1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-21 01:42:12 +00:00
Atmosphere/fusee/program/source/fusee_stratosphere.cpp
2021-10-26 01:08:37 -07:00

1133 lines
47 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "fusee_stratosphere.hpp"
#include "fusee_fatal.hpp"
#include "fusee_malloc.hpp"
#include "fusee_external_package.hpp"
#include "fs/fusee_fs_api.hpp"
namespace ams::nxboot {
namespace {
struct InitialProcessBinaryHeader {
static constexpr u32 Magic = util::FourCC<'I','N','I','1'>::Code;
u32 magic;
u32 size;
u32 num_processes;
u32 reserved;
};
struct InitialProcessHeader {
static constexpr u32 Magic = util::FourCC<'K','I','P','1'>::Code;
u32 magic;
u8 name[12];
u64 program_id;
u32 version;
u8 priority;
u8 ideal_core_id;
u8 _1E;
u8 flags;
u32 rx_address;
u32 rx_size;
u32 rx_compressed_size;
u32 affinity_mask;
u32 ro_address;
u32 ro_size;
u32 ro_compressed_size;
u32 stack_size;
u32 rw_address;
u32 rw_size;
u32 rw_compressed_size;
u32 _4C;
u32 bss_address;
u32 bss_size;
u32 pad[(0x80 - 0x58) / sizeof(u32)];
u32 capabilities[0x80 / sizeof(u32)];
};
static_assert(sizeof(InitialProcessHeader) == 0x100);
struct PatchMeta {
PatchMeta *next;
bool is_memset;
u32 start_segment;
u32 rel_offset;
const void *data;
u32 size;
};
struct alignas(0x10) InitialProcessMeta {
InitialProcessMeta *next = nullptr;
const InitialProcessHeader *kip;
u32 kip_size;
PatchMeta *patches_head;
PatchMeta *patches_tail;
u32 patch_segments;
u64 program_id;
se::Sha256Hash kip_hash;
};
static_assert(sizeof(InitialProcessMeta) == 0x40);
static_assert(alignof(InitialProcessMeta) == 0x10);
constexpr inline const u64 FsProgramId = 0x0100000000000000;
enum FsVersion {
FsVersion_1_0_0 = 0,
FsVersion_2_0_0,
FsVersion_2_0_0_Exfat,
FsVersion_2_1_0,
FsVersion_2_1_0_Exfat,
FsVersion_3_0_0,
FsVersion_3_0_0_Exfat,
FsVersion_3_0_1,
FsVersion_3_0_1_Exfat,
FsVersion_4_0_0,
FsVersion_4_0_0_Exfat,
FsVersion_4_1_0,
FsVersion_4_1_0_Exfat,
FsVersion_5_0_0,
FsVersion_5_0_0_Exfat,
FsVersion_5_1_0,
FsVersion_5_1_0_Exfat,
FsVersion_6_0_0,
FsVersion_6_0_0_Exfat,
FsVersion_7_0_0,
FsVersion_7_0_0_Exfat,
FsVersion_8_0_0,
FsVersion_8_0_0_Exfat,
FsVersion_8_1_0,
FsVersion_8_1_0_Exfat,
FsVersion_9_0_0,
FsVersion_9_0_0_Exfat,
FsVersion_9_1_0,
FsVersion_9_1_0_Exfat,
FsVersion_10_0_0,
FsVersion_10_0_0_Exfat,
FsVersion_10_2_0,
FsVersion_10_2_0_Exfat,
FsVersion_11_0_0,
FsVersion_11_0_0_Exfat,
FsVersion_12_0_0,
FsVersion_12_0_0_Exfat,
FsVersion_12_0_3,
FsVersion_12_0_3_Exfat,
FsVersion_13_0_0,
FsVersion_13_0_0_Exfat,
FsVersion_13_1_0,
FsVersion_13_1_0_Exfat,
FsVersion_Count,
};
constexpr const u8 FsHashes[FsVersion_Count][8] = {
{ 0xDE, 0x9F, 0xDD, 0xA4, 0x08, 0x5D, 0xD5, 0xFE }, /* FsVersion_1_0_0 */
{ 0xCD, 0x7B, 0xBE, 0x18, 0xD6, 0x13, 0x0B, 0x28 }, /* FsVersion_2_0_0 */
{ 0xE7, 0x66, 0x92, 0xDF, 0xAA, 0x04, 0x20, 0xE9 }, /* FsVersion_2_0_0_Exfat */
{ 0x0D, 0x70, 0x05, 0x62, 0x7B, 0x07, 0x76, 0x7C }, /* FsVersion_2_1_0 */
{ 0xDB, 0xD8, 0x5F, 0xCA, 0xCC, 0x19, 0x3D, 0xA8 }, /* FsVersion_2_1_0_Exfat */
{ 0xA8, 0x6D, 0xA5, 0xE8, 0x7E, 0xF1, 0x09, 0x7B }, /* FsVersion_3_0_0 */
{ 0x98, 0x1C, 0x57, 0xE7, 0xF0, 0x2F, 0x70, 0xF7 }, /* FsVersion_3_0_0_Exfat */
{ 0x57, 0x39, 0x7C, 0x06, 0x3F, 0x10, 0xB6, 0x31 }, /* FsVersion_3_0_1 */
{ 0x07, 0x30, 0x99, 0xD7, 0xC6, 0xAD, 0x7D, 0x89 }, /* FsVersion_3_0_1_Exfat */
{ 0x06, 0xE9, 0x07, 0x19, 0x59, 0x5A, 0x01, 0x0C }, /* FsVersion_4_0_0 */
{ 0x54, 0x9B, 0x0F, 0x8D, 0x6F, 0x72, 0xC4, 0xE9 }, /* FsVersion_4_0_0_Exfat */
{ 0x80, 0x96, 0xAF, 0x7C, 0x6A, 0x35, 0xAA, 0x82 }, /* FsVersion_4_1_0 */
{ 0x02, 0xD5, 0xAB, 0xAA, 0xFD, 0x20, 0xC8, 0xB0 }, /* FsVersion_4_1_0_Exfat */
{ 0xA6, 0xF2, 0x7A, 0xD9, 0xAC, 0x7C, 0x73, 0xAD }, /* FsVersion_5_0_0 */
{ 0xCE, 0x3E, 0xCB, 0xA2, 0xF2, 0xF0, 0x62, 0xF5 }, /* FsVersion_5_0_0_Exfat */
{ 0x76, 0xF8, 0x74, 0x02, 0xC9, 0x38, 0x7C, 0x0F }, /* FsVersion_5_1_0 */
{ 0x10, 0xB2, 0xD8, 0x16, 0x05, 0x48, 0x85, 0x99 }, /* FsVersion_5_1_0_Exfat */
{ 0x3A, 0x57, 0x4D, 0x43, 0x61, 0x86, 0x19, 0x1D }, /* FsVersion_6_0_0 */
{ 0x33, 0x05, 0x53, 0xF6, 0xB5, 0xFB, 0x55, 0xC4 }, /* FsVersion_6_0_0_Exfat */
{ 0x2A, 0xDB, 0xE9, 0x7E, 0x9B, 0x5F, 0x41, 0x77 }, /* FsVersion_7_0_0 */
