1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-20 17:32:13 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_server_session.cpp

1431 lines
72 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
#pragma GCC push_options
#pragma GCC optimize ("-O3")
namespace ams::kern {
namespace ipc {
using MessageBuffer = ams::svc::ipc::MessageBuffer;
}
namespace {
constexpr inline size_t PointerTransferBufferAlignment = 0x10;
class ThreadQueueImplForKServerSessionRequest final : public KThreadQueue { /* ... */ };
class ReceiveList {
private:
u32 m_data[ipc::MessageBuffer::MessageHeader::ReceiveListCountType_CountMax * ipc::MessageBuffer::ReceiveListEntry::GetDataSize() / sizeof(u32)];
s32 m_recv_list_count;
uintptr_t m_msg_buffer_end;
uintptr_t m_msg_buffer_space_end;
public:
static constexpr ALWAYS_INLINE int GetEntryCount(const ipc::MessageBuffer::MessageHeader &header) {
const auto count = header.GetReceiveListCount();
switch (count) {
case ipc::MessageBuffer::MessageHeader::ReceiveListCountType_None:
return 0;
case ipc::MessageBuffer::MessageHeader::ReceiveListCountType_ToMessageBuffer:
return 0;
case ipc::MessageBuffer::MessageHeader::ReceiveListCountType_ToSingleBuffer:
return 1;
default:
return count - ipc::MessageBuffer::MessageHeader::ReceiveListCountType_CountOffset;
}
}
public:
ReceiveList(const u32 *dst_msg, uintptr_t dst_address, const KProcessPageTable &dst_page_table, const ipc::MessageBuffer::MessageHeader &dst_header, const ipc::MessageBuffer::SpecialHeader &dst_special_header, size_t msg_size, size_t out_offset, s32 dst_recv_list_idx, bool is_tls) {
m_recv_list_count = dst_header.GetReceiveListCount();
m_msg_buffer_end = dst_address + sizeof(u32) * out_offset;
m_msg_buffer_space_end = dst_address + msg_size;
/* NOTE: Nintendo calculates the receive list index here using the special header. */
/* We pre-calculate it in the caller, and pass it as a parameter. */
MESOSPHERE_UNUSED(dst_special_header);
const u32 *recv_list = dst_msg + dst_recv_list_idx;
const auto entry_count = GetEntryCount(dst_header);
if (is_tls) {
__builtin_memcpy(m_data, recv_list, entry_count * ipc::MessageBuffer::ReceiveListEntry::GetDataSize());
} else {
uintptr_t page_addr = util::AlignDown(dst_address, PageSize);
uintptr_t cur_addr = dst_address + dst_recv_list_idx * sizeof(u32);
for (size_t i = 0; i < entry_count * ipc::MessageBuffer::ReceiveListEntry::GetDataSize() / sizeof(u32); ++i) {
if (page_addr != util::AlignDown(cur_addr, PageSize)) {
KPhysicalAddress phys_addr;
dst_page_table.GetPhysicalAddress(std::addressof(phys_addr), KProcessAddress(cur_addr));
recv_list = GetPointer<u32>(KPageTable::GetHeapVirtualAddress(phys_addr));
page_addr = util::AlignDown(cur_addr, PageSize);
}
m_data[i] = *(recv_list++);
cur_addr += sizeof(u32);
}
}
}
constexpr ALWAYS_INLINE bool IsIndex() const {
return m_recv_list_count > ipc::MessageBuffer::MessageHeader::ReceiveListCountType_CountOffset;
}
constexpr ALWAYS_INLINE bool IsToMessageBuffer() const {
return m_recv_list_count == ipc::MessageBuffer::MessageHeader::ReceiveListCountType_ToMessageBuffer;
}
void GetBuffer(uintptr_t &out, size_t size, int &key) const {
switch (m_recv_list_count) {
case ipc::MessageBuffer::MessageHeader::ReceiveListCountType_None:
{
out = 0;
}
break;
case ipc::MessageBuffer::MessageHeader::ReceiveListCountType_ToMessageBuffer:
{
