVAVG(dst_timing, c0d1u1) = 0;
|
|
__MOVAVG(dst_timing, c1d1u0) = 0;
|
|
__MOVAVG(dst_timing, c1d1u1) = 0;
|
|
|
|
for (uint32_t i = 0; i < samples; i++) {
|
|
StartPeriodicCompensation();
|
|
util::WaitMicroSeconds(delay);
|
|
|
|
/* Generate next sample of data. */
|
|
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, fbio_cfg7, DVFS_PT1);
|
|
}
|
|
}
|
|
|
|
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, fbio_cfg7, DVFS_UPDATE);
|
|
} else if (type == WRITE_TRAINING_SEQUENCE) {
|
|
/* Reset the EMA.*/
|
|
__MOVAVG(dst_timing, c0d0u0) = 0;
|
|
__MOVAVG(dst_timing, c0d0u1) = 0;
|
|
__MOVAVG(dst_timing, c1d0u0) = 0;
|
|
__MOVAVG(dst_timing, c1d0u1) = 0;
|
|
__MOVAVG(dst_timing, c0d1u0) = 0;
|
|
__MOVAVG(dst_timing, c0d1u1) = 0;
|
|
__MOVAVG(dst_timing, c1d1u0) = 0;
|
|
__MOVAVG(dst_timing, c1d1u1) = 0;
|
|
|
|
for (uint32_t i = 0; i < samples_write; i++) {
|
|
StartPeriodicCompensation();
|
|
util::WaitMicroSeconds(delay);
|
|
|
|
/* Generate next sample of data. */
|
|
UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, fbio_cfg7, TRAINING_PT1);
|
|
}
|
|
|
|
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, fbio_cfg7, TRAINING_UPDATE);
|
|
} else if (type == PERIODIC_TRAINING_SEQUENCE) {
|
|
StartPeriodicCompensation();
|
|
util::WaitMicroSeconds(delay);
|
|
|
|
adel = UpdateClockTreeDelay(src_timing, dst_timing, dram_dev_num, fbio_cfg7, PERIODIC_TRAINING_UPDATE);
|
|
}
|
|
|
|
return adel;
|
|
}
|
|
|
|
uint32_t ApplyPeriodicCompensationTrimmer(EmcDvfsTimingTable *dst_timing, uint32_t offset) {
|
|
#define TRIM_REG(chan, rank, reg, byte) \
|
|
((EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
|
|
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _MASK & \
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank ## rank ## _ ## reg ) >> \
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
|
|
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _SHIFT) \
|
|
+ \
|
|
(((EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \
|
|
byte ## _DATA_BRLSHFT_MASK & \
|
|
dst_timing->trim_perch_regs.emc ## chan ## _data_brlshft_ ## rank ) >> \
|
|
EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \
|
|
byte ## _DATA_BRLSHFT_SHIFT) * 64)
|
|
|
|
#define CALC_TEMP(rank, reg, byte1, byte2, n) \
|
|
((adj[n] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## \
|
|
reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _SHIFT) & \
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
|
|
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _MASK) \
|
|
| \
|
|
((adj[n + 1] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## \
|
|
reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _SHIFT) & \
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \
|
|
_OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _MASK) \
|
|
|
|
|
|
uint32_t temp = 0;
|
|
uint32_t dst_rate_mhz = dst_timing->rate_khz / 1000;
|
|
int tree_delta[4] = {0};
|
|
u32 tree_delta_taps[4] = {0};
|
|
int adj[] = {
|
|
static_cast<int>(TRIM_REG(0, 0, 0, 0)),
|
|
static_cast<int>(TRIM_REG(0, 0, 0, 1)),
|
|
static_cast<int>(TRIM_REG(0, 0, 1, 2)),
|
|
static_cast<int>(TRIM_REG(0, 0, 1, 3)),
|
|
|
|
static_cast<int>(TRIM_REG(1, 0, 2, 4)),
|
|
static_cast<int>(TRIM_REG(1, 0, 2, 5)),
|
|
static_cast<int>(TRIM_REG(1, 0, 3, 6)),
|
|
static_cast<int>(TRIM_REG(1, 0, 3, 7)),
|
|
|
|
static_cast<int>(TRIM_REG(0, 1, 0, 0)),
|
|
static_cast<int>(TRIM_REG(0, 1, 0, 1)),
|
|
static_cast<int>(TRIM_REG(0, 1, 1, 2)),
|
|
static_cast<int>(TRIM_REG(0, 1, 1, 3)),
|
|
|
|
static_cast<int>(TRIM_REG(1, 1, 2, 4)),
|
|
static_cast<int>(TRIM_REG(1, 1, 2, 5)),
|
|
static_cast<int>(TRIM_REG(1, 1, 3, 6)),
|
|
static_cast<int>(TRIM_REG(1, 1, 3, 7))
|
|
};
|
|
|
|
switch (offset) {
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
|
|
case EMC_DATA_BRLSHFT_0:
|
|
tree_delta[0] = 128 * (dst_timing->current_dram_clktree_c0d0u0 - dst_timing->trained_dram_clktree_c0d0u0);
|
|
tree_delta[1] = 128 * (dst_timing->current_dram_clktree_c0d0u1 - dst_timing->trained_dram_clktree_c0d0u1);
|
|
tree_delta[2] = 128 * (dst_timing->current_dram_clktree_c1d0u0 - dst_timing->trained_dram_clktree_c1d0u0);
|
|
tree_delta[3] = 128 * (dst_timing->current_dram_clktree_c1d0u1 - dst_timing->trained_dram_clktree_c1d0u1);
|
|
tree_delta_taps[0] = (tree_delta[0] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
tree_delta_taps[1] = (tree_delta[1] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
tree_delta_taps[2] = (tree_delta[2] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
tree_delta_taps[3] = (tree_delta[3] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if ((tree_delta_taps[i] > dst_timing->tree_margin) || (tree_delta_taps[i] < (-1 * dst_timing->tree_margin))) {
|
|
adj[i * 2] = adj[i * 2] + tree_delta_taps[i];
|
|
adj[i * 2 + 1] = adj[i * 2 + 1] + tree_delta_taps[i];
|
|
}
|
|
}
|
|
|
|
if (offset == EMC_DATA_BRLSHFT_0) {
|
|
for (int i = 0; i < 8; i++) {
|
|
adj[i] = adj[i] / 64;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 8; i++) {
|
|
adj[i] = adj[i] % 64;
|
|
}
|
|
}
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
|
|
case EMC_DATA_BRLSHFT_1:
|
|
tree_delta[0] = 128 * (dst_timing->current_dram_clktree_c0d1u0 - dst_timing->trained_dram_clktree_c0d1u0);
|
|
tree_delta[1] = 128 * (dst_timing->current_dram_clktree_c0d1u1 - dst_timing->trained_dram_clktree_c0d1u1);
|
|
tree_delta[2] = 128 * (dst_timing->current_dram_clktree_c1d1u0 - dst_timing->trained_dram_clktree_c1d1u0);
|
|
tree_delta[3] = 128 * (dst_timing->current_dram_clktree_c1d1u1 - dst_timing->trained_dram_clktree_c1d1u1);
|
|
tree_delta_taps[0] = (tree_delta[0] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
tree_delta_taps[1] = (tree_delta[1] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
tree_delta_taps[2] = (tree_delta[2] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
tree_delta_taps[3] = (tree_delta[3] * static_cast<int>(dst_rate_mhz)) / 1000000;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if ((tree_delta_taps[i] > dst_timing->tree_margin) || (tree_delta_taps[i] < (-1 * dst_timing->tree_margin))) {
|
|
adj[8 + i * 2] = adj[8 + i * 2] + tree_delta_taps[i];
|
|
adj[8 + i * 2 + 1] = adj[8 + i * 2 + 1] + tree_delta_taps[i];
|
|
}
|
|
}
|
|
|
|
if (offset == EMC_DATA_BRLSHFT_1) {
|
|
for (int i = 0; i < 8; i++) {
|
|
adj[i + 8] = adj[i + 8] / 64;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 8; i++) {
|
|
adj[i + 8] = adj[i + 8] % 64;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (offset) {
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0:
|
|
temp = CALC_TEMP(0, 0, 0, 1, 0);
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1:
|
|
temp = CALC_TEMP(0, 1, 2, 3, 2);
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2:
|
|
temp = CALC_TEMP(0, 2, 4, 5, 4);
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3:
|
|
temp = CALC_TEMP(0, 3, 6, 7, 6);
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0:
|
|
temp = CALC_TEMP(1, 0, 0, 1, 8);
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1:
|
|
temp = CALC_TEMP(1, 1, 2, 3, 10);
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2:
|
|
temp = CALC_TEMP(1, 2, 4, 5, 12);
|
|
break;
|
|
case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3:
|
|
temp = CALC_TEMP(1, 3, 6, 7, 14);
|
|
break;
|
|
case EMC_DATA_BRLSHFT_0:
|
|
temp = ((adj[0] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_MASK) |
|
|
((adj[1] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_MASK) |
|
|
((adj[2] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_MASK) |
|
|
((adj[3] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_MASK) |
|
|
((adj[4] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_MASK) |
|
|
((adj[5] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_MASK) |
|
|
((adj[6] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_MASK) |
|
|
((adj[7] <<
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_MASK);
|
|
break;
|
|
case EMC_DATA_BRLSHFT_1:
|
|
temp = ((adj[8] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_MASK) |
|
|
((adj[9] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_MASK) |
|
|
((adj[10] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_MASK) |
|
|
((adj[11] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_MASK) |
|
|
((adj[12] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_MASK) |
|
|
((adj[13] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_MASK) |
|
|
((adj[14] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_MASK) |
|
|
((adj[15] <<
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_SHIFT) &
|
|
EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_MASK);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
#undef TRIM_REG
|
|
#undef CALC_TEMP
|
|
|
|
return temp;
|
|
}
|
|
|
|
uint32_t DvfsPowerRampDown(bool flip_backward, EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, uint32_t clk) {
|
|
uint32_t ramp_down_wait = 0;
|
|
uint32_t seq_wait = 0;
|
|
uint32_t pmacro_cmd_pad = 0;
|
|
uint32_t pmacro_dq_pad = 0;
|
|
uint32_t pmacro_cfg5 = 0;
|
|
uint32_t pmacro_rfu1 = 0;
|
|
uint32_t pmacro_common_tx = 0;
|
|
|
|
if (flip_backward) {
|
|
pmacro_cmd_pad = dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl;
|
|
pmacro_dq_pad = dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl;
|
|
pmacro_rfu1 = dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1;
|
|
pmacro_cfg5 = dst_timing->burst_regs.emc_fbio_cfg5;
|
|
pmacro_common_tx = dst_timing->burst_regs.emc_pmacro_common_pad_tx_ctrl;
|
|
} else {
|
|
pmacro_cmd_pad = src_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl;
|
|
pmacro_dq_pad = ((dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & 0x101) | src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl);
|
|
pmacro_rfu1 = src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1;
|
|
pmacro_cfg5 = src_timing->burst_regs.emc_fbio_cfg5;
|
|
pmacro_common_tx = src_timing->burst_regs.emc_pmacro_common_pad_tx_ctrl;
|
|
}
|
|
|
|
pmacro_cmd_pad |= (1 << 26);
|
|
|
|
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, pmacro_cmd_pad, 0);
|
|
CcfifoWrite(EMC_FBIO_CFG5, pmacro_cfg5 | (1 << 8), 12);
|
|
|
|
ramp_down_wait = clk * 12;
|
|
seq_wait = (100000 / clk) + 1;
|
|
|
|
if (clk < (1000000 / 1000)) {
|
|
if (clk < (1000000 / 2400)) {
|
|
pmacro_cmd_pad &= ~((1 << 1) | (1 << 24));
|
|
pmacro_cmd_pad |= (1 << 9) | (1 << 16);
|
|
|
|
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, pmacro_cmd_pad, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
|
|
pmacro_dq_pad &= ~((1 << 1) | (1 << 24));
|
|
pmacro_dq_pad |= (1 << 9) | (1 << 16);
|
|
|
|
CcfifoWrite(EMC_PMACRO_DATA_PAD_TX_CTRL, pmacro_dq_pad, 0);
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & ~0x01120112, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & ~0x01120112, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
}
|
|
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & ~0x01bf01bf, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
|
|
if (clk < (1000000 / 2400)) {
|
|
pmacro_cmd_pad &= ~((1 << 1) | (1 << 24) | (1 << 9) | (1 << 16));
|
|
|
|
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, pmacro_cmd_pad, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
|
|
pmacro_dq_pad &= ~((1 << 1) | (1 << 24) | (1 << 9) | (1 << 16));
|
|
|
|
CcfifoWrite(EMC_PMACRO_DATA_PAD_TX_CTRL, pmacro_dq_pad, 0);
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & ~0x07ff07ff, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & ~0x07ff07ff, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
}
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & ~0x07ff07ff, seq_wait + 19);
|
|
ramp_down_wait += (100000 + (20 * clk));
|
|
}
|
|
|
|
if (clk < (1000000 / 600)) {
|
|
ramp_down_wait += 100000;
|
|
CcfifoWrite(EMC_PMACRO_COMMON_PAD_TX_CTRL, pmacro_common_tx & ~0x5, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
CcfifoWrite(EMC_PMACRO_COMMON_PAD_TX_CTRL, pmacro_common_tx & ~0xf, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
CcfifoWrite(0, 0, seq_wait);
|
|
ramp_down_wait += 100000;
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_COMMON_PAD_TX_CTRL, pmacro_common_tx & ~0xf, seq_wait);
|
|
}
|
|
|
|
return ramp_down_wait;
|
|
}
|
|
|
|
uint32_t DvfsPowerRampUp(bool flip_backward, EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, uint32_t training, uint32_t clk) {
|
|
uint32_t ramp_up_wait = 0;
|
|
uint32_t pmacro_cmd_pad = 0;
|
|