{ 0x2C, 0xCE, 0x65, 0x9C, 0xEC, 0x53, 0x6A, 0x8E }, /* FsVersion_7_0_0_Exfat */
{ 0xB2, 0xF5, 0x17, 0x6B, 0x35, 0x48, 0x36, 0x4D }, /* FsVersion_8_0_0 */
{ 0xDB, 0xD9, 0x41, 0xC0, 0xC5, 0x3C, 0x52, 0xCC }, /* FsVersion_8_0_0_Exfat */
{ 0x6B, 0x09, 0xB6, 0x7B, 0x29, 0xC0, 0x20, 0x24 }, /* FsVersion_8_1_0 */
{ 0xB4, 0xCA, 0xE1, 0xF2, 0x49, 0x65, 0xD9, 0x2E }, /* FsVersion_8_1_0_Exfat */
{ 0x46, 0x87, 0x40, 0x76, 0x1E, 0x19, 0x3E, 0xB7 }, /* FsVersion_9_0_0 */
{ 0x7C, 0x95, 0x13, 0x76, 0xE5, 0xC1, 0x2D, 0xF8 }, /* FsVersion_9_0_0_Exfat */
{ 0xB5, 0xE7, 0xA6, 0x4C, 0x6F, 0x5C, 0x4F, 0xE3 }, /* FsVersion_9_1_0 */
{ 0xF1, 0x96, 0xD1, 0x44, 0xD0, 0x44, 0x45, 0xB6 }, /* FsVersion_9_1_0_Exfat */
{ 0x3E, 0xEB, 0xD9, 0xB7, 0xBC, 0xD1, 0xB5, 0xE0 }, /* FsVersion_10_0_0 */
{ 0x81, 0x7E, 0xA2, 0xB0, 0xB7, 0x02, 0xC1, 0xF3 }, /* FsVersion_10_0_0_Exfat */
{ 0xA9, 0x52, 0xB6, 0x57, 0xAD, 0xF9, 0xC2, 0xBA }, /* FsVersion_10_2_0 */
{ 0x16, 0x0D, 0x3E, 0x10, 0x4E, 0xAD, 0x61, 0x76 }, /* FsVersion_10_2_0_Exfat */
{ 0xE3, 0x99, 0x15, 0x6E, 0x84, 0x4E, 0xB0, 0xAA }, /* FsVersion_11_0_0 */
{ 0x0B, 0xA1, 0x5B, 0xB3, 0x04, 0xB5, 0x05, 0x63 }, /* FsVersion_11_0_0_Exfat */
{ 0xDC, 0x2A, 0x08, 0x49, 0x96, 0xBB, 0x3C, 0x01 }, /* FsVersion_12_0_0 */
{ 0xD5, 0xA5, 0xBF, 0x36, 0x64, 0x0C, 0x49, 0xEA }, /* FsVersion_12_0_0_Exfat */
{ 0xC8, 0x67, 0x62, 0xBE, 0x19, 0xA5, 0x1F, 0xA0 }, /* FsVersion_12_0_3 */
{ 0xE1, 0xE8, 0xD3, 0xD6, 0xA2, 0xFE, 0x0B, 0x10 }, /* FsVersion_12_0_3_Exfat */
{ 0x7D, 0x20, 0x05, 0x47, 0x17, 0x8A, 0x83, 0x6A }, /* FsVersion_13_0_0 */
{ 0x51, 0xEB, 0xFA, 0x9C, 0xCF, 0x66, 0xC0, 0x9E }, /* FsVersion_13_0_0_Exfat */
{ 0x91, 0xBA, 0x65, 0xA2, 0x1C, 0x1D, 0x50, 0xAE }, /* FsVersion_13_1_0 */
{ 0x76, 0x38, 0x27, 0xEE, 0x9C, 0x20, 0x7E, 0x5B }, /* FsVersion_13_1_0_Exfat */
};
const InitialProcessBinaryHeader *FindInitialProcessBinary(const pkg2::Package2Header *header, const u8 *data, ams::TargetFirmware target_firmware) {
if (target_firmware >= ams::TargetFirmware_8_0_0) {
/* Try to find initial process binary. */
const u32 *data_32 = reinterpret_cast<const u32 *>(data);
for (size_t i = 0; i < 0x1000 / sizeof(u32); ++i) {
if (data_32[i] == 0 && data_32[i + 8] <= header->meta.payload_sizes[0] && std::memcmp(data + data_32[i + 8], "INI1", 4) == 0) {
return reinterpret_cast<const InitialProcessBinaryHeader *>(data + data_32[i + 8]);
}
}
return nullptr;
} else {
return reinterpret_cast<const InitialProcessBinaryHeader *>(data + header->meta.payload_sizes[0]);
}
}
constexpr size_t GetInitialProcessSize(const InitialProcessHeader *kip) {
return sizeof(*kip) + kip->rx_compressed_size + kip->ro_compressed_size + kip->rw_compressed_size;
}
const InitialProcessHeader *FindInitialProcessInBinary(const InitialProcessBinaryHeader *ini, u64 program_id) {
const u8 *data = reinterpret_cast<const u8 *>(ini + 1);
for (u32 i = 0; i < ini->num_processes; ++i) {
const InitialProcessHeader *kip = reinterpret_cast<const InitialProcessHeader *>(data);
if (kip->magic != InitialProcessHeader::Magic) {
return nullptr;
}
if (kip->program_id == program_id) {
return kip;
}
data += GetInitialProcessSize(kip);
}
return nullptr;
}
FsVersion GetFsVersion(const se::Sha256Hash &fs_hash) {
for (size_t i = 0; i < util::size(FsHashes); ++i) {
if (std::memcmp(fs_hash.bytes, FsHashes[i], sizeof(FsHashes[i])) == 0) {
return static_cast<FsVersion>(i);
}
}
return FsVersion_Count;
}
constinit InitialProcessMeta g_initial_process_meta = {};
constinit size_t g_initial_process_binary_size = 0;
void AddInitialProcessImpl(InitialProcessMeta *meta, const InitialProcessHeader *kip, const se::Sha256Hash *hash) {
/* Set the meta's fields. */
meta->next = nullptr;
meta->program_id = kip->program_id;
meta->kip = kip;
meta->kip_size = GetInitialProcessSize(kip);
/* Copy or calculate hash. */
if (hash != nullptr) {
std::memcpy(std::addressof(meta->kip_hash), hash, sizeof(meta->kip_hash));
} else {
se::CalculateSha256(std::addressof(meta->kip_hash), kip, meta->kip_size);
}
/* Clear patches. */
meta->patches_head = nullptr;
meta->patches_tail = nullptr;
meta->patch_segments = 0;