const uintptr_t buf = util::AlignUp(m_msg_buffer_end + key, PointerTransferBufferAlignment);
if ((buf < buf + size) && (buf + size <= m_msg_buffer_space_end)) {
out = buf;
key = buf + size - m_msg_buffer_end;
} else {
out = 0;
}
}
break;
case ipc::MessageBuffer::MessageHeader::ReceiveListCountType_ToSingleBuffer:
{
const ipc::MessageBuffer::ReceiveListEntry entry(m_data[0], m_data[1]);
const uintptr_t buf = util::AlignUp(entry.GetAddress() + key, PointerTransferBufferAlignment);
const uintptr_t entry_addr = entry.GetAddress();
const size_t entry_size = entry.GetSize();
if ((buf < buf + size) && (entry_addr < entry_addr + entry_size) && (buf + size <= entry_addr + entry_size)) {
out = buf;
key = buf + size - entry_addr;
} else {
out = 0;
}
}
break;
default:
{
if (key < m_recv_list_count - ipc::MessageBuffer::MessageHeader::ReceiveListCountType_CountOffset) {
const ipc::MessageBuffer::ReceiveListEntry entry(m_data[2 * key + 0], m_data[2 * key + 1]);
const uintptr_t entry_addr = entry.GetAddress();
const size_t entry_size = entry.GetSize();
if ((entry_addr < entry_addr + entry_size) && (entry_size >= size)) {
out = entry_addr;
}
} else {
out = 0;
}
}
break;
}
}
};
template<bool MoveHandleAllowed>
ALWAYS_INLINE Result ProcessMessageSpecialData(int &offset, KProcess &dst_process, KProcess &src_process, KThread &src_thread, const ipc::MessageBuffer &dst_msg, const ipc::MessageBuffer &src_msg, const ipc::MessageBuffer::SpecialHeader &src_special_header) {
/* Copy the special header to the destination. */
offset = dst_msg.Set(src_special_header);
/* Copy the process ID. */
if (src_special_header.GetHasProcessId()) {
/* NOTE: Atmosphere extends the official kernel here to enable the mitm api. */
/* If building the kernel without this support, just set the following to false. */
constexpr bool EnableProcessIdPassthroughForAtmosphere = true;
if constexpr (EnableProcessIdPassthroughForAtmosphere) {
constexpr u64 PassthroughProcessIdMask = UINT64_C(0xFFFF000000000000);
constexpr u64 PassthroughProcessIdValue = UINT64_C(0xFFFE000000000000);
static_assert((PassthroughProcessIdMask & PassthroughProcessIdValue) == PassthroughProcessIdValue);
const u64 src_process_id_value = src_msg.GetProcessId(offset);
const bool is_passthrough = (src_process_id_value & PassthroughProcessIdMask) == PassthroughProcessIdValue;
offset = dst_msg.SetProcessId(offset, is_passthrough ? (src_process_id_value & ~PassthroughProcessIdMask) : src_process.GetId());
} else {
offset = dst_msg.SetProcessId(offset, src_process.GetId());
}
}
/* Prepare to process handles. */
auto &dst_handle_table = dst_process.GetHandleTable();
auto &src_handle_table = src_process.GetHandleTable();
Result result = ResultSuccess();
/* Process copy handles. */
for (auto i = 0; i < src_special_header.GetCopyHandleCount(); ++i) {
/* Get the handles. */
const ams::svc::Handle src_handle = src_msg.GetHandle(offset);
ams::svc::Handle dst_handle = ams::svc::InvalidHandle;
/* If we're in a success state, try to move the handle to the new table. */
if (R_SUCCEEDED(result) && src_handle != ams::svc::InvalidHandle) {
KScopedAutoObject obj = src_handle_table.GetObjectForIpc(src_handle, std::addressof(src_thread));
if (obj.IsNotNull()) {
Result add_result = dst_handle_table.Add(std::addressof(dst_handle), obj.GetPointerUnsafe());
if (R_FAILED(add_result)) {
result = add_result;
dst_handle = ams::svc::InvalidHandle;