uint32_t pmacro_dq_pad = 0;
|
|
uint32_t pmacro_cfg5 = 0;
|
|
uint32_t pmacro_rfu1 = 0;
|
|
uint32_t pmacro_common_tx = 0;
|
|
|
|
if (flip_backward) {
|
|
pmacro_cmd_pad = src_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl;
|
|
pmacro_dq_pad = src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl;
|
|
pmacro_rfu1 = src_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1;
|
|
pmacro_cfg5 = src_timing->burst_regs.emc_fbio_cfg5;
|
|
pmacro_common_tx = src_timing->burst_regs.emc_pmacro_common_pad_tx_ctrl;
|
|
} else if (training & 3) {
|
|
pmacro_cmd_pad = dst_timing->shadow_regs_ca_train.emc_pmacro_cmd_pad_tx_ctrl;
|
|
pmacro_dq_pad = dst_timing->shadow_regs_ca_train.emc_pmacro_data_pad_tx_ctrl;
|
|
pmacro_rfu1 = dst_timing->shadow_regs_ca_train.emc_pmacro_brick_ctrl_rfu1;
|
|
pmacro_cfg5 = dst_timing->shadow_regs_ca_train.emc_fbio_cfg5;
|
|
pmacro_common_tx = dst_timing->shadow_regs_ca_train.emc_pmacro_common_pad_tx_ctrl;
|
|
} else if (training & 0xC) {
|
|
pmacro_cmd_pad = dst_timing->shadow_regs_quse_train.emc_pmacro_cmd_pad_tx_ctrl;
|
|
pmacro_dq_pad = dst_timing->shadow_regs_quse_train.emc_pmacro_data_pad_tx_ctrl;
|
|
pmacro_rfu1 = dst_timing->shadow_regs_quse_train.emc_pmacro_brick_ctrl_rfu1;
|
|
pmacro_cfg5 = dst_timing->shadow_regs_quse_train.emc_fbio_cfg5;
|
|
pmacro_common_tx = dst_timing->shadow_regs_quse_train.emc_pmacro_common_pad_tx_ctrl;
|
|
} else if (training & 0xF0) {
|
|
pmacro_cmd_pad = dst_timing->shadow_regs_rdwr_train.emc_pmacro_cmd_pad_tx_ctrl;
|
|
pmacro_dq_pad = dst_timing->shadow_regs_rdwr_train.emc_pmacro_data_pad_tx_ctrl;
|
|
pmacro_rfu1 = dst_timing->shadow_regs_rdwr_train.emc_pmacro_brick_ctrl_rfu1;
|
|
pmacro_cfg5 = dst_timing->shadow_regs_rdwr_train.emc_fbio_cfg5;
|
|
pmacro_common_tx = dst_timing->shadow_regs_rdwr_train.emc_pmacro_common_pad_tx_ctrl;
|
|
} else {
|
|
pmacro_cmd_pad = dst_timing->burst_regs.emc_pmacro_cmd_pad_tx_ctrl;
|
|
pmacro_dq_pad = dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl;
|
|
pmacro_rfu1 = dst_timing->burst_regs.emc_pmacro_brick_ctrl_rfu1;
|
|
pmacro_cfg5 = dst_timing->burst_regs.emc_fbio_cfg5;
|
|
pmacro_common_tx = dst_timing->burst_regs.emc_pmacro_common_pad_tx_ctrl;
|
|
}
|
|
|
|
pmacro_cmd_pad |= (1 << 26);
|
|
|
|
if (clk < 1000000 / 600) {
|
|
CcfifoWrite(EMC_PMACRO_COMMON_PAD_TX_CTRL, pmacro_common_tx & 0xa, 0);
|
|
CcfifoWrite(EMC_PMACRO_COMMON_PAD_TX_CTRL, pmacro_common_tx & 0xf, (100000 / clk) + 1);
|
|
ramp_up_wait += 100000;
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_COMMON_PAD_TX_CTRL, pmacro_common_tx | 0x8, 0);
|
|
}
|
|
|
|
if (clk < 1000000 / 1000) {
|
|
if (clk < 1000000 / 2400) {
|
|
pmacro_cmd_pad |= ((1 << 9) | (1 << 16));
|
|
pmacro_cmd_pad &= ~((1 << 1) | (1 << 24));
|
|
|
|
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, pmacro_cmd_pad, (100000 / clk) + 1);
|
|
ramp_up_wait += 100000;
|
|
|
|
pmacro_dq_pad |= ((1 << 9) | (1 << 16));
|
|
pmacro_dq_pad &= ~((1 << 1) | (1 << 24));
|
|
|
|
CcfifoWrite(EMC_PMACRO_DATA_PAD_TX_CTRL, pmacro_dq_pad, 0);
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & 0xfe40fe40, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & 0xfe40fe40, (100000 / clk) + 1);
|
|
ramp_up_wait += 100000;
|
|
}
|
|
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 & 0xfeedfeed, (100000 / clk) + 1);
|
|
ramp_up_wait += 100000;
|
|
|
|
if (clk < 1000000 / 2400) {
|
|
pmacro_cmd_pad |= ((1 << 9) | (1 << 16) | (1 << 1) | (1 << 24));
|
|
|
|
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, pmacro_cmd_pad, (100000 / clk) + 1);
|
|
ramp_up_wait += 100000;
|
|
|
|
pmacro_dq_pad |= ((1 << 9) | (1 << 16) | (1 << 1) | (1 << 24));
|
|
|
|
CcfifoWrite(EMC_PMACRO_DATA_PAD_TX_CTRL, pmacro_dq_pad, 0);
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1, (100000 / clk) + 1);
|
|
ramp_up_wait += 100000;
|
|
}
|
|
|
|
CcfifoWrite(EMC_FBIO_CFG5, pmacro_cfg5 & ~(1 << 8), (100000 / clk) + 10);
|
|
ramp_up_wait += (100000 + (10 * clk));
|
|
} else if (clk < 1000000 / 600) {
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 | 0x06000600, (100000 / clk) + 1);
|
|
CcfifoWrite(EMC_FBIO_CFG5, pmacro_cfg5 & ~(1 << 8), (100000 / clk) + 10);
|
|
ramp_up_wait += (100000 + 10 * clk);
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_BRICK_CTRL_RFU1, pmacro_rfu1 | 0x00000600, 0);
|
|
CcfifoWrite(EMC_FBIO_CFG5, pmacro_cfg5 & ~(1 << 8), 12);
|
|
ramp_up_wait += (12 * clk);
|
|
}
|
|
|
|
pmacro_cmd_pad &= ~(1 << 26);
|
|
CcfifoWrite(EMC_PMACRO_CMD_PAD_TX_CTRL, pmacro_cmd_pad, 5);
|
|
|
|
return ramp_up_wait;
|
|
}
|
|
|
|
void FreqChange(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 training, u32 next_clk_src) {
|
|
/* Extract training values. */
|
|
const bool train_ca = (training & CA_TRAINING);
|
|
const bool train_ca_vref = (training & CA_VREF_TRAINING);
|
|
const bool train_quse = (training & QUSE_TRAINING);
|
|
const bool train_quse_vref = (training & QUSE_VREF_TRAINING);
|
|
const bool train_wr = (training & WRITE_TRAINING);
|
|
const bool train_wr_vref = (training & WRITE_VREF_TRAINING);
|
|
const bool train_rd = (training & READ_TRAINING);
|
|
const bool train_rd_vref = (training & READ_VREF_TRAINING);
|
|
const bool train_second_rank = (training & TRAIN_SECOND_RANK);
|
|
const bool train_bit_level = (training & BIT_LEVEL_TRAINING);
|
|
|
|
/* Check if we should do training. */
|
|
const bool training_enabled = (training & (CA_TRAINING | CA_VREF_TRAINING | QUSE_TRAINING | WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING));
|
|
|
|
/* Declare variables. */
|
|
bool skip_zqcal = false;
|
|
bool compensate_trimmer_applicable = false;
|
|
uint32_t zqcal_before_cc_cutoff = 2400; /* In picoseconds */
|
|
int zq_latch_dvfs_wait_time;
|
|
|
|
uint32_t mr13_catr_enable;
|
|
uint32_t mr13_flip_fspwr;
|
|
uint32_t mr13_flip_fspop;
|
|
|
|
int next_push, next_dq_e_ivref, next_dqs_e_ivref;
|
|
|
|
uint32_t zq_wait_long;
|
|
uint32_t zq_wait_short;
|
|
|
|
uint32_t tRTM;
|
|
uint32_t RP_war;
|
|
uint32_t R2P_war;
|
|
uint32_t TRPab_war;
|
|
int nRTP;
|
|
uint32_t deltaTWATM;
|
|
uint32_t W2P_war;
|
|
uint32_t tRPST;
|
|
|
|
uint32_t mrw_req;
|
|
uint32_t adel = 0;
|
|
uint32_t dst_rate_mhz = dst_timing->rate_khz / 1000;
|
|
|
|
/* Set some common values needed. */
|
|
const int dram_type = reg::GetValue(EMC + EMC_FBIO_CFG5, EMC_REG_BITS_MASK(FBIO_CFG5_DRAM_TYPE));
|
|
const int dram_dev_num = (reg::Read(MC + MC_EMEM_ADR_CFG) & 1) + 1;
|
|
const bool shared_zq_resistor = ((src_timing->burst_regs.emc_zcal_wait_cnt >> 31) & 1);
|
|
const u32 fbio_cfg7 = src_timing->burst_regs.emc_fbio_cfg7;
|
|
const bool is_lpddr3 = (dram_type == DRAM_TYPE_LPDDR2) && ((dst_timing->burst_regs.emc_fbio_cfg5 >> 25) & 1);
|
|
bool opt_zcal_en_cc = ((dst_timing->burst_regs.emc_zcal_interval && !src_timing->burst_regs.emc_zcal_interval) || (dram_type == DRAM_TYPE_LPDDR4));
|
|
bool opt_war_200024907 = (dram_type == DRAM_TYPE_LPDDR4);
|
|
bool opt_do_sw_qrst = false;
|
|
bool opt_cc_short_zcal = true;
|
|
bool opt_short_zcal = true;
|
|
bool save_restore_clkstop_pd = true;
|
|
uint32_t opt_dll_mode = (dram_type == DRAM_TYPE_DDR4) ? GetDllState(dst_timing) : DLL_OFF;
|
|
uint32_t opt_dvfs_mode = MAN_SR;
|
|
uint32_t emc_auto_cal_config = reg::Read(EMC + EMC_AUTO_CAL_CONFIG);
|
|
|
|
/* In picoseconds. */
|
|
uint32_t source_clock_period = 1000000000 / src_timing->rate_khz;
|
|
uint32_t destination_clock_period = 1000000000 / dst_timing->rate_khz;
|
|
|
|
uint32_t tFC_lpddr4 = 1000 * dst_timing->dram_timings.t_fc_lpddr4;
|
|
uint32_t tZQCAL_lpddr4 = 1000000;
|
|
int tZQCAL_lpddr4_fc_adj = (source_clock_period > zqcal_before_cc_cutoff) ? tZQCAL_lpddr4 / destination_clock_period : (tZQCAL_lpddr4 - tFC_lpddr4) / destination_clock_period;
|
|
|
|
g_fsp_for_next_freq = !g_fsp_for_next_freq;
|
|
|
|
uint32_t emc_dbg_o = reg::Read(EMC + EMC_DBG);
|
|
uint32_t emc_pin_o = reg::Read(EMC + EMC_PIN);
|
|
uint32_t emc_cfg_pipe_clk_o = reg::Read(EMC + EMC_CFG_PIPE_CLK);
|
|
uint32_t emc_dbg = emc_dbg_o;
|
|
|
|
uint32_t emc_cfg = dst_timing->burst_regs.emc_cfg & 0x0FFFFFFF;
|
|
uint32_t emc_sel_dpd_ctrl = dst_timing->emc_sel_dpd_ctrl & 0xFFFFFEC3;
|
|
|
|
/* Step 1.1: Disable DLL. */
|
|
DllDisable(fbio_cfg7);
|
|
|
|
/* Step 1.2: Disable AUTOCAL. */
|
|
emc_auto_cal_config = dst_timing->emc_auto_cal_config;
|
|
u32 auto_cal_en = (emc_auto_cal_config & (1 << 29));
|
|
emc_auto_cal_config &= 0x7FFFF9FF;
|
|
emc_auto_cal_config |= 0x600;
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config);
|
|
|
|
/* Step 1.3: Disable other power features. */
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_CFG, emc_cfg);
|
|
reg::Write(EMC + EMC_SEL_DPD_CTRL, emc_sel_dpd_ctrl);
|
|
SetShadowBypass(ASSEMBLY);
|
|
|
|
/* Skip this if training_enabled is set. */
|
|
if (!training_enabled && dst_timing->periodic_training) {
|
|
/* Wait for DRAM to get out of power down. */
|
|
if (dram_dev_num == TWO_RANK) {
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x30, false, fbio_cfg7);
|
|
} else {
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x10, false, fbio_cfg7);
|
|
}
|
|
|
|
/* Wait for DRAM to get out of self refresh. */
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x300, false, fbio_cfg7);
|
|
|
|
/* Reset all clock tree values. */
|
|
dst_timing->current_dram_clktree_c0d0u0 = dst_timing->trained_dram_clktree_c0d0u0;
|
|
dst_timing->current_dram_clktree_c0d0u1 = dst_timing->trained_dram_clktree_c0d0u1;
|
|
dst_timing->current_dram_clktree_c0d1u0 = dst_timing->trained_dram_clktree_c0d1u0;
|
|
dst_timing->current_dram_clktree_c0d1u1 = dst_timing->trained_dram_clktree_c0d1u1;
|
|
dst_timing->current_dram_clktree_c1d0u0 = dst_timing->trained_dram_clktree_c1d0u0;
|
|
dst_timing->current_dram_clktree_c1d0u1 = dst_timing->trained_dram_clktree_c1d0u1;
|
|
dst_timing->current_dram_clktree_c1d1u0 = dst_timing->trained_dram_clktree_c1d1u0;
|
|
dst_timing->current_dram_clktree_c1d1u1 = dst_timing->trained_dram_clktree_c1d1u1;
|
|
|
|
/* Do DVFS_SEQUENCE. */
|
|
adel = PeriodicCompensationHandler(DVFS_SEQUENCE, dram_dev_num, fbio_cfg7, src_timing, dst_timing);
|
|
|
|
/* Check if we should use compensate trimmer. */
|
|
compensate_trimmer_applicable = dst_timing->periodic_training && ((adel * 128 * dst_rate_mhz) / 1000000) > dst_timing->tree_margin;
|
|
}
|
|
|
|
reg::Write(EMC + EMC_INTSTATUS, 0x10);
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_CFG, emc_cfg);
|
|
reg::Write(EMC + EMC_SEL_DPD_CTRL, emc_sel_dpd_ctrl);
|
|
reg::Write(EMC + EMC_CFG_PIPE_CLK, emc_cfg_pipe_clk_o | 0x1);
|
|
reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp & ~0x1);
|
|
|
|
uint32_t bg_regulator_mode_change = ((dst_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & (1 << 2)) ^ (src_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & (1 << 2))) || ((dst_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & (1 << 0)) ^ (src_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & (1 << 0)));
|
|
|
|
uint32_t enable_bg_regulator = (dst_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & (1 << 0)) == 0;
|
|
|
|
/* Check if we need to change BG the regulator. */
|
|
if (bg_regulator_mode_change) {
|
|
if (enable_bg_regulator) {
|
|
reg::Write(EMC + EMC_PMACRO_BG_BIAS_CTRL_0, src_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & ~(1 << 0));
|
|
} else {
|
|
reg::Write(EMC + EMC_PMACRO_BG_BIAS_CTRL_0, src_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & ~(1 << 2));
|
|
}
|
|
}
|
|
|
|
/* Check if we need to turn on VREF generator. */
|
|
if ((((!(src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 0)))) &&
|
|
((dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 0)))) ||
|
|
((!(src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 8))) &&
|
|
((dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl & (1 << 8)))))
|
|
{
|
|
uint32_t pad_tx_ctrl = dst_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl;
|
|
uint32_t last_pad_tx_ctrl = src_timing->burst_regs.emc_pmacro_data_pad_tx_ctrl;
|
|
|
|
next_dqs_e_ivref = pad_tx_ctrl & (1 << 8);
|
|
next_dq_e_ivref = pad_tx_ctrl & (1 << 0);
|
|
next_push = (last_pad_tx_ctrl & ~(1 << 0) & ~(1 << 8)) | next_dq_e_ivref | next_dqs_e_ivref;
|
|
reg::Write(EMC + EMC_PMACRO_DATA_PAD_TX_CTRL, next_push);
|
|
util::WaitMicroSeconds(1);
|
|
} else if (bg_regulator_mode_change) {
|
|
util::WaitMicroSeconds(1);
|
|
}
|
|
|
|
SetShadowBypass(ASSEMBLY);
|
|
|
|
/* Step 2:
|
|
* Prelock the DLL.