/* Increase the initial process binary's size. */
g_initial_process_binary_size += meta->kip_size;
}
bool AddInitialProcess(const InitialProcessHeader *kip, const se::Sha256Hash *hash = nullptr) {
/* Check kip magic. */
if (kip->magic != InitialProcessHeader::Magic) {
ShowFatalError("KIP seems corrupted!\n");
}
/* Handle the initial case. */
if (g_initial_process_binary_size == 0) {
AddInitialProcessImpl(std::addressof(g_initial_process_meta), kip, hash);
return true;
}
/* Check if we've already added the program id. */
InitialProcessMeta *cur = std::addressof(g_initial_process_meta);
while (true) {
if (cur->program_id == kip->program_id) {
return false;
}
if (cur->next != nullptr) {
cur = cur->next;
} else {
break;
}
}
/* Allocate an initial process meta. */
auto *new_meta = static_cast<InitialProcessMeta *>(AllocateAligned(sizeof(InitialProcessMeta), alignof(InitialProcessMeta)));
/* Insert the new meta. */
cur->next = new_meta;
AddInitialProcessImpl(new_meta, kip, hash);
return true;
}
InitialProcessMeta *FindInitialProcess(u64 program_id) {
for (InitialProcessMeta *cur = std::addressof(g_initial_process_meta); cur != nullptr; cur = cur->next) {
if (cur->program_id == program_id) {
return cur;
}
}
return nullptr;
}
InitialProcessMeta *FindInitialProcess(const se::Sha256Hash &hash) {
for (InitialProcessMeta *cur = std::addressof(g_initial_process_meta); cur != nullptr; cur = cur->next) {
if (std::memcmp(std::addressof(cur->kip_hash), std::addressof(hash), sizeof(hash)) == 0) {
return cur;
}
}
return nullptr;
}
u32 GetPatchSegments(const InitialProcessHeader *kip, u32 offset, size_t size) {
/* Create segment mask. */
u32 segments = 0;
/* Get the segment extents. */
const u32 rx_start = kip->rx_address;
const u32 ro_start = kip->ro_address;
const u32 rw_start = kip->rw_address;
const u32 rx_end = ro_start;
const u32 ro_end = rw_start;
const u32 rw_end = rw_start + kip->rw_size;
/* If the offset is below the kip header, ignore it. */
if (offset < sizeof(*kip)) {
return segments;
}
/* Adjust the offset in bounds. */
offset -= sizeof(*kip);
/* Check if the offset strays out of bounds. */
if (offset + size > rw_end) {
return segments;
}
/* Set bits for the affected segments. */
if (util::HasOverlap(offset, size, rx_start, rx_end - rx_start)) {
segments |= (1 << 0);
}
if (util::HasOverlap(offset, size, ro_start, ro_end - ro_start)) {
segments |= (1 << 1);
}
if (util::HasOverlap(offset, size, rw_start, rw_end - rw_start)) {
segments |= (1 << 2);
}
return segments;
}
void AddPatch(InitialProcessMeta *meta, u32 offset, const void *data, size_t data_size, bool is_memset = false) {
/* Determine the segment. */
const u32 segments = GetPatchSegments(meta->kip, offset, data_size);
/* If the patch hits no segments, we don't need it. */
if (segments == 0) {
return;
}
/* Update patch segments. */
meta->patch_segments |= segments;
/* Adjust offset. */
const u32 start_segment = util::CountTrailingZeros(segments);
offset -= sizeof(*meta->kip);
switch (start_segment) {
case 0: offset -= meta->kip->rx_address; break;
case 1: offset -= meta->kip->ro_address; break;
case 2: offset -= meta->kip->rw_address; break;
}
/* Create patch. */
auto *new_patch = static_cast<PatchMeta *>(AllocateAligned(sizeof(PatchMeta), alignof(PatchMeta)));
new_patch->next = nullptr;
new_patch->is_memset = is_memset;
new_patch->start_segment = start_segment;
new_patch->rel_offset = offset;
new_patch->data = data;
new_patch->size = data_size;
/* Add the patch. */
if (meta->patches_head == nullptr) {
meta->patches_head = new_patch;
} else {
meta->patches_tail->next = new_patch;
}
meta->patches_tail = new_patch;
}
void AddIps24PatchToKip(InitialProcessMeta *meta, const u8 *ips, s32 size) {
while (size > 0) {
/* Read offset, stopping at EOF */
const u32 offset = (static_cast<u32>(ips[0]) << 16) | (static_cast<u32>(ips[1]) << 8) | (static_cast<u32>(ips[2]) << 0);
if (offset == 0x454F46) {
break;
}
/* Read size. */
const u16 cur_size = (static_cast<u32>(ips[3]) << 8) | (static_cast<u32>(ips[4]) << 0);
if (cur_size > 0) {
/* Add patch. */
AddPatch(meta, offset, ips + 5, cur_size, false);
/* Advance. */
ips += (5 + cur_size);