}
} else {
result = svc::ResultInvalidHandle();
}
}
/* Set the handle. */
offset = dst_msg.SetHandle(offset, dst_handle);
}
/* Process move handles. */
if constexpr (MoveHandleAllowed) {
for (auto i = 0; i < src_special_header.GetMoveHandleCount(); ++i) {
/* Get the handles. */
const ams::svc::Handle src_handle = src_msg.GetHandle(offset);
ams::svc::Handle dst_handle = ams::svc::InvalidHandle;
/* Whether or not we've succeeded, we need to remove the handles from the source table. */
if (src_handle != ams::svc::InvalidHandle) {
if (R_SUCCEEDED(result)) {
KScopedAutoObject obj = src_handle_table.GetObjectForIpcWithoutPseudoHandle(src_handle);
if (obj.IsNotNull()) {
Result add_result = dst_handle_table.Add(std::addressof(dst_handle), obj.GetPointerUnsafe());
src_handle_table.Remove(src_handle);
if (R_FAILED(add_result)) {
result = add_result;
dst_handle = ams::svc::InvalidHandle;
}
} else {
result = svc::ResultInvalidHandle();
}
} else {
src_handle_table.Remove(src_handle);
}
}
/* Set the handle. */
offset = dst_msg.SetHandle(offset, dst_handle);
}
}
R_RETURN(result);
}
ALWAYS_INLINE Result ProcessReceiveMessagePointerDescriptors(int &offset, int &pointer_key, KProcessPageTable &dst_page_table, KProcessPageTable &src_page_table, const ipc::MessageBuffer &dst_msg, const ipc::MessageBuffer &src_msg, const ReceiveList &dst_recv_list, bool dst_user) {
/* Get the offset at the start of processing. */
const int cur_offset = offset;
/* Get the pointer desc. */
ipc::MessageBuffer::PointerDescriptor src_desc(src_msg, cur_offset);
offset += ipc::MessageBuffer::PointerDescriptor::GetDataSize() / sizeof(u32);
/* Extract address/size. */
const uintptr_t src_pointer = src_desc.GetAddress();
const size_t recv_size = src_desc.GetSize();
uintptr_t recv_pointer = 0;
/* Process the buffer, if it has a size. */
if (recv_size > 0) {
/* If using indexing, set index. */
if (dst_recv_list.IsIndex()) {
pointer_key = src_desc.GetIndex();
}
/* Get the buffer. */
dst_recv_list.GetBuffer(recv_pointer, recv_size, pointer_key);
R_UNLESS(recv_pointer != 0, svc::ResultOutOfResource());
/* Perform the pointer data copy. */
if (dst_user) {
R_TRY(src_page_table.CopyMemoryFromHeapToHeapWithoutCheckDestination(dst_page_table, recv_pointer, recv_size,
KMemoryState_FlagReferenceCounted, KMemoryState_FlagReferenceCounted,
static_cast<KMemoryPermission>(KMemoryPermission_NotMapped | KMemoryPermission_KernelReadWrite),
KMemoryAttribute_Uncached | KMemoryAttribute_Locked, KMemoryAttribute_Locked,
src_pointer,
KMemoryState_FlagLinearMapped, KMemoryState_FlagLinearMapped,
KMemoryPermission_UserRead,
KMemoryAttribute_Uncached, KMemoryAttribute_None));
} else {
R_TRY(src_page_table.CopyMemoryFromLinearToUser(recv_pointer, recv_size, src_pointer,
KMemoryState_FlagLinearMapped, KMemoryState_FlagLinearMapped,
KMemoryPermission_UserRead,
KMemoryAttribute_Uncached, KMemoryAttribute_None));
}
}
/* Set the output descriptor. */
dst_msg.Set(cur_offset, ipc::MessageBuffer::PointerDescriptor(reinterpret_cast<void *>(recv_pointer), recv_size, src_desc.GetIndex()));
R_SUCCEED();
}
constexpr ALWAYS_INLINE Result GetMapAliasMemoryState(KMemoryState &out, ipc::MessageBuffer::MapAliasDescriptor::Attribute attr) {
switch (attr) {
case ipc::MessageBuffer::MapAliasDescriptor::Attribute_Ipc: out = KMemoryState_Ipc; break;