|
|
*/
|
|
if (dst_timing->burst_regs.emc_cfg_dig_dll & 0x1) {
|
|
DllPrelock(dst_timing, training_enabled, next_clk_src);
|
|
} else {
|
|
ChangeDllSrc(dst_timing, next_clk_src);
|
|
DllDisable(fbio_cfg7);
|
|
}
|
|
|
|
/* Step 3:
|
|
* Prepare autocal for the clock change.
|
|
*/
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG2, dst_timing->emc_auto_cal_config2);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG3, dst_timing->emc_auto_cal_config3);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG4, dst_timing->emc_auto_cal_config4);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG5, dst_timing->emc_auto_cal_config5);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG6, dst_timing->emc_auto_cal_config6);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG7, dst_timing->emc_auto_cal_config7);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG8, dst_timing->emc_auto_cal_config8);
|
|
SetShadowBypass(ASSEMBLY);
|
|
|
|
emc_auto_cal_config |= (0x1 | auto_cal_en);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config);
|
|
|
|
/* Step 4:
|
|
* Update EMC_CFG.
|
|
*/
|
|
if ((source_clock_period > 50000) && (dram_type == DRAM_TYPE_LPDDR4)) {
|
|
CcfifoWrite(EMC_SELF_REF, 1, 0);
|
|
} else {
|
|
reg::Write(EMC + EMC_CFG_2, dst_timing->emc_cfg_2);
|
|
}
|
|
|
|
/* Step 5:
|
|
* Prepare reference variables for ZQCAL regs.
|
|
*/
|
|
uint32_t emc_zcal_interval = src_timing->burst_regs.emc_zcal_interval;
|
|
emc_zcal_interval &= 0xFF000000;
|
|
uint32_t emc_zcal_wait_cnt_old = src_timing->burst_regs.emc_zcal_wait_cnt;
|
|
uint32_t emc_zcal_wait_cnt_new = dst_timing->burst_regs.emc_zcal_wait_cnt;
|
|
emc_zcal_wait_cnt_old &= ~0x7ff;
|
|
emc_zcal_wait_cnt_new &= ~0x7ff;
|
|
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
zq_wait_long = std::max<u32>(1, util::DivideUp(1000000, destination_clock_period));
|
|
} else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3) {
|
|
zq_wait_long = std::max<u32>(dst_timing->min_mrs_wait, util::DivideUp(360000, destination_clock_period)) + 4;
|
|
} else if (dram_type == DRAM_TYPE_DDR4) {
|
|
zq_wait_long = std::max<u32>(256, util::DivideUp(320000, destination_clock_period) + 2);
|
|
} else {
|
|
zq_wait_long = 0;
|
|
}
|
|
|
|
|
|
if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3) {
|
|
zq_wait_short = std::max<u32>(std::max<u32>(dst_timing->min_mrs_wait, 6), util::DivideUp(90000, destination_clock_period)) + 4;
|
|
} else if (dram_type == DRAM_TYPE_DDR4) {
|
|
zq_wait_short = std::max<u32>(64, util::DivideUp(80000, destination_clock_period)) + 2;
|
|
} else {
|
|
zq_wait_short = 0;
|
|
}
|
|
|
|
/* TODO: Actually use the reference variables. */
|
|
AMS_UNUSED(zq_wait_long, zq_wait_short);
|
|
|
|
/* Step 6:
|
|
* Training code.
|
|
*/
|
|
if ((train_ca || train_ca_vref) && (dram_dev_num == TWO_RANK)) {
|
|
reg::Write(EMC + EMC_PIN, 0x107);
|
|
}
|
|
|
|
/* Step 7:
|
|
* Program FSP reference registers and send MRWs to new FSPWR.
|
|
*/
|
|
|
|
/* Step 7.1: Bug 200024907 - Patch RP R2P */
|
|
if (opt_war_200024907) {
|
|
nRTP = 16;
|
|
if (source_clock_period >= 1000000/1866) /* 535.91 ps */
|
|
nRTP = 14;
|
|
if (source_clock_period >= 1000000/1600) /* 625.00 ps */
|
|
nRTP = 12;
|
|
if (source_clock_period >= 1000000/1333) /* 750.19 ps */
|
|
nRTP = 10;
|
|
if (source_clock_period >= 1000000/1066) /* 938.09 ps */
|
|
nRTP = 8;
|
|
|
|
deltaTWATM = std::max<u32>(util::DivideUp(7500, source_clock_period), 8);
|
|
|
|
/*
|
|
* Originally there was a + .5 in the tRPST calculation.
|
|
* However since we can't do FP in the kernel and the tRTM
|
|
* computation was in a floating point ceiling function, adding
|
|
* one to tRTP should be ok. There is no other source of non
|
|
* integer values, so the result was always going to be
|
|
* something for the form: f_ceil(N + .5) = N + 1;
|
|
*/
|
|
tRPST = ((src_timing->emc_mrw & 0x80) >> 7);
|
|
tRTM = src_timing->dram_timings.rl + util::DivideUp(3600, source_clock_period) + std::max<u32>(util::DivideUp(7500, source_clock_period), 8) + tRPST + 1 + nRTP;
|
|
|
|
if (src_timing->burst_regs.emc_rp < tRTM) {
|
|
if (tRTM > (src_timing->burst_regs.emc_r2p + src_timing->burst_regs.emc_rp)) {
|
|
R2P_war = tRTM - src_timing->burst_regs.emc_rp;
|
|
RP_war = src_timing->burst_regs.emc_rp;
|
|
TRPab_war = src_timing->burst_regs.emc_trpab;
|
|
if (R2P_war > 63) {
|
|
RP_war = R2P_war + src_timing->burst_regs.emc_rp - 63;
|
|
if (TRPab_war < RP_war)
|
|
TRPab_war = RP_war;
|
|
R2P_war = 63;
|
|
}
|
|
} else {
|
|
R2P_war = src_timing-> burst_regs.emc_r2p;
|
|
RP_war = src_timing->burst_regs.emc_rp;
|
|
TRPab_war = src_timing->burst_regs.emc_trpab;
|
|
}
|
|
|
|
if (RP_war < deltaTWATM) {
|
|
W2P_war = src_timing->burst_regs.emc_w2p + deltaTWATM - RP_war;
|
|
if (W2P_war > 63) {
|
|
RP_war = RP_war + W2P_war - 63;
|
|
if (TRPab_war < RP_war)
|
|
TRPab_war = RP_war;
|
|
W2P_war = 63;
|
|
}
|
|
} else {
|
|
W2P_war = src_timing->burst_regs.emc_w2p;
|
|
}
|
|
|
|
if ((src_timing->burst_regs.emc_w2p != W2P_war)
|
|
|| (src_timing->burst_regs.emc_r2p != R2P_war)
|
|
|| (src_timing->burst_regs.emc_rp != RP_war)
|
|
|| (src_timing->burst_regs.emc_trpab != TRPab_war))
|
|
{
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_RP, RP_war);
|
|
reg::Write(EMC + EMC_R2P, R2P_war);
|
|
reg::Write(EMC + EMC_W2P, W2P_war);
|
|
reg::Write(EMC + EMC_TRPAB, TRPab_war);
|
|
SetShadowBypass(ASSEMBLY);
|
|
util::WaitMicroSeconds(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!g_fsp_for_next_freq) {
|
|
mr13_flip_fspwr = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x80;
|
|
mr13_flip_fspop = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x00;
|
|
} else {
|
|
mr13_flip_fspwr = (dst_timing->emc_mrw3 & 0xffffff3f) | 0x40;
|
|
mr13_flip_fspop = (dst_timing->emc_mrw3 & 0xffffff3f) | 0xc0;
|
|
}
|
|
|
|
mr13_catr_enable = (mr13_flip_fspwr & 0xFFFFFFFE) | 0x01;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
if (train_ca || train_ca_vref) {
|
|
if (train_second_rank) {
|
|
mr13_flip_fspop = (mr13_flip_fspop & 0x3FFFFFFF) | 0x80000000;
|
|
mr13_catr_enable = (mr13_catr_enable & 0x3FFFFFFF)| 0x40000000;
|
|
} else {
|
|
mr13_flip_fspop = (mr13_flip_fspop & 0x3FFFFFFF) | 0x40000000;
|
|
mr13_catr_enable = (mr13_catr_enable & 0x3FFFFFFF) | 0x80000000;
|
|
}
|
|
} else {
|
|
if (train_second_rank) {
|
|
mr13_catr_enable = (mr13_catr_enable & 0x3FFFFFFF) | 0x40000000;
|
|
} else {
|
|
mr13_catr_enable = (mr13_catr_enable & 0x3FFFFFFF) | 0x80000000;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
reg::Write(EMC + EMC_MRW3, mr13_flip_fspwr);
|
|
reg::Write(EMC + EMC_MRW, dst_timing->emc_mrw);
|
|
reg::Write(EMC + EMC_MRW2, dst_timing->emc_mrw2);
|
|
}
|
|
|
|
/* Step 8:
|
|
* Program the shadow registers.