size -= (5 + cur_size);
} else {
/* Read RLE size */
const u16 rle_size = (static_cast<u32>(ips[5]) << 8) | (static_cast<u32>(ips[6]) << 0);
/* Add patch. */
AddPatch(meta, offset, ips + 7, rle_size, true);
/* Advance. */
ips += 8;
size -= 8;
}
}
}
void AddIps32PatchToKip(InitialProcessMeta *meta, const u8 *ips, s32 size) {
while (size > 0) {
/* Read offset, stopping at EOF */
const u32 offset = (static_cast<u32>(ips[0]) << 24) | (static_cast<u32>(ips[1]) << 16) | (static_cast<u32>(ips[2]) << 8) | (static_cast<u32>(ips[3]) << 0);
if (offset == 0x45454F46) {
break;
}
/* Read size. */
const u16 cur_size = (static_cast<u32>(ips[4]) << 8) | (static_cast<u32>(ips[5]) << 0);
if (cur_size > 0) {
/* Add patch. */
AddPatch(meta, offset, ips + 6, cur_size, false);
/* Advance. */
ips += (6 + cur_size);
size -= (6 + cur_size);
} else {
/* Read RLE size */
const u16 rle_size = (static_cast<u32>(ips[6]) << 8) | (static_cast<u32>(ips[7]) << 0);
/* Add patch. */
AddPatch(meta, offset, ips + 8, rle_size, true);
/* Advance. */
ips += 9;
size -= 9;
}
}
}
void AddIpsPatchToKip(InitialProcessMeta *meta, const u8 *ips, s32 size) {
if (std::memcmp(ips, "PATCH", 5) == 0) {
AddIps24PatchToKip(meta, ips + 5, size - 5);
} else if (std::memcmp(ips, "IPS32", 5) == 0) {
AddIps32PatchToKip(meta, ips + 5, size - 5);
}
}
constexpr const u8 NogcPatch0[] = {
0x80
};
constexpr const u8 NogcPatch1[] = {
0xE0, 0x03, 0x1F, 0x2A, 0xC0, 0x03, 0x5F, 0xD6,
};
void AddNogcPatches(InitialProcessMeta *fs_meta, FsVersion fs_version) {
switch (fs_version) {
case FsVersion_1_0_0:
case FsVersion_2_0_0:
case FsVersion_2_0_0_Exfat:
case FsVersion_2_1_0:
case FsVersion_2_1_0_Exfat:
case FsVersion_3_0_0:
case FsVersion_3_0_0_Exfat:
case FsVersion_3_0_1:
case FsVersion_3_0_1_Exfat:
/* There were no lotus firmware updates prior to 4.0.0. */
/* TODO: Implement patches, regardless? */
break;
case FsVersion_4_0_0:
case FsVersion_4_0_0_Exfat:
AddPatch(fs_meta, 0x0A3539, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x0AAC44, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_4_1_0:
case FsVersion_4_1_0_Exfat:
AddPatch(fs_meta, 0x0A35BD, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x0AACA8, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_5_0_0:
case FsVersion_5_0_0_Exfat:
AddPatch(fs_meta, 0x0CF4C5, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x0D74A0, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_5_1_0:
case FsVersion_5_1_0_Exfat:
AddPatch(fs_meta, 0x0CF895, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x0D7870, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_6_0_0:
AddPatch(fs_meta, 0x1539F5, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x12CD20, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_6_0_0_Exfat:
AddPatch(fs_meta, 0x15F0F5, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x138420, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_7_0_0:
AddPatch(fs_meta, 0x15C005, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x134260, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_7_0_0_Exfat:
AddPatch(fs_meta, 0x1675B5, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x13F810, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_8_0_0:
case FsVersion_8_1_0:
AddPatch(fs_meta, 0x15EC95, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x136900, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_8_0_0_Exfat:
case FsVersion_8_1_0_Exfat:
AddPatch(fs_meta, 0x16A245, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x141EB0, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_9_0_0:
case FsVersion_9_0_0_Exfat:
AddPatch(fs_meta, 0x143369, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x129520, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_9_1_0:
case FsVersion_9_1_0_Exfat:
AddPatch(fs_meta, 0x143379, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x129530, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_10_0_0:
case FsVersion_10_0_0_Exfat:
AddPatch(fs_meta, 0x14DF09, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x13BF90, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_10_2_0:
case FsVersion_10_2_0_Exfat:
AddPatch(fs_meta, 0x14E369, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x13C3F0, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_11_0_0:
case FsVersion_11_0_0_Exfat:
AddPatch(fs_meta, 0x156FB9, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x1399B4, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_12_0_0:
case FsVersion_12_0_0_Exfat:
AddPatch(fs_meta, 0x155469, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x13EB24, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_12_0_3:
case FsVersion_12_0_3_Exfat:
AddPatch(fs_meta, 0x155579, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x13EC34, NogcPatch1, sizeof(NogcPatch1));
case FsVersion_13_0_0:
case FsVersion_13_0_0_Exfat:
AddPatch(fs_meta, 0x159119, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x1426D0, NogcPatch1, sizeof(NogcPatch1));
break;
case FsVersion_13_1_0:
case FsVersion_13_1_0_Exfat:
AddPatch(fs_meta, 0x1590B9, NogcPatch0, sizeof(NogcPatch0));
AddPatch(fs_meta, 0x142670, NogcPatch1, sizeof(NogcPatch1));
break;
default:
break;
}
}
struct BlzSegmentFlags {
using Offset = util::BitPack16::Field<0, 12, u32>;
using Size = util::BitPack16::Field<Offset::Next, 4, u32>;
};
void BlzUncompress(void *_end) {
/* Parse the footer, endian agnostic. */
static_assert(sizeof(u32) == 4);
static_assert(sizeof(u16) == 2);
static_assert(sizeof(u8) == 1);
u8 *end = static_cast<u8 *>(_end);
const u32 total_size = (end[-12] << 0) | (end[-11] << 8) | (end[-10] << 16) | (end[- 9] << 24);
const u32 footer_size = (end[- 8] << 0) | (end[- 7] << 8) | (end[- 6] << 16) | (end[- 5] << 24);
const u32 additional_size = (end[- 4] << 0) | (end[- 3] << 8) | (end[- 2] << 16) | (end[- 1] << 24);
/* Prepare to decompress. */
u8 *cmp_start = end - total_size;
u32 cmp_ofs = total_size - footer_size;
u32 out_ofs = total_size + additional_size;
/* Decompress. */
while (out_ofs) {
u8 control = cmp_start[--cmp_ofs];
/* Each bit in the control byte is a flag indicating compressed or not compressed. */
for (size_t i = 0; i < 8 && out_ofs; ++i, control <<= 1) {
if (control & 0x80) {
/* NOTE: Nintendo does not check if it's possible to decompress. */
/* As such, we will leave the following as a debug assertion, and not a release assertion. */
AMS_AUDIT(cmp_ofs >= sizeof(u16));
cmp_ofs -= sizeof(u16);
/* Extract segment bounds. */
const util::BitPack16 seg_flags{static_cast<u16>((cmp_start[cmp_ofs] << 0) | (cmp_start[cmp_ofs + 1] << 8))};
const u32 seg_ofs = seg_flags.Get<BlzSegmentFlags::Offset>() + 3;
const u32 seg_size = std::min(seg_flags.Get<BlzSegmentFlags::Size>() + 3, out_ofs);
AMS_AUDIT(out_ofs + seg_ofs <= total_size + additional_size);
/* Copy the data. */
out_ofs -= seg_size;
for (size_t j = 0; j < seg_size; j++) {
cmp_start[out_ofs + j] = cmp_start[out_ofs + seg_ofs + j];
}
} else {
/* NOTE: Nintendo does not check if it's possible to copy. */
/* As such, we will leave the following as a debug assertion, and not a release assertion. */
AMS_AUDIT(cmp_ofs >= sizeof(u8));
cmp_start[--out_ofs] = cmp_start[--cmp_ofs];
}
}
}
}
void *ReadFile(s64 *out_size, const char *path, size_t align = 0x10) {
fs::FileHandle file;
if (R_SUCCEEDED(fs::OpenFile(std::addressof(file), path, fs::OpenMode_Read))) {
ON_SCOPE_EXIT { fs::CloseFile(file); };
Result result;
/* Get the kip size. */
if (R_FAILED((result = fs::GetFileSize(out_size, file)))) {
ShowFatalError("Failed to get size (0x%08" PRIx32 ") of %s!\n", result.GetValue(), path);
}
/* Allocate file. */
void *data = AllocateAligned(*out_size, std::max<size_t>(align, 0x10));
/* Read the file. */
if (R_FAILED((result = fs::ReadFile(file, 0, data, *out_size)))) {
ShowFatalError("Failed to read (0x%08" PRIx32 ") %s!\n", result.GetValue(), path);
}
return data;
} else {
return nullptr;
}
}
}
u32 ConfigureStratosphere(const u8 *nn_package2, ams::TargetFirmware target_firmware, bool emummc_enabled, bool nogc_enabled) {
/* Load KIPs off the SD card. */
{
/* Create kip dir path. */
char kip_path[0x120];
std::memcpy(kip_path, "sdmc:/atmosphere/kips", 0x16);
fs::DirectoryHandle kip_dir;
if (R_SUCCEEDED(fs::OpenDirectory(std::addressof(kip_dir), kip_path))) {