case ipc::MessageBuffer::MapAliasDescriptor::Attribute_NonSecureIpc: out = KMemoryState_NonSecureIpc; break;
case ipc::MessageBuffer::MapAliasDescriptor::Attribute_NonDeviceIpc: out = KMemoryState_NonDeviceIpc; break;
default: R_THROW(svc::ResultInvalidCombination());
}
R_SUCCEED();
}
constexpr ALWAYS_INLINE Result GetMapAliasTestStateAndAttributeMask(u32 &out_state, u32 &out_attr_mask, KMemoryState state) {
switch (state) {
case KMemoryState_Ipc:
out_state = KMemoryState_FlagCanUseIpc;
out_attr_mask = KMemoryAttribute_Uncached | KMemoryAttribute_DeviceShared | KMemoryAttribute_Locked;
break;
case KMemoryState_NonSecureIpc:
out_state = KMemoryState_FlagCanUseNonSecureIpc;
out_attr_mask = KMemoryAttribute_Uncached | KMemoryAttribute_Locked;
break;
case KMemoryState_NonDeviceIpc:
out_state = KMemoryState_FlagCanUseNonDeviceIpc;
out_attr_mask = KMemoryAttribute_Uncached | KMemoryAttribute_Locked;
break;
default:
R_THROW(svc::ResultInvalidCombination());
}
R_SUCCEED();
}
ALWAYS_INLINE void CleanupSpecialData(KProcess &dst_process, u32 *dst_msg_ptr, size_t dst_buffer_size) {
/* Parse the message. */
const ipc::MessageBuffer dst_msg(dst_msg_ptr, dst_buffer_size);
const ipc::MessageBuffer::MessageHeader dst_header(dst_msg);
const ipc::MessageBuffer::SpecialHeader dst_special_header(dst_msg, dst_header);
/* Check that the size is big enough. */
if (ipc::MessageBuffer::GetMessageBufferSize(dst_header, dst_special_header) > dst_buffer_size) {
return;
}
/* Set the special header. */
int offset = dst_msg.Set(dst_special_header);
/* Clear the process id, if needed. */
if (dst_special_header.GetHasProcessId()) {
offset = dst_msg.SetProcessId(offset, 0);
}
/* Clear handles, as relevant. */
auto &dst_handle_table = dst_process.GetHandleTable();
for (auto i = 0; i < (dst_special_header.GetCopyHandleCount() + dst_special_header.GetMoveHandleCount()); ++i) {
const ams::svc::Handle handle = dst_msg.GetHandle(offset);
if (handle != ams::svc::InvalidHandle) {
dst_handle_table.Remove(handle);
}
offset = dst_msg.SetHandle(offset, ams::svc::InvalidHandle);
}
}
ALWAYS_INLINE Result CleanupServerHandles(uintptr_t message, size_t buffer_size, KPhysicalAddress message_paddr) {
/* Server is assumed to be current thread. */
const KThread &thread = GetCurrentThread();
/* Get the linear message pointer. */
u32 *msg_ptr;
if (message) {
msg_ptr = GetPointer<u32>(KPageTable::GetHeapVirtualAddress(message_paddr));
} else {
msg_ptr = static_cast<ams::svc::ThreadLocalRegion *>(thread.GetThreadLocalRegionHeapAddress())->message_buffer;
buffer_size = sizeof(ams::svc::ThreadLocalRegion{}.message_buffer);
message = GetInteger(thread.GetThreadLocalRegionAddress());
}
/* Parse the message. */
const ipc::MessageBuffer msg(msg_ptr, buffer_size);
const ipc::MessageBuffer::MessageHeader header(msg);
const ipc::MessageBuffer::SpecialHeader special_header(msg, header);
/* Check that the size is big enough. */
R_UNLESS(ipc::MessageBuffer::GetMessageBufferSize(header, special_header) <= buffer_size, svc::ResultInvalidCombination());
/* If there's a special header, there may be move handles we need to close. */
if (header.GetHasSpecialHeader()) {
/* Determine the offset to the start of handles. */
auto offset = msg.GetSpecialDataIndex(header, special_header);
if (special_header.GetHasProcessId()) {
offset += sizeof(u64) / sizeof(u32);
}
if (auto copy_count = special_header.GetCopyHandleCount(); copy_count > 0) {