|
|
*/
|
|
|
|
/* Set burst registers. */
|
|
for (u32 i = 0; i < dst_timing->num_burst; i++) {
|
|
uint32_t var = 0;
|
|
uint32_t wval = 0;
|
|
|
|
if (!BurstRegistersOffsets[i]) {
|
|
continue;
|
|
}
|
|
|
|
var = BurstRegistersOffsets[i];
|
|
|
|
if (train_ca || train_ca_vref) {
|
|
wval = dst_timing->shadow_regs_ca_train_arr[i];
|
|
} else if (train_quse || train_quse_vref) {
|
|
wval = dst_timing->shadow_regs_quse_train_arr[i];
|
|
} else if (train_wr || train_wr_vref || train_rd || train_rd_vref) {
|
|
wval = dst_timing->shadow_regs_rdwr_train_arr[i];
|
|
} else {
|
|
wval = dst_timing->burst_regs_arr[i];
|
|
}
|
|
|
|
|
|
if (dram_type != DRAM_TYPE_LPDDR4 &&
|
|
(var == EMC_MRW6 || var == EMC_MRW7 ||
|
|
var == EMC_MRW8 || var == EMC_MRW9 ||
|
|
var == EMC_MRW10 || var == EMC_MRW11 ||
|
|
var == EMC_MRW12 || var == EMC_MRW13 ||
|
|
var == EMC_MRW14 || var == EMC_MRW15 ||
|
|
var == EMC_TRAINING_CTRL))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (var == EMC_CFG) {
|
|
wval &= (dram_type == DRAM_TYPE_LPDDR4) ? 0x0FFFFFFF : 0xCFFFFFFF;
|
|
} else if ((var == EMC_ZCAL_INTERVAL) && opt_zcal_en_cc) {
|
|
wval = 0; /* EMC_ZCAL_INTERVAL reset value. */
|
|
} else if (var == EMC_PMACRO_AUTOCAL_CFG_COMMON) {
|
|
wval |= (1 << 16);
|
|
} else if (var == EMC_PMACRO_DATA_PAD_TX_CTRL) {
|
|
wval &= 0xFEFEFDFD;
|
|
} else if (var == EMC_PMACRO_CMD_PAD_TX_CTRL) {
|
|
wval &= 0xFAFEFDFD;
|
|
wval |= 0x04000000;
|
|
} else if (var == EMC_PMACRO_BRICK_CTRL_RFU1) {
|
|
wval &= 0xf800f800;
|
|
} else if (var == EMC_PMACRO_COMMON_PAD_TX_CTRL) {
|
|
wval &= 0xfffffff0;
|
|
} else if (var == EMC_TRAINING_CTRL) {
|
|
wval |= train_second_rank ? (1 << 14) : 0;
|
|
}
|
|
|
|
reg::Write(EMC + var, wval);
|
|
}
|
|
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
/* Use the current timing when training. */
|
|
if (training_enabled) {
|
|
mrw_req = (23 << 16) | (src_timing->run_clocks & 0xFF);
|
|
} else {
|
|
mrw_req = (23 << 16) | (dst_timing->run_clocks & 0xFF);
|
|
}
|
|
|
|
reg::Write(EMC + EMC_MRW, mrw_req);
|
|
}
|
|
|
|
/* Per channel burst registers. */
|
|
const bool dual_channel = reg::GetField(fbio_cfg7, EMC_REG_BITS_MASK(FBIO_CFG7_CH1_ENABLE)) == EMC_FBIO_CFG7_CH1_ENABLE_ENABLE;
|
|
for (u32 i = 0; i < dst_timing->num_burst_per_ch; i++) {
|
|
if (!PerChannelBurstRegisters[i]) {
|
|
continue;
|
|
}
|
|
|
|
const u32 addr = PerChannelBurstRegisters[i];
|
|
const u32 base = addr & ~0xFFF;
|
|
const u32 off = addr & 0xFFF;
|
|
|
|
if (dram_type != DRAM_TYPE_LPDDR4 &&
|
|
(off == EMC_MRW6 ||
|
|
off == EMC_MRW7 ||
|
|
off == EMC_MRW8 ||
|
|
off == EMC_MRW9 ||
|
|
off == EMC_MRW10 ||
|
|
off == EMC_MRW11 ||
|
|
off == EMC_MRW12 ||
|
|
off == EMC_MRW13 ||
|
|
off == EMC_MRW14 ||
|
|
off == EMC_MRW15)
|
|
)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
/* Filter out second channel if not in DUAL_CHANNEL mode. */
|
|
if (!dual_channel && base == EMC1) {
|
|
continue;
|
|
}
|
|
|
|
/* Write the value. */
|
|
reg::Write(addr, dst_timing->burst_perch_regs_arr[i]);
|
|
}
|
|
|
|
/* Vref regs. */
|
|
for (u32 i = 0; i < dst_timing->vref_num; i++) {
|
|
if (!PerChannelVrefRegisters[i]) {
|
|
continue;
|
|
}
|
|
|
|
const u32 addr = PerChannelVrefRegisters[i];
|
|
const u32 base = addr & ~0xFFF;
|
|
|
|
/* Filter out second channel if not in DUAL_CHANNEL mode. */
|
|
if (!dual_channel && base == EMC1) {
|
|
continue;
|
|
}
|
|
|
|
/* Write the value. */
|
|
reg::Write(addr, dst_timing->vref_perch_regs_arr[i]);
|
|
}
|
|
|
|
/* Training regs. */
|
|
if (training_enabled) {
|
|
for (u32 i = 0; i < dst_timing->training_mod_num; i++) {
|
|
if (!PerChannelTrainingModRegisters[i]) {
|
|
continue;
|
|
}
|
|
|
|
const u32 addr = PerChannelTrainingModRegisters[i];
|
|
const u32 base = addr & ~0xFFF;
|
|
|
|
/* Filter out second channel if not in DUAL_CHANNEL mode. */
|
|
if (!dual_channel && base == EMC1) {
|
|
continue;
|
|
}
|
|
|
|
/* Write the value. */
|
|
reg::Write(addr, dst_timing->training_mod_regs_arr[i]);
|
|
}
|
|
}
|
|
|
|
/* Trimmers. */
|
|
for (u32 i = 0; i < dst_timing->num_trim; i++) {
|
|
if (!TrimRegisters[i]) {
|
|
continue;
|
|
}
|
|
|
|
const u32 addr = TrimRegisters[i];
|
|
const u32 ofs = addr & 0xFFF;
|
|
|
|
u32 wval = dst_timing->trim_regs_arr[i];
|
|
|
|
if (compensate_trimmer_applicable &&
|
|
(ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
|
|
ofs == EMC_DATA_BRLSHFT_0 ||
|
|
ofs == EMC_DATA_BRLSHFT_1))
|
|
{
|
|
wval = ApplyPeriodicCompensationTrimmer(dst_timing, ofs);
|
|
}
|
|
|
|
/* Write the value. */
|
|
reg::Write(addr, wval);
|
|
}
|
|
|
|
/* Per-channel trimmers. */
|
|
for (u32 i = 0; i < dst_timing->num_trim_per_ch; i++) {
|
|
if (!PerChannelTrimRegisters[i]) {
|
|
continue;
|
|
}
|
|
|
|
const u32 addr = PerChannelTrimRegisters[i];
|
|
const u32 base = addr & ~0xFFF;
|
|
const u32 ofs = addr & 0xFFF;
|
|
|
|
/* Filter out second channel if not in DUAL_CHANNEL mode. */
|
|
if (!dual_channel && base == EMC1) {
|
|
continue;
|
|
}
|
|
|
|
u32 wval = dst_timing->trim_perch_regs_arr[i];
|
|
|
|
if (compensate_trimmer_applicable &&
|
|
(ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 ||
|
|
ofs == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 ||
|
|
ofs == EMC_DATA_BRLSHFT_0 ||
|
|
ofs == EMC_DATA_BRLSHFT_1))
|
|
{
|
|
wval = ApplyPeriodicCompensationTrimmer(dst_timing, ofs);
|
|
}
|
|
|
|
/* Write the value. */
|
|
reg::Write(addr, wval);
|
|
}
|
|
|
|
if (training_enabled) {
|
|
if (train_wr && dst_timing->periodic_training && (dram_type == DRAM_TYPE_LPDDR4)) {
|
|
PeriodicCompensationHandler(WRITE_TRAINING_SEQUENCE, dram_dev_num, fbio_cfg7, src_timing, dst_timing);
|
|
}
|
|
} else {
|
|
/* Write burst_mc_regs. */
|
|
for (u32 i = 0; i < dst_timing->num_mc_regs; i++) {
|
|
reg::Write(BurstMcRegisters[i], dst_timing->burst_mc_regs_arr[i]);
|
|
}
|
|
}
|
|
|
|
/* Registers to be programmed on the faster clock. */
|
|
if (!training_enabled && (dst_timing->rate_khz < src_timing->rate_khz)) {
|
|
for (u32 i = 0; i < dst_timing->num_up_down; i++) {
|
|
reg::Write(LaScaleRegisters[i], dst_timing->la_scale_regs_arr[i]);
|
|
}
|
|
}
|
|
|
|
/* Step 9:
|
|
* LPDDR4 section A.
|
|
*/
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
reg::Write(EMC + EMC_ZCAL_INTERVAL, emc_zcal_interval);
|
|
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, emc_zcal_wait_cnt_new);
|
|
reg::Write(EMC + EMC_DBG, emc_dbg_o | 0x40000002);
|
|
reg::Write(EMC + EMC_ZCAL_INTERVAL, emc_zcal_interval);
|
|
reg::Write(EMC + EMC_DBG, emc_dbg_o);
|
|
|
|
if (training_enabled) {
|
|
SetShadowBypass(ACTIVE);
|
|
|
|
reg::Write(EMC + EMC_PMACRO_AUTOCAL_CFG_COMMON, dst_timing->burst_regs.emc_pmacro_autocal_cfg_common | (1 << 16));
|
|
|
|
if (train_ca || train_ca_vref) {
|
|
reg::Write(EMC + EMC_FBIO_CFG5, src_timing->burst_regs.emc_fbio_cfg5 | (1 << 27));
|
|
}
|
|
|
|
SetShadowBypass(ASSEMBLY);
|
|
|
|
if (dual_channel) {
|
|
CcfifoWrite(EMC_CFG_SYNC, 0, 0);
|
|
}
|
|
|
|
/* Change CFG_SWAP. */
|
|
CcfifoWrite(EMC_DBG, ((emc_dbg_o & 0xF3FFFFFF) | 0x4000000), 0);
|
|
}
|
|
}
|
|
|
|
/* Step 10:
|
|
* LPDDR4 and DDR3 common section.
|
|
*/
|
|
if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) {
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
CcfifoWrite(EMC_SELF_REF, 0x101, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_SELF_REF, 0x1, 0);
|
|
}
|
|
|
|
if (!(train_ca || train_ca_vref) && (dram_type == DRAM_TYPE_LPDDR4) && (source_clock_period <= zqcal_before_cc_cutoff)) {
|
|
CcfifoWrite(EMC_MRW3, mr13_flip_fspwr ^ 0x40, 0);
|
|
CcfifoWrite(EMC_MRW6, (dst_timing->burst_regs.emc_mrw6 & 0xFFFF3F3F) | (src_timing->burst_regs.emc_mrw6 & 0x0000C0C0), 0);
|
|
CcfifoWrite(EMC_MRW14, (dst_timing->burst_regs.emc_mrw14 & 0xFFFF0707) | (src_timing->burst_regs.emc_mrw14 & 0x00003838), 0);
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
CcfifoWrite(EMC_MRW7, (dst_timing->burst_regs.emc_mrw7 & 0xFFFF3F3F) | (src_timing->burst_regs.emc_mrw7 & 0x0000C0C0), 0);
|
|
CcfifoWrite(EMC_MRW15, (dst_timing->burst_regs.emc_mrw15 & 0xFFFF0707) | (src_timing->burst_regs.emc_mrw15 & 0x00003838), 0);
|
|
}
|
|
|
|
if (opt_zcal_en_cc) {
|
|
if ((dram_dev_num == ONE_RANK) || shared_zq_resistor) {
|
|
CcfifoWrite(EMC_ZQ_CAL, 2 << 30 | (1 << 0), 0);
|
|
} else {
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 0), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
emc_dbg = emc_dbg_o;
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
if (training_enabled) {
|
|
/* Change CFG_SWAP. */
|
|
emc_dbg = ((emc_dbg_o & 0xF3FFFFFF) | 0x4000000 | (1 << 30));
|
|
CcfifoWrite(EMC_DBG, emc_dbg, 0);
|
|
}
|
|
if (train_ca || train_ca_vref) {
|
|
CcfifoWrite(EMC_PMACRO_DATA_RX_TERM_MODE, src_timing->burst_regs.emc_pmacro_data_rx_term_mode & 0xFFFFFCCC, 0);
|
|
|
|
if ((dram_dev_num == TWO_RANK) && train_second_rank) {
|
|
CcfifoWrite(EMC_MRW3, mr13_flip_fspop | 0x8, (1000 * src_timing->dram_timings.t_rp) / source_clock_period);
|
|
CcfifoWrite(EMC_MRW3, mr13_catr_enable | 0x8, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_MRW3, mr13_catr_enable | 0x8, (1000 * src_timing->dram_timings.t_rp) / source_clock_period);
|
|
}
|
|
|
|
CcfifoWrite(EMC_TR_CTRL_0, 0x15A, 0);
|
|
CcfifoWrite(EMC_INTSTATUS, 0, 1000000 / source_clock_period);
|
|
} else {
|
|
CcfifoWrite(EMC_MRW3, mr13_flip_fspop | 0x8, (1000 * src_timing->dram_timings.t_rp) / source_clock_period);
|
|
CcfifoWrite(EMC_INTSTATUS, 0, tFC_lpddr4 / source_clock_period);
|
|
}
|
|
}
|
|
|
|
bool ref_b4_sref_en = false;
|
|
bool cya_issue_pc_ref = false;
|
|
bool cya_allow_ref_cc = false;
|
|
|
|
if ((dram_type == DRAM_TYPE_LPDDR4) || (opt_dvfs_mode != MAN_SR)) {
|
|
uint32_t t = 30 + (cya_allow_ref_cc ? (4000 * src_timing->dram_timings.t_rfc) + ((1000 * src_timing->dram_timings.t_rp) / source_clock_period) : 0);
|
|
CcfifoWrite(EMC_PIN, emc_pin_o & 0xFFFFFFF8, t);
|
|
}
|
|
|
|
uint32_t ref_delay_mult = 1;
|
|
ref_delay_mult += ref_b4_sref_en ? 1 : 0;
|
|
ref_delay_mult += cya_allow_ref_cc ? 1 : 0;
|
|
ref_delay_mult += cya_issue_pc_ref ? 1 : 0;
|
|
uint32_t ref_delay = ref_delay_mult * ((1000 * src_timing->dram_timings.t_rp / source_clock_period) + (1000 * src_timing->dram_timings.t_rfc / source_clock_period)) + 20;
|
|
|
|
/* Step 11:
|
|
* Ramp down.