ON_SCOPE_EXIT { fs::CloseDirectory(kip_dir); };
s64 count;
fs::DirectoryEntry entries[1];
while (R_SUCCEEDED(fs::ReadDirectory(std::addressof(count), entries, kip_dir, util::size(entries))) && count > 0) {
/* Check that file is a file. */
if (fs::GetEntryType(entries[0]) != fs::DirectoryEntryType_File) {
continue;
}
/* Get filename length. */
const int name_len = std::strlen(entries[0].file_name);
/* Adjust kip path. */
kip_path[0x15] = '/';
std::memcpy(kip_path + 0x16, entries[0].file_name, name_len + 1);
/* Check that file is ".kip" or ".kip1" file. */
const int path_len = 0x16 + name_len;
if (std::memcmp(kip_path + path_len - 4, ".kip", 5) != 0 && std::memcmp(kip_path + path_len - 5, ".kip1", 6) != 0) {
continue;
}
/* Read the kip. */
s64 file_size;
if (InitialProcessHeader *kip = static_cast<InitialProcessHeader *>(ReadFile(std::addressof(file_size), kip_path, alignof(InitialProcessHeader))); kip != nullptr) {
/* If the kip is valid, add it. */
if (kip->magic == InitialProcessHeader::Magic && file_size == GetInitialProcessSize(kip)) {
AddInitialProcess(kip);
}
}
}
}
}
/* Add the stratosphere kips. */
{
const auto &external_package = GetExternalPackage();
for (u32 i = 0; i < external_package.header.num_kips; ++i) {
const auto &meta = external_package.header.kip_metas[i];
AddInitialProcess(reinterpret_cast<const InitialProcessHeader *>(external_package.kips + meta.offset), std::addressof(meta.hash));
}
}
/* Get meta for FS process. */
auto *fs_meta = FindInitialProcess(FsProgramId);
if (fs_meta == nullptr) {
/* Get nintendo header/data. */
const pkg2::Package2Header *nn_header = reinterpret_cast<const pkg2::Package2Header *>(nn_package2);
const u8 *nn_data = nn_package2 + sizeof(*nn_header);
/* Get Nintendo INI1. */
const InitialProcessBinaryHeader *nn_ini = FindInitialProcessBinary(nn_header, nn_data, target_firmware);
if (nn_ini == nullptr || nn_ini->magic != InitialProcessBinaryHeader::Magic) {
ShowFatalError("Failed to find INI1!\n");
}
/* Find FS KIP. */
const InitialProcessHeader *nn_fs_kip = FindInitialProcessInBinary(nn_ini, FsProgramId);
if (nn_fs_kip == nullptr) {
ShowFatalError("Failed to find FS!\n");
}
/* Add to binary. */
AddInitialProcess(nn_fs_kip);
/* Re-find meta. */
fs_meta = FindInitialProcess(FsProgramId);
}
/* Check that we found FS. */
if (fs_meta == nullptr) {
ShowFatalError("Failed to find FS!\n");
}
/* Get FS version. */
const auto fs_version = GetFsVersion(fs_meta->kip_hash);
if (fs_version >= FsVersion_Count) {
if (emummc_enabled || nogc_enabled) {
ShowFatalError("Failed to identify FS!\n");
}
}
/* If emummc is enabled, we need to decompress fs .text. */
if (emummc_enabled) {
fs_meta->patch_segments |= (1 << 0);
}
/* Parse/prepare relevant nogc/kip patches. */
{
/* Add nogc patches. */
if (nogc_enabled) {
AddNogcPatches(fs_meta, fs_version);
}
/* TODO ams.tma2: add mount_host patches. */
/* Add generic patches. */
{
/* Create patch path. */
char patch_path[0x220];
std::memcpy(patch_path, "sdmc:/atmosphere/kip_patches", 0x1D);
fs::DirectoryHandle patch_root_dir;
if (R_SUCCEEDED(fs::OpenDirectory(std::addressof(patch_root_dir), patch_path))) {
ON_SCOPE_EXIT { fs::CloseDirectory(patch_root_dir); };
s64 count;
fs::DirectoryEntry entries[1];
while (R_SUCCEEDED(fs::ReadDirectory(std::addressof(count), entries, patch_root_dir, util::size(entries))) && count > 0) {
/* Check that dir is a dir. */
if (fs::GetEntryType(entries[0]) != fs::DirectoryEntryType_Directory) {
continue;
}
/* For compatibility, ignore the old "default_nogc" patches. */
if (std::strcmp(entries[0].file_name, "default_nogc") == 0) {
continue;
}
/* Get filename length. */
const int dir_len = std::strlen(entries[0].file_name);
/* Adjust patch path. */
patch_path[0x1C] = '/';
std::memcpy(patch_path + 0x1D, entries[0].file_name, dir_len + 1);
/* Try to open the patch subdirectory. */
fs::DirectoryHandle patch_dir;
if (R_SUCCEEDED(fs::OpenDirectory(std::addressof(patch_dir), patch_path))) {
ON_SCOPE_EXIT { fs::CloseDirectory(patch_dir); };
/* Read patches. */
while (R_SUCCEEDED(fs::ReadDirectory(std::addressof(count), entries, patch_dir, util::size(entries))) && count > 0) {