offset += (sizeof(ams::svc::Handle) * copy_count) / sizeof(u32);
}
/* Get the handle table. */
auto &handle_table = thread.GetOwnerProcess()->GetHandleTable();
/* Close the handles. */
for (auto i = 0; i < special_header.GetMoveHandleCount(); ++i) {
handle_table.Remove(msg.GetHandle(offset));
offset += sizeof(ams::svc::Handle) / sizeof(u32);
}
}
R_SUCCEED();
}
ALWAYS_INLINE Result CleanupServerMap(KSessionRequest *request, KProcess *server_process) {
/* If there's no server process, there's nothing to clean up. */
R_SUCCEED_IF(server_process == nullptr);
/* Get the page table. */
auto &server_page_table = server_process->GetPageTable();
/* Cleanup Send mappings. */
for (size_t i = 0; i < request->GetSendCount(); ++i) {
R_TRY(server_page_table.CleanupForIpcServer(request->GetSendServerAddress(i), request->GetSendSize(i), request->GetSendMemoryState(i)));
}
/* Cleanup Receive mappings. */
for (size_t i = 0; i < request->GetReceiveCount(); ++i) {
R_TRY(server_page_table.CleanupForIpcServer(request->GetReceiveServerAddress(i), request->GetReceiveSize(i), request->GetReceiveMemoryState(i)));
}
/* Cleanup Exchange mappings. */
for (size_t i = 0; i < request->GetExchangeCount(); ++i) {
R_TRY(server_page_table.CleanupForIpcServer(request->GetExchangeServerAddress(i), request->GetExchangeSize(i), request->GetExchangeMemoryState(i)));
}
R_SUCCEED();
}
ALWAYS_INLINE Result CleanupClientMap(KSessionRequest *request, KProcessPageTable *client_page_table) {
/* If there's no client page table, there's nothing to clean up. */
R_SUCCEED_IF(client_page_table == nullptr);
/* Cleanup Send mappings. */
for (size_t i = 0; i < request->GetSendCount(); ++i) {
R_TRY(client_page_table->CleanupForIpcClient(request->GetSendClientAddress(i), request->GetSendSize(i), request->GetSendMemoryState(i)));
}
/* Cleanup Receive mappings. */
for (size_t i = 0; i < request->GetReceiveCount(); ++i) {
R_TRY(client_page_table->CleanupForIpcClient(request->GetReceiveClientAddress(i), request->GetReceiveSize(i), request->GetReceiveMemoryState(i)));
}
/* Cleanup Exchange mappings. */
for (size_t i = 0; i < request->GetExchangeCount(); ++i) {
R_TRY(client_page_table->CleanupForIpcClient(request->GetExchangeClientAddress(i), request->GetExchangeSize(i), request->GetExchangeMemoryState(i)));
}
R_SUCCEED();
}
ALWAYS_INLINE Result CleanupMap(KSessionRequest *request, KProcess *server_process, KProcessPageTable *client_page_table) {
/* Cleanup the server map. */
R_TRY(CleanupServerMap(request, server_process));
/* Cleanup the client map. */
R_TRY(CleanupClientMap(request, client_page_table));
R_SUCCEED();
}
ALWAYS_INLINE Result ProcessReceiveMessageMapAliasDescriptors(int &offset, KProcessPageTable &dst_page_table, KProcessPageTable &src_page_table, const ipc::MessageBuffer &dst_msg, const ipc::MessageBuffer &src_msg, KSessionRequest *request, KMemoryPermission perm, bool send) {
/* Get the offset at the start of processing. */
const int cur_offset = offset;
/* Get the map alias descriptor. */
ipc::MessageBuffer::MapAliasDescriptor src_desc(src_msg, cur_offset);
offset += ipc::MessageBuffer::MapAliasDescriptor::GetDataSize() / sizeof(u32);
/* Extract address/size. */
const KProcessAddress src_address = src_desc.GetAddress();
const size_t size = src_desc.GetSize();
KProcessAddress dst_address = 0;
/* Determine the result memory state. */