|
|
*/
|
|
CcfifoWrite(EMC_CFG_SYNC, 0, (dram_type == DRAM_TYPE_LPDDR4) ? 0 : ref_delay);
|
|
CcfifoWrite(EMC_DBG, emc_dbg | ((1 << 1) | (1 << 30)), 0);
|
|
uint32_t ramp_down_wait = DvfsPowerRampDown(false, src_timing, dst_timing, source_clock_period);
|
|
|
|
/* Step 12:
|
|
* Trigger the clock change.
|
|
*/
|
|
CcfifoWrite(EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 1, 0);
|
|
if (!training_enabled) {
|
|
CcfifoWrite(EMC_DBG, (emc_dbg & ~(1 << 30)) | (1 << 1), 0);
|
|
}
|
|
|
|
/* Step 13:
|
|
* Ramp up.
|
|
*/
|
|
uint32_t ramp_up_wait = DvfsPowerRampUp(false, src_timing, dst_timing, training, destination_clock_period);
|
|
CcfifoWrite(EMC_DBG, emc_dbg, 0);
|
|
|
|
/* Step 14:
|
|
* Bringup CKE pins.
|
|
*/
|
|
if ((dram_type == DRAM_TYPE_LPDDR4)) {
|
|
uint32_t r = emc_pin_o & 0xFFFFFFF8;
|
|
if (train_ca || train_ca_vref) {
|
|
if (dram_dev_num == TWO_RANK) {
|
|
if (train_second_rank) {
|
|
CcfifoWrite(EMC_PIN, r | 5, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_PIN, r | 6, 0);
|
|
}
|
|
} else {
|
|
CcfifoWrite(EMC_PIN, r, 0);
|
|
}
|
|
} else if (dram_dev_num == TWO_RANK) {
|
|
CcfifoWrite(EMC_PIN, r | 7, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_PIN, r | 1, 0);
|
|
}
|
|
}
|
|
|
|
/* Step 15:
|
|
* Calculate zqlatch wait time; has dependency on ramping times.
|
|
*/
|
|
if (source_clock_period <= zqcal_before_cc_cutoff) {
|
|
int t = (int)(ramp_up_wait + ramp_down_wait) / (int)destination_clock_period;
|
|
zq_latch_dvfs_wait_time = (int)tZQCAL_lpddr4_fc_adj - t;
|
|
} else {
|
|
zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj - util::DivideUp(1000 * dst_timing->dram_timings.t_pdex, destination_clock_period);
|
|
}
|
|
|
|
if (!(train_ca || train_ca_vref) && (dram_type == DRAM_TYPE_LPDDR4) && opt_zcal_en_cc) {
|
|
if (dram_dev_num == ONE_RANK) {
|
|
if (source_clock_period > zqcal_before_cc_cutoff) {
|
|
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), util::DivideUp(1000 * dst_timing->dram_timings.t_pdex, destination_clock_period));
|
|
}
|
|
|
|
if (!training_enabled) {
|
|
CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xF3FFFFF7) | 0xC000000, util::DivideUp(1000 * dst_timing->dram_timings.t_pdex, destination_clock_period));
|
|
CcfifoWrite(EMC_SELF_REF, 0x100, 0);
|
|
CcfifoWrite(EMC_REF, 0, 0);
|
|
}
|
|
|
|
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), std::max<int>(0, zq_latch_dvfs_wait_time));
|
|
} else if (shared_zq_resistor) {
|
|
if (source_clock_period > zqcal_before_cc_cutoff) {
|
|
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), util::DivideUp(1000 * dst_timing->dram_timings.t_pdex, destination_clock_period));
|
|
}
|
|
|
|
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), std::max<int>(0, zq_latch_dvfs_wait_time) + util::DivideUp(1000 * dst_timing->dram_timings.t_pdex, destination_clock_period));
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), 0);
|
|
|
|
if (!training_enabled) {
|
|
CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xF3FFFFF7) | 0xC000000, 0);
|
|
CcfifoWrite(EMC_SELF_REF, 0x100, 0);
|
|
CcfifoWrite(EMC_REF, 0, 0);
|
|
}
|
|
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), tZQCAL_lpddr4 / destination_clock_period);
|
|
} else {
|
|
if (source_clock_period > zqcal_before_cc_cutoff) {
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 0), util::DivideUp(1000 * dst_timing->dram_timings.t_pdex, destination_clock_period));
|
|
}
|
|
|
|
if (!training_enabled) {
|
|
CcfifoWrite(EMC_MRW3, (mr13_flip_fspop & 0xF3FFFFF7) | 0xC000000, util::DivideUp(1000 * dst_timing->dram_timings.t_pdex, destination_clock_period));
|
|
CcfifoWrite(EMC_SELF_REF, 0x100, 0);
|
|
CcfifoWrite(EMC_REF, 0, 0);
|
|
}
|
|
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 1), std::max<int>(0, zq_latch_dvfs_wait_time));
|
|
}
|
|
}
|
|
|
|
/* WAR: delay for zqlatch */
|
|
CcfifoWrite(EMC_INTSTATUS, 0, 10);
|
|
|
|
/* Step 16:
|
|
* LPDDR4 Conditional Training Kickoff.
|
|
*/
|
|
if (training_enabled && (dram_type == DRAM_TYPE_LPDDR4)) {
|
|
CcfifoWrite(EMC_INTSTATUS, 0, (1020000 / destination_clock_period));
|
|
|
|
uint32_t train_cmd = 0;
|
|
|
|
if (train_ca)
|
|
train_cmd |= (1 << 1); /* CA */
|
|
if (train_ca_vref)
|
|
train_cmd |= (1 << 5); /* CA_VREF */
|
|
if (train_quse)
|
|
train_cmd |= (1 << 4); /* QUSE */
|
|
if (train_quse_vref)
|
|
train_cmd |= (1 << 8); /* QUSE_VREF */
|
|
if (train_wr)
|
|
train_cmd |= (1 << 3); /* WR */
|
|
if (train_wr_vref)
|
|
train_cmd |= (1 << 6); /* WR_VREF */
|
|
if (train_rd)
|
|
train_cmd |= (1 << 2); /* RD */
|
|
if (train_rd_vref)
|
|
train_cmd |= (1 << 7); /* RD_VREF */
|
|
|
|
train_cmd |= (1 << 31); /* GO */
|
|
|
|
CcfifoWrite(EMC_TRAINING_CMD, train_cmd, 0);
|
|
|
|
if (bg_regulator_mode_change) {
|
|
if (enable_bg_regulator)
|
|
CcfifoWrite(EMC_PMACRO_BG_BIAS_CTRL_0, src_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & ~(1 << 0), 0);
|
|
else
|
|
CcfifoWrite(EMC_PMACRO_BG_BIAS_CTRL_0, src_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & ~(1 << 2), 0);
|
|
}
|
|
|
|
CcfifoWrite(EMC_SWITCH_BACK_CTRL, 1, 0);
|
|
|
|
if (!(train_ca || train_ca_vref) || train_second_rank) {
|
|
CcfifoWrite(EMC_MRW3, mr13_flip_fspop ^ 0xC0, 0);
|
|
CcfifoWrite(EMC_INTSTATUS, 0, (1000000 / destination_clock_period));
|
|
}
|
|
|
|
CcfifoWrite(EMC_PIN, emc_pin_o & 0xFFFFFFF8, 0);
|
|
CcfifoWrite(EMC_CFG_SYNC, 0, 0);
|
|
CcfifoWrite(EMC_DBG, emc_dbg | ((1 << 30) | (1 << 1)), 0);
|
|
|
|
DvfsPowerRampDown(true, src_timing, dst_timing, destination_clock_period);
|
|
|
|
CcfifoWrite(EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 1, 0);
|
|
CcfifoWrite(EMC_DBG, (emc_dbg & ~(1 << 30)) | (1 << 1), 0);
|
|
|
|
DvfsPowerRampUp(true, src_timing, dst_timing, training, source_clock_period);
|
|
|
|
CcfifoWrite(EMC_DBG, emc_dbg, 0);
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
CcfifoWrite(EMC_PIN, emc_pin_o | 7, 0);
|
|
} else {
|
|
CcfifoWrite(EMC_PIN, ((emc_pin_o & 0xFFFFFFF8) | 1), 0);
|
|
}
|
|
|
|
if (train_ca || train_ca_vref) {
|
|
CcfifoWrite(EMC_TR_CTRL_0, 0x4A, (200000 / source_clock_period));
|
|
CcfifoWrite(EMC_TR_CTRL_0, 0x40, (1000000 / source_clock_period));
|
|
CcfifoWrite(EMC_MRW3, mr13_catr_enable & 0xFFFFFFFE, 0);
|
|
CcfifoWrite(EMC_INTSTATUS, 0, (1000000 / source_clock_period));
|
|
CcfifoWrite(EMC_PMACRO_DATA_RX_TERM_MODE, src_timing->burst_regs.emc_pmacro_data_rx_term_mode, 0);
|
|
}
|
|
|
|
CcfifoWrite(EMC_DBG, emc_dbg_o, 0);
|
|
|
|
if (opt_zcal_en_cc) {
|
|
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 0), 0);
|
|
CcfifoWrite(EMC_ZQ_CAL, (2 << 30) | (1 << 1), (1000000 / source_clock_period));
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
if (shared_zq_resistor) {
|
|
if (!(train_ca || train_ca_vref) || train_second_rank) {
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0), 0);
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), (1000000 / source_clock_period));
|
|
|
|
if (!(train_ca || train_ca_vref))
|
|
CcfifoWrite(EMC_MRW3, ((mr13_flip_fspop ^ 0xC0) & 0xF3FFFFF7) | 0xC000000, 0);
|
|
}
|
|
|
|
CcfifoWrite(EMC_SELF_REF, 0x100, 0);
|
|
skip_zqcal = true;
|
|
} else {
|
|
if ((train_ca || train_ca_vref) && !train_second_rank) {
|
|
CcfifoWrite(EMC_SELF_REF, 0x100, 0);
|
|
skip_zqcal = true;
|
|
} else {
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 0), 0);
|
|
CcfifoWrite(EMC_ZQ_CAL, (1 << 30) | (1 << 1), (1000000 / source_clock_period));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!skip_zqcal) {
|
|
if (!(train_ca || train_ca_vref))
|
|
CcfifoWrite(EMC_MRW3, ((mr13_flip_fspop ^ 0xC0) & 0xF3FFFFF7) | 0xC000000, 0);
|
|
|
|
CcfifoWrite(EMC_SELF_REF, 0x100, 0);
|
|
}
|
|
}
|
|
|
|
if (!skip_zqcal) {
|
|
/* Step 17:
|
|
* MANSR exit self refresh.
|
|
*/
|
|
|
|
if ((opt_dvfs_mode == MAN_SR) && (dram_type != DRAM_TYPE_LPDDR4))
|
|
CcfifoWrite(EMC_SELF_REF, 0, 0);
|
|
|
|
/* Step 18:
|
|
* Send MRWs to LPDDR3/DDR3.
|
|
*/
|
|
|
|
if (dram_type == DRAM_TYPE_LPDDR2) {
|
|
CcfifoWrite(EMC_MRW2, dst_timing->emc_mrw2, 0);
|
|
CcfifoWrite(EMC_MRW, dst_timing->emc_mrw, 0);
|
|
|
|
if (is_lpddr3) {
|
|
CcfifoWrite(EMC_MRW4, dst_timing->emc_mrw4, 0);
|
|
}
|
|
} else if (dram_type == DRAM_TYPE_DDR4) {
|
|
if (opt_dll_mode == DLL_ON) {
|
|
CcfifoWrite(EMC_EMRS, dst_timing->emc_emrs & ~(1 << 26), 0);
|
|
}
|
|
CcfifoWrite(EMC_EMRS2, dst_timing->emc_emrs2 & ~(1 << 26), 0);
|
|
CcfifoWrite(EMC_MRS, dst_timing->emc_mrs | (1 << 26), 0);
|
|
}
|
|
|
|
/* Step 19:
|
|
* ZQCAL for LPDDR3/DDR3
|
|
*/
|
|
|
|
if (opt_zcal_en_cc) {
|
|
if (dram_type == DRAM_TYPE_LPDDR2) {
|
|
uint32_t r;
|
|
uint32_t zq_op = opt_cc_short_zcal ? 0x56 : 0xAB;
|
|
uint32_t zcal_wait_time_ps = opt_cc_short_zcal ? 90000 : 360000;
|
|
uint32_t zcal_wait_time_clocks = util::DivideUp(zcal_wait_time_ps, destination_clock_period);
|
|
r = (zcal_wait_time_clocks << 16) | (zcal_wait_time_clocks << 0);
|
|
|
|
CcfifoWrite(EMC_MRS_WAIT_CNT2, r, 0);
|
|
CcfifoWrite(EMC_MRW, (2 << 30) | (1 << 27) | (10 << 16) | (zq_op << 0), 0);
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
r = (1 << 30) | (1 << 27) | (10 << 16) | (zq_op << 0);
|
|
CcfifoWrite(EMC_MRW, r, 0);
|
|
}
|
|
} else if (dram_type == DRAM_TYPE_DDR4) {
|
|
uint32_t zq_op = opt_cc_short_zcal ? 0 : (1 << 4);
|
|
CcfifoWrite(EMC_ZQ_CAL, zq_op | (2 << 30) | (1 << 0), 0);
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
CcfifoWrite(EMC_ZQ_CAL, zq_op | (1 << 30) | (1 << 0), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bg_regulator_mode_change) {
|
|
SetShadowBypass(ACTIVE);
|
|
|
|
uint32_t bg_regulator_switch_complete_wait_clks = ramp_up_wait > 1250000 ? 0 : (1250000 - ramp_up_wait) / destination_clock_period;
|
|
|
|
if (training_enabled) {
|
|
bg_regulator_switch_complete_wait_clks = (1250000 / source_clock_period);
|
|
CcfifoWrite(EMC_PMACRO_BG_BIAS_CTRL_0, src_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0, bg_regulator_switch_complete_wait_clks);
|
|
} else {
|
|
CcfifoWrite(EMC_PMACRO_BG_BIAS_CTRL_0, dst_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0, bg_regulator_switch_complete_wait_clks);
|
|
}
|
|
|
|
SetShadowBypass(ASSEMBLY);
|
|
}
|
|
|
|
/* Step 20:
|
|
* Issue ref and optional QRST.