/* Check that file is a file. */
if (fs::GetEntryType(entries[0]) != fs::DirectoryEntryType_File) {
continue;
}
/* Get filename length. */
const int name_len = std::strlen(entries[0].file_name);
/* Adjust patch path. */
patch_path[0x1D + dir_len] = '/';
std::memcpy(patch_path + 0x1D + dir_len + 1, entries[0].file_name, name_len + 1);
/* Check that file is "{hex}.ips" file. */
const int path_len = 0x1D + dir_len + 1 + name_len;
if (name_len != 0x44 || std::memcmp(patch_path + path_len - 4, ".ips", 5) != 0) {
continue;
}
/* Check that the filename is hex. */
bool valid_name = true;
se::Sha256Hash patch_name = {};
u32 shift = 4;
for (int i = 0; i < name_len - 4; ++i) {
const char c = entries[0].file_name[i];
u8 val;
if ('0' <= c && c <= '9') {
val = (c - '0');
} else if ('a' <= c && c <= 'f') {
val = (c - 'a') + 10;
} else if ('A' <= c && c <= 'F') {
val = (c - 'A') + 10;
} else {
valid_name = false;
break;
}
patch_name.bytes[i >> 1] |= val << shift;
shift ^= 4;
}
/* Ignore invalid patches. */
if (!valid_name) {
continue;
}
/* Find kip for the patch. */
auto *kip_meta = FindInitialProcess(patch_name);
if (kip_meta == nullptr) {
continue;
}
/* Read the ips patch. */
s64 file_size;
if (u8 *ips = static_cast<u8 *>(ReadFile(std::addressof(file_size), patch_path)); ips != nullptr) {
AddIpsPatchToKip(kip_meta, ips, static_cast<s32>(file_size));
}
}
}
}
}
}
}
/* Return the fs version we're using. */
return static_cast<u32>(fs_version);
}
void RebuildPackage2(ams::TargetFirmware target_firmware, bool emummc_enabled) {
/* Get the external package. */
const auto &external_package = GetExternalPackage();
/* Clear package2 header. */
auto *package2 = secmon::MemoryRegionDramPackage2.GetPointer<pkg2::Package2Header>();
std::memset(package2, 0, sizeof(*package2));
/* Get payload data pointer. */
u8 * const payload_data = reinterpret_cast<u8 *>(package2 + 1);
/* Useful values. */
constexpr u32 KernelPayloadBase = 0x60000;
/* Set fields. */
package2->meta.key_generation = pkg1::KeyGeneration_Current;
std::memcpy(package2->meta.magic, pkg2::Package2Meta::Magic::String, sizeof(package2->meta.magic));
package2->meta.entrypoint = KernelPayloadBase;
package2->meta.bootloader_version = pkg2::CurrentBootloaderVersion;
package2->meta.package2_version = pkg2::MinimumValidDataVersion;
/* Load mesosphere. */
s64 meso_size;
if (void *sd_meso = ReadFile(std::addressof(meso_size), "sdmc:/atmosphere/mesosphere.bin"); sd_meso != nullptr) {
std::memcpy(payload_data, sd_meso, meso_size);
} else {
meso_size = external_package.header.meso_size;
std::memcpy(payload_data, external_package.mesosphere, meso_size);
}
/* Read emummc, if needed. */
const InitialProcessHeader *emummc;
s64 emummc_size;
if (emummc_enabled) {
emummc = static_cast<const InitialProcessHeader *>(ReadFile(std::addressof(emummc_size), "sdmc:/atmosphere/emummc.kip"));
if (emummc == nullptr) {
emummc = reinterpret_cast<const InitialProcessHeader *>(external_package.kips + external_package.header.emummc_meta.offset);
emummc_size = external_package.header.emummc_meta.size;
}
}
/* Set the embedded ini pointer. */
std::memcpy(payload_data + 8, std::addressof(meso_size), sizeof(meso_size));
/* Get the ini pointer. */
InitialProcessBinaryHeader * const ini = reinterpret_cast<InitialProcessBinaryHeader *>(payload_data + meso_size);
/* Set ini fields. */
ini->magic = InitialProcessBinaryHeader::Magic;
ini->num_processes = 0;
ini->reserved = 0;
/* Iterate all processes. */
u8 * const dst_kip_start = reinterpret_cast<u8 *>(ini + 1);
u8 * dst_kip_cur = dst_kip_start;
for (InitialProcessMeta *meta = std::addressof(g_initial_process_meta); meta != nullptr; meta = meta->next) {
/* Get the current kip. */
const auto *src_kip = meta->kip;
auto *dst_kip = reinterpret_cast<InitialProcessHeader *>(dst_kip_cur);
/* Copy the kip header */
std::memcpy(dst_kip, src_kip, sizeof(*src_kip));
const u8 *src_kip_data = reinterpret_cast<const u8 *>(src_kip + 1);
u8 *dst_kip_data = reinterpret_cast< u8 *>(dst_kip + 1);
/* If necessary, inject emummc. */
u32 addl_text_offset = 0;
if (dst_kip->program_id == FsProgramId && emummc_enabled) {