KMemoryState dst_state;
R_TRY(GetMapAliasMemoryState(dst_state, src_desc.GetAttribute()));
/* Process the buffer, if it has a size. */
if (size > 0) {
/* Set up the source pages for ipc. */
R_TRY(dst_page_table.SetupForIpc(std::addressof(dst_address), size, src_address, src_page_table, perm, dst_state, send));
/* Ensure that we clean up on failure. */
ON_RESULT_FAILURE {
dst_page_table.CleanupForIpcServer(dst_address, size, dst_state);
src_page_table.CleanupForIpcClient(src_address, size, dst_state);
};
/* Push the appropriate mapping. */
if (perm == KMemoryPermission_UserRead) {
R_TRY(request->PushSend(src_address, dst_address, size, dst_state));
} else if (send) {
R_TRY(request->PushExchange(src_address, dst_address, size, dst_state));
} else {
R_TRY(request->PushReceive(src_address, dst_address, size, dst_state));
}
}
/* Set the output descriptor. */
dst_msg.Set(cur_offset, ipc::MessageBuffer::MapAliasDescriptor(GetVoidPointer(dst_address), size, src_desc.GetAttribute()));
R_SUCCEED();
}
ALWAYS_INLINE Result ReceiveMessage(bool &recv_list_broken, uintptr_t dst_message_buffer, size_t dst_buffer_size, KPhysicalAddress dst_message_paddr, KThread &src_thread, uintptr_t src_message_buffer, size_t src_buffer_size, KServerSession *session, KSessionRequest *request) {
/* Prepare variables for receive. */
const KThread &dst_thread = GetCurrentThread();
KProcess &dst_process = *(dst_thread.GetOwnerProcess());
KProcess &src_process = *(src_thread.GetOwnerProcess());
auto &dst_page_table = dst_process.GetPageTable();
auto &src_page_table = src_process.GetPageTable();
/* NOTE: Session is used only for debugging, and so may go unused. */
MESOSPHERE_UNUSED(session);
/* The receive list is initially not broken. */
recv_list_broken = false;
/* Set the server process for the request. */
request->SetServerProcess(std::addressof(dst_process));
/* Determine the message buffers. */
u32 *dst_msg_ptr, *src_msg_ptr;
bool dst_user, src_user;
if (dst_message_buffer) {
dst_msg_ptr = GetPointer<u32>(KPageTable::GetHeapVirtualAddress(dst_message_paddr));
dst_user = true;
} else {
dst_msg_ptr = static_cast<ams::svc::ThreadLocalRegion *>(dst_thread.GetThreadLocalRegionHeapAddress())->message_buffer;
dst_buffer_size = sizeof(ams::svc::ThreadLocalRegion{}.message_buffer);
dst_message_buffer = GetInteger(dst_thread.GetThreadLocalRegionAddress());
dst_user = false;
}
if (src_message_buffer) {
/* NOTE: Nintendo does not check the result of this GetPhysicalAddress call. */
KPhysicalAddress src_message_paddr;
src_page_table.GetPhysicalAddress(std::addressof(src_message_paddr), src_message_buffer);
src_msg_ptr = GetPointer<u32>(KPageTable::GetHeapVirtualAddress(src_message_paddr));
src_user = true;
} else {
src_msg_ptr = static_cast<ams::svc::ThreadLocalRegion *>(src_thread.GetThreadLocalRegionHeapAddress())->message_buffer;
src_buffer_size = sizeof(ams::svc::ThreadLocalRegion{}.message_buffer);
src_message_buffer = GetInteger(src_thread.GetThreadLocalRegionAddress());
src_user = false;
}
/* Parse the headers. */
const ipc::MessageBuffer dst_msg(dst_msg_ptr, dst_buffer_size);
const ipc::MessageBuffer src_msg(src_msg_ptr, src_buffer_size);
const ipc::MessageBuffer::MessageHeader dst_header(dst_msg);
const ipc::MessageBuffer::MessageHeader src_header(src_msg);
const ipc::MessageBuffer::SpecialHeader dst_special_header(dst_msg, dst_header);