|
|
*/
|
|
if (training_enabled || (dram_type != DRAM_TYPE_LPDDR4)) {
|
|
CcfifoWrite(EMC_REF, 0, 0);
|
|
}
|
|
|
|
if (opt_do_sw_qrst) {
|
|
CcfifoWrite(EMC_ISSUE_QRST, 1, 0);
|
|
CcfifoWrite(EMC_ISSUE_QRST, 0, 2);
|
|
}
|
|
|
|
/* Step 21:
|
|
* Restore ZCAL and ZCAL interval.
|
|
*/
|
|
if (save_restore_clkstop_pd || opt_zcal_en_cc) {
|
|
SetShadowBypass(ACTIVE);
|
|
|
|
if (opt_zcal_en_cc) {
|
|
if (training_enabled) {
|
|
CcfifoWrite(EMC_ZCAL_INTERVAL, src_timing->burst_regs.emc_zcal_interval, 0);
|
|
} else if (dram_type != DRAM_TYPE_LPDDR4) {
|
|
CcfifoWrite(EMC_ZCAL_INTERVAL, dst_timing->burst_regs.emc_zcal_interval, 0);
|
|
}
|
|
}
|
|
|
|
if (save_restore_clkstop_pd) {
|
|
CcfifoWrite(EMC_CFG, dst_timing->burst_regs.emc_cfg & ~(1 << 28), 0);
|
|
}
|
|
|
|
if (training_enabled && (dram_type == DRAM_TYPE_LPDDR4)) {
|
|
CcfifoWrite(EMC_SEL_DPD_CTRL, src_timing->emc_sel_dpd_ctrl, 0);
|
|
}
|
|
|
|
SetShadowBypass(ASSEMBLY);
|
|
}
|
|
|
|
/* Step 22:
|
|
* Restore EMC_CFG_PIPE_CLK.
|
|
*/
|
|
CcfifoWrite(EMC_CFG_PIPE_CLK, emc_cfg_pipe_clk_o, 0);
|
|
|
|
if (bg_regulator_mode_change) {
|
|
if (enable_bg_regulator) {
|
|
reg::Write(EMC + EMC_PMACRO_BG_BIAS_CTRL_0, dst_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & ~(1 << 2));
|
|
} else {
|
|
reg::Write(EMC + EMC_PMACRO_BG_BIAS_CTRL_0, dst_timing->burst_regs.emc_pmacro_bg_bias_ctrl_0 & ~(1 << 0));
|
|
}
|
|
}
|
|
|
|
/* Step 23:
|
|
* Do clock change.
|
|
*/
|
|
if (training_enabled) {
|
|
u32 cur_clk_src = reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC);
|
|
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC_SAFE, cur_clk_src);
|
|
ChangeDllSrc(src_timing, cur_clk_src);
|
|
}
|
|
|
|
uint32_t cfg_dig_dll_tmp = (reg::Read(EMC + EMC_CFG_DIG_DLL) & 0xFFFFFF24) | 0x88;
|
|
reg::Write(EMC + EMC_CFG_DIG_DLL, cfg_dig_dll_tmp);
|
|
|
|
reg::Write(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC, next_clk_src);
|
|
WaitForUpdate(EMC_INTSTATUS, 0x10, true, fbio_cfg7);
|
|
|
|
/* Step 24:
|
|
* Save training results.
|
|
*/
|
|
if (training_enabled) {
|
|
uint32_t emc_dbg_tmp = reg::Read(EMC + EMC_DBG);
|
|
reg::Write(EMC + EMC_DBG, emc_dbg_tmp | 1); /* Set READ_MUX to ASSEMBLY. */
|
|
|
|
/* Save CA results. */
|
|
if (train_ca) {
|
|
dst_timing->trim_perch_regs.emc0_cmd_brlshft_0 = reg::Read(EMC0 + EMC_CMD_BRLSHFT_0);
|
|
dst_timing->trim_perch_regs.emc1_cmd_brlshft_1 = dual_channel ? reg::Read(EMC1 + EMC_CMD_BRLSHFT_1): 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_4 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_5 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5) : 0;
|
|
|
|
if (train_bit_level) {
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_0 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_1 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd0_2 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_0 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_1 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd1_2 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_0 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_1 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd2_2 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_0 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_1 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_cmd3_2 = reg::Read(EMC + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2);
|
|
}
|
|
}
|
|
|
|
/* Save CA_VREF results. */
|
|
if (train_ca_vref) {
|
|
dst_timing->burst_perch_regs.emc0_mrw10 = (reg::Read(EMC0 + EMC_TRAINING_OPT_CA_VREF) & 0xFFFF) | 0x880C0000;
|
|
dst_timing->burst_perch_regs.emc1_mrw10 = (dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_CA_VREF) & 0xFFFF : 0) | 0x880C0000;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->burst_perch_regs.emc0_mrw11 = ((reg::Read(EMC0 + EMC_TRAINING_OPT_CA_VREF) >> 16) & 0xFF) | (reg::Read(EMC0 + EMC_TRAINING_OPT_CA_VREF) >> 24 << 8) | (0x480C0000 & 0xFFFFFF00);
|
|
dst_timing->burst_perch_regs.emc1_mrw11 = (((dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_CA_VREF) : 0) >> 16) & 0xFF) | ((dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_CA_VREF) : 0) >> 24 << 8) | (0x480C0000 & 0xFFFFFF00);
|
|
} else {
|
|
dst_timing->burst_perch_regs.emc0_mrw11 = ((reg::Read(EMC0 + EMC_TRAINING_OPT_CA_VREF) >> 16) & 0xFF) | (reg::Read(EMC0 + EMC_TRAINING_OPT_CA_VREF) >> 24 << 8) | (0xC80C0000 & 0xFFFFFF00);
|
|
dst_timing->burst_perch_regs.emc1_mrw11 = (((dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_CA_VREF) : 0) >> 16) & 0xFF) | ((dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_CA_VREF) : 0) >> 24 << 8) | (0xC80C0000 & 0xFFFFFF00);
|
|
}
|
|
}
|
|
|
|
/* Save QUSE results. */
|
|
if (train_quse || train_rd) {
|
|
dst_timing->trim_perch_regs.emc0_quse_brlshft_0 = reg::Read(EMC0 + EMC_QUSE_BRLSHFT_0);
|
|
dst_timing->trim_perch_regs.emc1_quse_brlshft_1 = dual_channel ? reg::Read(EMC1 + EMC_QUSE_BRLSHFT_1) : 0;
|
|
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank0_0 = reg::Read(EMC0 + EMC_PMACRO_QUSE_DDLL_RANK0_0);
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank0_1= reg::Read(EMC0 + EMC_PMACRO_QUSE_DDLL_RANK0_1);
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank0_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_QUSE_DDLL_RANK0_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank0_3 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_QUSE_DDLL_RANK0_3) : 0;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->trim_perch_regs.emc0_quse_brlshft_2 = reg::Read(EMC0 + EMC_QUSE_BRLSHFT_2);
|
|
dst_timing->trim_perch_regs.emc1_quse_brlshft_3 = dual_channel ? reg::Read(EMC1 + EMC_QUSE_BRLSHFT_3) : 0;
|
|
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank1_0 = reg::Read(EMC0 + EMC_PMACRO_QUSE_DDLL_RANK1_0);
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank1_1 = reg::Read(EMC0 + EMC_PMACRO_QUSE_DDLL_RANK1_1);
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank1_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_QUSE_DDLL_RANK1_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_quse_ddll_rank1_3 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_QUSE_DDLL_RANK1_3) : 0;
|
|
}
|
|
}
|
|
|
|
/* Save QUSE_VREF results. */
|
|
if (train_quse_vref) {
|
|
if (dram_dev_num == TWO_RANK) {
|
|
uint32_t emc0_opt_dqs_array[4] = {0};
|
|
uint32_t emc1_opt_dqs_array[4] = {0};
|
|
uint32_t emc1_training_opt_dqs_ib_vref_rank0_val = dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_DQS_IB_VREF_RANK0) : 0;
|
|
uint32_t emc1_training_opt_dqs_ib_vref_rank1_val = dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_DQS_IB_VREF_RANK1) : 0;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
emc0_opt_dqs_array[i] = (reg::Read(EMC0 + EMC_TRAINING_OPT_DQS_IB_VREF_RANK0) >> (8 * i)) & 0xFF;
|
|
emc1_opt_dqs_array[i] = (emc1_training_opt_dqs_ib_vref_rank0_val >> (8 * i)) & 0xFF;
|
|
}
|
|
|
|
uint32_t ib_vref_dqs_0 = 0;
|
|
uint32_t ib_vref_dqs_1 = 0;
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
ib_vref_dqs_0 |= (emc0_opt_dqs_array[i] + ((reg::Read(EMC0 + EMC_TRAINING_OPT_DQS_IB_VREF_RANK1) >> (8 * i)) & 0xFF)) >> 1 << (8 * i);
|
|
ib_vref_dqs_1 |= (emc1_opt_dqs_array[i] + ((emc1_training_opt_dqs_ib_vref_rank1_val >> (8 * i)) & 0xFF)) >> 1 << (8 * i);
|
|
}
|
|
|
|
dst_timing->trim_regs.emc_pmacro_ib_vref_dqs_0 = ib_vref_dqs_0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_vref_dqs_1 = ib_vref_dqs_1;
|
|
}
|
|
else
|
|
{
|
|
dst_timing->trim_regs.emc_pmacro_ib_vref_dqs_0 = reg::Read(EMC + EMC_PMACRO_IB_VREF_DQS_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_vref_dqs_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_VREF_DQS_1) : 0;
|
|
}
|
|
}
|
|
|
|
/* Save RD results. */
|
|
if (train_rd) {
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank0_3 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3) : 0;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_long_dqs_rank1_3 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3) : 0;
|
|
}
|
|
|
|
if (train_bit_level) {
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte4_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte5_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte6_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank0_byte7_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2) : 0;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2);
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte4_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte5_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte6_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ib_ddll_short_dq_rank1_byte7_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2) : 0;
|
|
}
|
|
}
|
|
|
|
/* Save RD_VREF results. */
|
|
if (train_rd_vref) {
|
|
uint8_t ib_vref_dq_byte0_icr = (reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) & 0x7F) + (dst_timing->save_restore_mod_regs[0] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[0] & 0x80000000)
|
|
ib_vref_dq_byte0_icr = (reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) & 0x7F) - (dst_timing->save_restore_mod_regs[0] & 0x7F);
|
|
|
|
uint8_t ib_vref_dq_byte1_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) >> 8) & 0x7F) + (dst_timing->save_restore_mod_regs[1] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[1] & 0x80000000)
|
|
ib_vref_dq_byte1_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) >> 8) & 0x7F) - (dst_timing->save_restore_mod_regs[1] & 0x7F);
|
|
|
|
uint8_t ib_vref_dq_byte2_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) >> 16) & 0x7F) + (dst_timing->save_restore_mod_regs[2] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[2] & 0x80000000)
|
|
ib_vref_dq_byte2_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) >> 16) & 0x7F) - (dst_timing->save_restore_mod_regs[2] & 0x7F);
|
|
|
|
uint8_t ib_vref_dq_byte3_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) >> 24) & 0x7F) + (dst_timing->save_restore_mod_regs[3] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[3] & 0x80000000)
|
|
ib_vref_dq_byte3_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_0) >> 24) & 0x7F) - (dst_timing->save_restore_mod_regs[3] & 0x7F);
|
|
|
|
dst_timing->trim_regs.emc_pmacro_ib_vref_dq_0 = ((ib_vref_dq_byte0_icr & 0x7F) | (ib_vref_dq_byte1_icr & 0x7F) << 8) | ((ib_vref_dq_byte2_icr & 0x7F) << 16) | ((ib_vref_dq_byte3_icr & 0x7F) << 24);
|
|
|
|