/* Get emummc extents. */
addl_text_offset = emummc->bss_address + emummc->bss_size;
if ((emummc->flags & 7) || !util::IsAligned(addl_text_offset, 0x1000)) {
ShowFatalError("Invalid emummc kip!\n");
}
/* Copy emummc capabilities. */
{
std::memcpy(dst_kip->capabilities, emummc->capabilities, sizeof(emummc->capabilities));
if (target_firmware <= ams::TargetFirmware_1_0_0) {
for (size_t i = 0; i < util::size(dst_kip->capabilities); ++i) {
if (dst_kip->capabilities[i] == 0xFFFFFFFF) {
dst_kip->capabilities[i] = 0x07000E7F;
break;
}
}
}
}
/* Update section headers. */
dst_kip->ro_address += addl_text_offset;
dst_kip->rw_address += addl_text_offset;
dst_kip->bss_address += addl_text_offset;
/* Get emummc sections. */
const u8 *emummc_data = reinterpret_cast<const u8 *>(emummc + 1);
/* Copy emummc sections. */
std::memcpy(dst_kip_data + emummc->rx_address, emummc_data, emummc->rx_compressed_size);
std::memcpy(dst_kip_data + emummc->ro_address, emummc_data + emummc->rx_compressed_size, emummc->ro_compressed_size);
std::memcpy(dst_kip_data + emummc->rw_address, emummc_data + emummc->rx_compressed_size + emummc->ro_compressed_size, emummc->rw_compressed_size);
std::memset(dst_kip_data + emummc->bss_address, 0, emummc->bss_size);
/* Advance. */
dst_kip_data += addl_text_offset;
}
/* Prepare to process segments. */
u8 *dst_rx_data, *dst_ro_data, *dst_rw_data;
/* Process .text. */
{
dst_rx_data = dst_kip_data;
std::memcpy(dst_kip_data, src_kip_data, src_kip->rx_compressed_size);
/* Uncompress, if necessary. */
if ((meta->patch_segments & src_kip->flags) & (1 << 0)) {
BlzUncompress(dst_kip_data + dst_kip->rx_compressed_size);
dst_kip->rx_compressed_size = dst_kip->rx_size;
}
/* Advance. */
dst_kip_data += dst_kip->rx_compressed_size;
src_kip_data += src_kip->rx_compressed_size;
/* Account for potential emummc. */
dst_kip->rx_size += addl_text_offset;
dst_kip->rx_compressed_size += addl_text_offset;
}
/* Process .rodata. */
{
dst_ro_data = dst_kip_data;
std::memcpy(dst_kip_data, src_kip_data, src_kip->ro_compressed_size);
/* Uncompress, if necessary. */
if ((meta->patch_segments & src_kip->flags) & (1 << 1)) {
BlzUncompress(dst_kip_data + dst_kip->ro_compressed_size);
dst_kip->ro_compressed_size = dst_kip->ro_size;
}
/* Advance. */
dst_kip_data += dst_kip->ro_compressed_size;
src_kip_data += src_kip->ro_compressed_size;
}
/* Process .rwdata. */
{
dst_rw_data = dst_kip_data;
std::memcpy(dst_kip_data, src_kip_data, src_kip->rw_compressed_size);
/* Uncompress, if necessary. */
if ((meta->patch_segments & src_kip->flags) & (1 << 2)) {
BlzUncompress(dst_kip_data + dst_kip->rw_compressed_size);
dst_kip->rw_compressed_size = dst_kip->rw_size;
}
/* Advance. */
dst_kip_data += dst_kip->rw_compressed_size;
src_kip_data += src_kip->rw_compressed_size;
}
/* Adjust flags. */
dst_kip->flags &= ~meta->patch_segments;
/* Apply patches. */
for (auto *patch = meta->patches_head; patch != nullptr; patch = patch->next) {
/* Get the destination segment. */
u8 *patch_dst_segment;
switch (patch->start_segment) {
case 0: patch_dst_segment = dst_rx_data; break;
case 1: patch_dst_segment = dst_ro_data; break;
case 2: patch_dst_segment = dst_rw_data; break;
default: ShowFatalError("Unknown patch segment %" PRIu32 "\n", patch->start_segment); break;
}
/* Get the destination. */
u8 * const patch_dst = patch_dst_segment + patch->rel_offset;
/* Apply the patch. */
if (patch->is_memset) {
const u8 val = *static_cast<const u8 *>(patch->data);
std::memset(patch_dst, val, patch->size);
} else {
std::memcpy(patch_dst, patch->data, patch->size);
}
}
/* Advance. */
dst_kip_cur += GetInitialProcessSize(dst_kip);
/* Increment num kips. */
++ini->num_processes;
}
/* Set INI size. */
ini->size = sizeof(*ini) + (dst_kip_cur - dst_kip_start);
if (ini->size > 12_MB) {
ShowFatalError("INI is too big! (0x%08" PRIx32 ")\n", ini->size);
}
/* Set the payload size/offset. */
package2->meta.payload_offsets[0] = KernelPayloadBase;
package2->meta.payload_sizes[0] = util::AlignUp(meso_size + ini->size, 0x10);
/* Set total size. */
package2->meta.package2_size = sizeof(*package2) + package2->meta.payload_sizes[0];
}
}