uint8_t ib_vref_dq_byte4_icr = (reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) & 0x7F) + (dst_timing->save_restore_mod_regs[4] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[4] & 0x80000000)
|
|
ib_vref_dq_byte4_icr = (reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) & 0x7F) - (dst_timing->save_restore_mod_regs[4] & 0x7F);
|
|
|
|
uint8_t ib_vref_dq_byte5_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) >> 8) & 0x7F) + (dst_timing->save_restore_mod_regs[5] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[5] & 0x80000000)
|
|
ib_vref_dq_byte5_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) >> 8) & 0x7F) - (dst_timing->save_restore_mod_regs[5] & 0x7F);
|
|
|
|
uint8_t ib_vref_dq_byte6_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) >> 16) & 0x7F) + (dst_timing->save_restore_mod_regs[6] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[6] & 0x80000000)
|
|
ib_vref_dq_byte6_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) >> 16) & 0x7F) - (dst_timing->save_restore_mod_regs[6] & 0x7F);
|
|
|
|
uint8_t ib_vref_dq_byte7_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) >> 24) & 0x7F) + (dst_timing->save_restore_mod_regs[7] & 0x7F);
|
|
if (dst_timing->save_restore_mod_regs[7] & 0x80000000)
|
|
ib_vref_dq_byte7_icr = ((reg::Read(EMC + EMC_PMACRO_IB_VREF_DQ_1) >> 24) & 0x7F) - (dst_timing->save_restore_mod_regs[7] & 0x7F);
|
|
|
|
dst_timing->trim_regs.emc_pmacro_ib_vref_dq_1 = ((ib_vref_dq_byte4_icr & 0x7F) | (ib_vref_dq_byte5_icr & 0x7F) << 8) | ((ib_vref_dq_byte6_icr & 0x7F) << 16) | ((ib_vref_dq_byte7_icr & 0x7F) << 24);
|
|
}
|
|
}
|
|
|
|
/* Save WR results. */
|
|
if (train_wr) {
|
|
dst_timing->trim_perch_regs.emc0_data_brlshft_0 = reg::Read(EMC0 + EMC_DATA_BRLSHFT_0);
|
|
dst_timing->trim_perch_regs.emc1_data_brlshft_0 = dual_channel ? reg::Read(EMC1 + EMC_DATA_BRLSHFT_0) : 0;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->trim_perch_regs.emc0_data_brlshft_1 = reg::Read(EMC0 + EMC_DATA_BRLSHFT_1);
|
|
dst_timing->trim_perch_regs.emc1_data_brlshft_1 = dual_channel ? reg::Read(EMC1 + EMC_DATA_BRLSHFT_1) : 0;
|
|
}
|
|
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank0_3 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3) : 0;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_long_dq_rank1_3 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3) : 0;
|
|
}
|
|
|
|
if (train_bit_level) {
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte4_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte5_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte6_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank0_byte7_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2) : 0;
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte0_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte1_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte2_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_0 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_1 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte3_2 = reg::Read(EMC0 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2);
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte4_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte5_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte6_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_0 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_1 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1) : 0;
|
|
dst_timing->trim_regs.emc_pmacro_ob_ddll_short_dq_rank1_byte7_2 = dual_channel ? reg::Read(EMC1 + EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2) : 0;
|
|
}
|
|
}
|
|
|
|
/* Save WR_VREF results. */
|
|
if (train_wr_vref) {
|
|
uint32_t emc1_ranks_sub_partitions = dual_channel ? reg::Read(EMC1 + EMC_TRAINING_OPT_DQ_OB_VREF) : 0;
|
|
|
|
uint8_t emc0_ib_vref_dq_byte8_modded_plus = dst_timing->save_restore_mod_regs[8] + reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF);
|
|
if (dst_timing->save_restore_mod_regs[8] & 0x80000000)
|
|
emc0_ib_vref_dq_byte8_modded_plus = reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF) - dst_timing->save_restore_mod_regs[8];
|
|
|
|
uint8_t emc0_mrw12_op_sp1 = ((reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF) & 0xFFFF) >> 8) + dst_timing->save_restore_mod_regs[9];
|
|
if (dst_timing->save_restore_mod_regs[9] & 0x80000000)
|
|
emc0_mrw12_op_sp1 = ((reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF) & 0xFFFF) >> 8) - dst_timing->save_restore_mod_regs[9];
|
|
|
|
uint8_t emc0_mrw13_op_sp0 = ((reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF) >> 16) & 0xFF) + dst_timing->save_restore_mod_regs[8];
|
|
if (dst_timing->save_restore_mod_regs[8] & 0x80000000)
|
|
emc0_mrw13_op_sp0 = ((reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF) >> 16) & 0xFF) - dst_timing->save_restore_mod_regs[8];
|
|
|
|
uint8_t emc0_ib_vref_dq_byte9_modded_a_plus = dst_timing->save_restore_mod_regs[9] + (reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF) >> 24);
|
|
if (dst_timing->save_restore_mod_regs[9] & 0x80000000)
|
|
emc0_ib_vref_dq_byte9_modded_a_plus = (reg::Read(EMC0 + EMC_TRAINING_OPT_DQ_OB_VREF) >> 24) - (uint8_t)dst_timing->save_restore_mod_regs[9];
|
|
|
|
uint8_t emc0_ib_vref_dq_byte10_modded_plus = emc1_ranks_sub_partitions + dst_timing->save_restore_mod_regs[10];
|
|
if (dst_timing->save_restore_mod_regs[10] & 0x80000000)
|
|
emc0_ib_vref_dq_byte10_modded_plus = emc1_ranks_sub_partitions - dst_timing->save_restore_mod_regs[10];
|
|
|
|
uint8_t emc0_ib_vref_dq_byte11_modded_plus = ((emc1_ranks_sub_partitions & 0xFFFF) >> 8) + dst_timing->save_restore_mod_regs[11];
|
|
if (dst_timing->save_restore_mod_regs[11] & 0x80000000)
|
|
emc0_ib_vref_dq_byte11_modded_plus = ((emc1_ranks_sub_partitions & 0xFFFF) >> 8) - dst_timing->save_restore_mod_regs[11];
|
|
|
|
uint8_t emc1_mrw13_op_sp0 = ((emc1_ranks_sub_partitions >> 16) & 0xFF) + dst_timing->save_restore_mod_regs[10];
|
|
if (dst_timing->save_restore_mod_regs[10] & 0x80000000)
|
|
emc1_mrw13_op_sp0 = ((emc1_ranks_sub_partitions >> 16) & 0xFF) - dst_timing->save_restore_mod_regs[10];
|
|
|
|
uint8_t emc1_mrw13_op_sp1 = (emc1_ranks_sub_partitions >> 24) + dst_timing->save_restore_mod_regs[11];
|
|
if (dst_timing->save_restore_mod_regs[11] & 0x80000000)
|
|
emc1_mrw13_op_sp1 = (emc1_ranks_sub_partitions >> 24) - dst_timing->save_restore_mod_regs[11];
|
|
|
|
dst_timing->burst_perch_regs.emc1_mrw12 = (uint8_t)emc0_ib_vref_dq_byte10_modded_plus | 0x880E0000 | (emc0_ib_vref_dq_byte11_modded_plus << 8);
|
|
dst_timing->burst_perch_regs.emc0_mrw12 = emc0_ib_vref_dq_byte8_modded_plus | 0x880E0000 | (emc0_mrw12_op_sp1 << 8);
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
dst_timing->burst_perch_regs.emc0_mrw13 = emc0_ib_vref_dq_byte9_modded_a_plus << 8 | emc0_mrw13_op_sp0 | 0x480E0000;
|
|
dst_timing->burst_perch_regs.emc1_mrw13 = (emc1_mrw13_op_sp1 << 8) | emc1_mrw13_op_sp0 | 0x480E0000;
|
|
} else {
|
|
dst_timing->burst_perch_regs.emc0_mrw13 = emc0_ib_vref_dq_byte9_modded_a_plus << 8 | emc0_mrw13_op_sp0 | 0xC80E0000;
|
|
dst_timing->burst_perch_regs.emc1_mrw13 = (emc1_mrw13_op_sp1 << 8) | emc1_mrw13_op_sp0 | 0xC80E0000;
|
|
}
|
|
}
|
|
}
|
|
|
|
reg::Write(EMC + EMC_DBG, emc_dbg_tmp);
|
|
}
|
|
|
|
/* Step 25:
|
|
* Program MC updown registers.
|
|
*/
|
|
if ((dst_timing->rate_khz > src_timing->rate_khz) && !training_enabled) {
|
|
for (u32 i = 0; i < dst_timing->num_up_down; i++) {
|
|
reg::Write(LaScaleRegisters[i], dst_timing->la_scale_regs_arr[i]);
|
|
}
|
|
|
|
/* Request a timing update. */
|
|
TimingUpdate(fbio_cfg7);
|
|
}
|
|
|
|
/* Step 26:
|
|
* Restore ZCAL registers.
|
|
*/
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, dst_timing->burst_regs.emc_zcal_wait_cnt);
|
|
reg::Write(EMC + EMC_ZCAL_INTERVAL, dst_timing->burst_regs.emc_zcal_interval);
|
|
SetShadowBypass(ASSEMBLY);
|
|
}
|
|
|
|
if ((dram_type != DRAM_TYPE_LPDDR4)
|
|
&& opt_zcal_en_cc
|
|
&& !opt_short_zcal
|
|
&& opt_cc_short_zcal)
|
|
{
|
|
util::WaitMicroSeconds(2);
|
|
|
|
SetShadowBypass(ACTIVE);
|
|
if (dram_type == DRAM_TYPE_LPDDR2) {
|
|
reg::Write(EMC + EMC_MRS_WAIT_CNT, dst_timing->burst_regs.emc_mrs_wait_cnt);
|
|
} else if (dram_type == DRAM_TYPE_DDR4) {
|
|
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, dst_timing->burst_regs.emc_zcal_wait_cnt);
|
|
}
|
|
SetShadowBypass(ASSEMBLY);
|
|
}
|
|
|
|
/* Step 27:
|
|
* Restore EMC_CFG, FDPD registers.
|
|
*/
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_CFG, dst_timing->burst_regs.emc_cfg);
|
|
SetShadowBypass(ASSEMBLY);
|
|
reg::Write(EMC + EMC_FDPD_CTRL_CMD_NO_RAMP, dst_timing->emc_fdpd_ctrl_cmd_no_ramp);
|
|
reg::Write(EMC + EMC_SEL_DPD_CTRL, dst_timing->emc_sel_dpd_ctrl);
|
|
|
|
/* Step 28:
|
|
* Training recover.
|
|
*/
|
|
if (training_enabled && (dram_type == DRAM_TYPE_LPDDR4)) {
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_CFG, dst_timing->burst_regs.emc_cfg);
|
|
reg::Write(EMC + EMC_SEL_DPD_CTRL, dst_timing->emc_sel_dpd_ctrl);
|
|
reg::Write(EMC + EMC_ZCAL_WAIT_CNT, src_timing->burst_regs.emc_zcal_wait_cnt);
|
|
reg::Write(EMC + EMC_ZCAL_INTERVAL, src_timing->burst_regs.emc_zcal_interval);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG2, src_timing->emc_auto_cal_config2);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG3, src_timing->emc_auto_cal_config3);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG4, src_timing->emc_auto_cal_config4);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG5, src_timing->emc_auto_cal_config5);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG6, src_timing->emc_auto_cal_config6);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG7, src_timing->emc_auto_cal_config7);
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG8, src_timing->emc_auto_cal_config8);
|
|
SetShadowBypass(ASSEMBLY);
|
|
reg::Write(EMC + EMC_TR_DVFS, dst_timing->burst_regs.emc_tr_dvfs & ~(1 << 0));
|
|
}
|
|
|
|
SetShadowBypass(ACTIVE);
|
|
reg::Write(EMC + EMC_PMACRO_AUTOCAL_CFG_COMMON, dst_timing->burst_regs.emc_pmacro_autocal_cfg_common);
|
|
SetShadowBypass(ASSEMBLY);
|
|
|
|
/* Step 29:
|
|
* Power fix WAR.
|
|
*/
|
|
reg::Write(EMC + EMC_PMACRO_CFG_PM_GLOBAL_0, 0xFF0000);
|
|
reg::Write(EMC + EMC_PMACRO_TRAINING_CTRL_0, 0x8);
|
|
reg::Write(EMC + EMC_PMACRO_TRAINING_CTRL_1, 0x8);
|
|
reg::Write(EMC + EMC_PMACRO_CFG_PM_GLOBAL_0, 0);
|
|
|
|
/* Step 30:
|
|
* Re-enable autocal.
|
|
*/
|
|
if (training_enabled) {
|
|
emc_auto_cal_config = src_timing->emc_auto_cal_config;
|
|
|
|
/* Restore FSP to account for switch back. Only needed in training. */
|
|
g_fsp_for_next_freq = !g_fsp_for_next_freq;
|
|
} else {
|
|
emc_auto_cal_config = dst_timing->emc_auto_cal_config;
|
|
|
|
if (dst_timing->burst_regs.emc_cfg_dig_dll & 0x1) {
|
|
DllEnableStall(fbio_cfg7);
|
|
}
|
|
}
|
|
|
|
reg::Write(EMC + EMC_AUTO_CAL_CONFIG, emc_auto_cal_config);
|
|
}
|
|
|
|
void CleanupActiveShadowCopy(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing) {
|
|
const int dram_type = reg::GetValue(EMC + EMC_FBIO_CFG5, EMC_REG_BITS_MASK(FBIO_CFG5_DRAM_TYPE));
|
|
const u32 fbio_cfg7 = reg::Read(EMC + EMC_FBIO_CFG7);
|
|
|
|
/* Change CFG_SWAP to ASSEMBLY_ONLY */
|
|
uint32_t emc_dbg = reg::Read(EMC + EMC_DBG);
|
|
emc_dbg = ((emc_dbg & 0xF3FFFFFF) | 0x8000000);
|
|
reg::Write(EMC + EMC_DBG, emc_dbg);
|
|
|
|
/* Change UPDATE_AUTO_CAL_IN_UPDATE to ALWAYS */
|
|
uint32_t emc_cfg_update = reg::Read(EMC + EMC_CFG_UPDATE);
|
|
emc_cfg_update = ((emc_cfg_update & 0xFFFFFFF9) | 0x04);
|
|
reg::Write(EMC + EMC_CFG_UPDATE, emc_cfg_update);
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
/* Change UPDATE_AUTO_CAL_IN_UPDATE to NEVER */
|
|
emc_cfg_update = reg::Read(EMC + EMC_CFG_UPDATE);
|
|
emc_cfg_update &= 0xFFFFFFF9;
|
|
reg::Write(EMC + EMC_CFG_UPDATE, emc_cfg_update);
|
|
|
|
/* Change CFG_SWAP to ACTIVE_ONLY */
|
|
emc_dbg = reg::Read(EMC + EMC_DBG);
|
|
emc_dbg &= 0xF3FFFFFF;
|
|
reg::Write(EMC + EMC_DBG, emc_dbg);
|
|
|
|
/* Disable DLL and change CFG_DLL_MODE to RUN_PERIODIC */
|
|
uint32_t emc_cfg_dig_dll = reg::Read(EMC + EMC_CFG_DIG_DLL);
|
|
emc_cfg_dig_dll = ((emc_cfg_dig_dll & 0xFFFFFF3E) | 0x80);
|
|
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll);
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
/* Disable or enable DLL */
|
|
emc_cfg_dig_dll = reg::Read(EMC + EMC_CFG_DIG_DLL);
|
|
if (dst_timing->burst_regs.emc_cfg_dig_dll == 0x01) {
|
|
emc_cfg_dig_dll |= 0x01;
|
|
} else {
|
|
emc_cfg_dig_dll &= 0xFFFFFFFE;
|
|
}
|
|
|
|
/* Change CFG_DLL_MODE to RUN_PERIODIC */
|
|
emc_cfg_dig_dll = ((emc_cfg_dig_dll & 0xFFFFFF3F) | 0x80);
|
|
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll);
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
/* Wait for DLL_LOCK to be set */
|
|
uint32_t emc_dig_dll_status = 0;
|
|
do {
|
|
emc_dig_dll_status = reg::Read(EMC + EMC_DIG_DLL_STATUS);
|
|
} while (!(emc_dig_dll_status & (1 << 15)));
|
|
|
|
/* Check if DRAM is LPDDR4 */
|
|
if (dram_type == DRAM_TYPE_LPDDR4) {
|
|
reg::Write(EMC + EMC_RP, src_timing->burst_regs.emc_rp);
|
|
reg::Write(EMC + EMC_R2P, src_timing->burst_regs.emc_r2p);
|
|
reg::Write(EMC + EMC_W2P, src_timing->burst_regs.emc_w2p);
|
|
reg::Write(EMC + EMC_TRPAB, src_timing->burst_regs.emc_trpab);
|
|
}
|
|
|
|
/* Request a timing update event */
|
|
TimingUpdate(fbio_cfg7);
|
|
}
|
|
|
|
void TrainFreq(EmcDvfsTimingTable *src_timing, EmcDvfsTimingTable *dst_timing, u32 next_clk_src) {
|
|
/* Get dram dev num. */
|
|
const u32 dram_dev_num = (reg::Read(MC + MC_EMEM_ADR_CFG) & 1) + 1;
|
|
|
|
/* Write RAM patterns, if first training. */
|
|
if (!g_did_first_training) {
|
|
const auto * const pattern = GetEmcRamTrainingPattern();
|
|
for (u32 i = 0; i < 0x100; ++i) {
|
|
reg::Write(EMC + EMC_TRAINING_PATRAM_DQ, pattern[dst_timing->training_pattern].dq[i]);
|
|
reg::Write(EMC + EMC_TRAINING_PATRAM_DMI, pattern[dst_timing->training_pattern].dmi[i]);
|
|
reg::Write(EMC + EMC_TRAINING_PATRAM_CTRL, 0x80000000 | i);
|
|
}
|
|
|
|
g_did_first_training = true;
|
|
}
|
|
|
|
/* Do training, if we need to. */
|
|
const u32 needed_training = dst_timing->needs_training;
|
|
if (needed_training && !dst_timing->trained) {
|
|
/* Determine what training to do. */
|
|
u32 training_params[8];
|
|
u32 num_params = 0;
|
|
|
|
if (needed_training & (CA_TRAINING | CA_VREF_TRAINING)) {
|
|
training_params[num_params++] = (needed_training & (CA_TRAINING | CA_VREF_TRAINING | BIT_LEVEL_TRAINING));
|
|
}
|
|
if (dram_dev_num == TWO_RANK) {
|
|
if (needed_training & (CA_TRAINING | CA_VREF_TRAINING)) {
|
|
training_params[num_params++] = (needed_training & (CA_TRAINING | CA_VREF_TRAINING | TRAIN_SECOND_RANK | BIT_LEVEL_TRAINING));
|
|
}
|
|
if (needed_training & (QUSE_TRAINING | QUSE_VREF_TRAINING)) {
|
|
training_params[num_params++] = (needed_training & (QUSE_TRAINING | QUSE_VREF_TRAINING | BIT_LEVEL_TRAINING));
|
|
training_params[num_params++] = (needed_training & (QUSE_TRAINING | BIT_LEVEL_TRAINING));
|
|
}
|
|
} else {
|
|
if (needed_training & (QUSE_TRAINING | QUSE_VREF_TRAINING)) {
|
|
training_params[num_params++] = (needed_training & (QUSE_TRAINING | QUSE_VREF_TRAINING | BIT_LEVEL_TRAINING));
|
|
}
|
|
}
|
|
if (needed_training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING)) {
|
|
training_params[num_params++] = (needed_training & (WRITE_TRAINING | WRITE_VREF_TRAINING | READ_TRAINING | READ_VREF_TRAINING | BIT_LEVEL_TRAINING));
|
|
}
|
|
|
|
/* Apply all training. */
|
|
for (u32 i = 0; i < num_params; ++i) {
|
|
FreqChange(src_timing, dst_timing, training_params[i], next_clk_src);
|
|
CleanupActiveShadowCopy(src_timing, dst_timing);
|
|
}
|
|
|
|
/* Set tables as trained. */
|
|
dst_timing->trained = 1;
|
|
}
|
|
}
|
|
|
|
constexpr inline const u16 PeriodicCompensationRegisters[] = {
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0,
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1,
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2,
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3,
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0,
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1,
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2,
|
|
EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3,
|
|
EMC_DATA_BRLSHFT_0,
|
|
EMC_DATA_BRLSHFT_1
|
|
};
|
|
|
|
void PeriodicCompensationRoutine(EmcDvfsTimingTable *timing) {
|
|
if (timing->periodic_training) {
|
|
const int dram_dev_num = (reg::Read(MC + MC_EMEM_ADR_CFG) & 1) + 1;
|
|
const u32 fbio_cfg7 = timing->burst_regs.emc_fbio_cfg7;
|
|
|
|
uint32_t emc_cfg_o = reg::Read(EMC + EMC_CFG);
|
|
uint32_t emc_cfg_dig_dll_o = reg::Read(EMC + EMC_CFG_DIG_DLL);
|
|
uint32_t emc_cfg_update_o = reg::Read(EMC + EMC_CFG_UPDATE);
|
|
/*
|
|
* 1. Power optimizations should be off.
|
|
*/
|
|
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll_o & 0xFFFFFFFE);
|
|
reg::Write(EMC + EMC_CFG_UPDATE, (emc_cfg_update_o & 0xFFFFF9FF) | 0x400);
|
|
reg::Write(EMC + EMC_CFG, emc_cfg_o & 0x0FFFFFFF);
|
|
|
|
/* Do timing update. */
|
|
TimingUpdate(fbio_cfg7);
|
|
|
|
if (dram_dev_num == TWO_RANK) {
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x30, false, fbio_cfg7);
|
|
} else {
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x10, false, fbio_cfg7);
|
|
}
|
|
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x300, false, fbio_cfg7);
|
|
|
|
WaitForUpdate(EMC_EMC_STATUS, 0x01, false, fbio_cfg7);
|
|
|
|
/*
|
|
* 2. osc kick off - this assumes training and dvfs have set
|
|
* correct MR23.
|
|
*/
|
|
StartPeriodicCompensation();
|
|
|
|
/*
|
|
* 3. Let dram capture its clock tree delays.
|
|
*/
|
|
util::WaitMicroSeconds(2 + ((ActualOscClocks(timing->run_clocks) * 1000) / timing->rate_khz));
|
|
|
|
/*
|
|
* 4. Check delta wrt previous values (save value if margin
|
|
* exceeds what is set in table).
|
|
*/
|
|
uint32_t del = UpdateClockTreeDelay(timing, timing, dram_dev_num, fbio_cfg7, PERIODIC_TRAINING_UPDATE);
|
|
|
|
/*
|
|
* 5. Apply compensation w.r.t. trained values (if clock tree
|
|
* has drifted more than the set margin).
|
|
*/
|
|
if (timing->tree_margin < ((del * 128 * (timing->rate_khz / 1000)) / 1000000)) {
|
|
for (u32 i = 0; i < util::size(PeriodicCompensationRegisters); ++i) {
|
|
reg::Write(EMC + PeriodicCompensationRegisters[i], ApplyPeriodicCompensationTrimmer(timing, PeriodicCompensationRegisters[i]));
|
|
}
|
|
}
|
|
|
|
/* Restore register values. */
|
|
reg::Write(EMC + EMC_CFG, emc_cfg_o);
|
|
reg::Write(EMC + EMC_CFG_DIG_DLL, emc_cfg_dig_dll_o);
|
|
reg::Write(EMC + EMC_TIMING_CONTROL, 1);
|
|
reg::Write(EMC + EMC_CFG_UPDATE, emc_cfg_update_o);
|
|
}
|
|
}
|
|
|
|
void Dvfs(EmcDvfsTimingTable *dst_timing, EmcDvfsTimingTable *src_timing, bool train) {
|
|
/* Get the old 2x clock source. */
|
|
const u32 prev_2x_clk_src = reg::GetValue(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
|
|
|
|
/* Set g_next_pll. */
|
|
g_next_pll = prev_2x_clk_src == PLLMB_UD || prev_2x_clk_src == PLLMB_OUT0;
|
|
|
|
/* Reprogram pll. */
|
|
u32 next_clk_src;
|
|
if (PllReprogram(dst_timing->rate_khz, dst_timing->clk_src_emc, src_timing->rate_khz, src_timing->clk_src_emc)) {
|
|
if (prev_2x_clk_src == PLLMB_UD || prev_2x_clk_src == PLLMB_OUT0) {
|
|
g_next_pll = 0;
|
|
} else if (prev_2x_clk_src == PLLM_UD || prev_2x_clk_src == PLLM_OUT0) {
|
|
g_next_pll = !g_next_pll;
|
|
}
|
|
|
|
next_clk_src = ProgramPllm(dst_timing->rate_khz, dst_timing->clk_src_emc, g_next_pll);
|
|
} else {
|
|
next_clk_src = dst_timing->clk_src_emc;
|
|
|
|
const u32 next_2x_clk_src = reg::GetField(next_clk_src, CLK_RST_REG_BITS_MASK(CLK_SOURCE_EMC_EMC_2X_CLK_SRC));
|
|
if (next_2x_clk_src == PLLM_UD || next_2x_clk_src == PLLMB_UD) {
|
|
if (g_next_pll) {
|
|
reg::SetField(next_clk_src, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_UD));
|
|
}
|
|
} else if (next_2x_clk_src == PLLM_OUT0 || next_2x_clk_src == PLLMB_OUT0) {
|
|
if (g_next_pll) {
|
|
reg::SetField(next_clk_src, CLK_RST_REG_BITS_VALUE(CLK_SOURCE_EMC_EMC_2X_CLK_SRC, PLLMB_OUT0));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (train) {
|
|
TrainFreq(src_timing, dst_timing, next_clk_src);
|
|
if (PllReprogram(dst_timing->rate_khz, dst_timing->clk_src_emc, src_timing->rate_khz, src_timing->clk_src_emc)) {
|
|
g_next_pll = !g_next_pll;
|
|
}
|
|
} else {
|
|
FreqChange(src_timing, dst_timing, 0, next_clk_src);
|
|
PeriodicCompensationRoutine(dst_timing);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void DoMemoryTrainingErista(int index, void *mtc_tables_buffer) {
|
|
/* Get timing tables. */
|
|
auto *timing_tables = GetEmcDvfsTimingTables(index, mtc_tables_buffer);
|
|
auto *timing_204 = timing_tables + 0;
|
|
auto *timing_800 = timing_tables + 1;
|
|
auto *timing_1600 = timing_tables + 2;
|
|
|
|
/* Check timing tables. */
|
|
if (timing_204->rate_khz != 204000 || timing_1600->rate_khz != 1600000) {
|
|
ShowFatalError("EmcDvfsTimingTables seem corrupted %" PRIu32 " %" PRIu32 " %" PRIu32 "?\n", timing_204->rate_khz, timing_800->rate_khz, timing_1600->rate_khz);
|
|
}
|
|
|
|
/* Check that we should do training. */
|
|
if (timing_204->clk_src_emc != reg::Read(CLKRST + CLK_RST_CONTROLLER_CLK_SOURCE_EMC)) {
|
|
/* Our clock source isn't what's expected, so presumably training has already been done? */
|
|
/* Either way, the safe bet is to skip it. */
|
|
return;
|
|
}
|
|
|
|
/* Train 800MHz. */
|
|
Dvfs(timing_800, timing_204, true);
|
|
|
|
/* Train 1600MHz. */
|
|
Dvfs(timing_1600, timing_204, true);
|
|
|
|
/* Switch to 800MHz. */
|
|
Dvfs(timing_800, timing_204, false);
|
|
|
|
/* Switch to 1600MHz. */
|
|
Dvfs(timing_1600, timing_800, false);
|
|
|
|
/* Wait 100ms. */
|
|
util::WaitMicroSeconds(100000);
|
|
|
|
/* Do Periodic compensation */
|
|
PeriodicCompensationRoutine(timing_1600);
|
|
}
|
|
|
|
}
|