const ipc::MessageBuffer::SpecialHeader src_special_header(src_msg, src_header);
/* Get the end of the source message. */
const size_t src_end_offset = ipc::MessageBuffer::GetRawDataIndex(src_header, src_special_header) + src_header.GetRawCount();
/* Ensure that the headers fit. */
R_UNLESS(ipc::MessageBuffer::GetMessageBufferSize(dst_header, dst_special_header) <= dst_buffer_size, svc::ResultInvalidCombination());
R_UNLESS(ipc::MessageBuffer::GetMessageBufferSize(src_header, src_special_header) <= src_buffer_size, svc::ResultInvalidCombination());
/* Ensure the receive list offset is after the end of raw data. */
if (dst_header.GetReceiveListOffset()) {
R_UNLESS(dst_header.GetReceiveListOffset() >= ipc::MessageBuffer::GetRawDataIndex(dst_header, dst_special_header) + dst_header.GetRawCount(), svc::ResultInvalidCombination());
}
/* Ensure that the destination buffer is big enough to receive the source. */
R_UNLESS(dst_buffer_size >= src_end_offset * sizeof(u32), svc::ResultMessageTooLarge());
/* Get the receive list. */
const s32 dst_recv_list_idx = ipc::MessageBuffer::GetReceiveListIndex(dst_header, dst_special_header);
ReceiveList dst_recv_list(dst_msg_ptr, dst_message_buffer, dst_page_table, dst_header, dst_special_header, dst_buffer_size, src_end_offset, dst_recv_list_idx, !dst_user);
/* Ensure that the source special header isn't invalid. */
const bool src_has_special_header = src_header.GetHasSpecialHeader();
if (src_has_special_header) {
/* Sending move handles from client -> server is not allowed. */
R_UNLESS(src_special_header.GetMoveHandleCount() == 0, svc::ResultInvalidCombination());
}
/* Prepare for further processing. */
int pointer_key = 0;
int offset = dst_msg.Set(src_header);
/* Set up a guard to make sure that we end up in a clean state on error. */
ON_RESULT_FAILURE {
/* Cleanup mappings. */
CleanupMap(request, std::addressof(dst_process), std::addressof(src_page_table));
/* Cleanup special data. */
if (src_header.GetHasSpecialHeader()) {
CleanupSpecialData(dst_process, dst_msg_ptr, dst_buffer_size);
}
/* Cleanup the header if the receive list isn't broken. */
if (!recv_list_broken) {
dst_msg.Set(dst_header);
if (dst_header.GetHasSpecialHeader()) {
dst_msg.Set(dst_special_header);
}
}
};
/* Process any special data. */
if (src_header.GetHasSpecialHeader()) {
/* After we process, make sure we track whether the receive list is broken. */
ON_SCOPE_EXIT { if (offset > dst_recv_list_idx) { recv_list_broken = true; } };
/* Process special data. */
R_TRY(ProcessMessageSpecialData<false>(offset, dst_process, src_process, src_thread, dst_msg, src_msg, src_special_header));
}
/* Process any pointer buffers. */
for (auto i = 0; i < src_header.GetPointerCount(); ++i) {
/* After we process, make sure we track whether the receive list is broken. */
ON_SCOPE_EXIT { if (offset > dst_recv_list_idx) { recv_list_broken = true; } };
R_TRY(ProcessReceiveMessagePointerDescriptors(offset, pointer_key, dst_page_table, src_page_table, dst_msg, src_msg, dst_recv_list, dst_user && dst_header.GetReceiveListCount() == ipc::MessageBuffer::MessageHeader::ReceiveListCountType_ToMessageBuffer));
}
/* Process any map alias buffers. */
for (auto i = 0; i < src_header.GetMapAliasCount(); ++i) {
/* After we process, make sure we track whether the receive list is broken. */
ON_SCOPE_EXIT { if (offset > dst_recv_list_idx) { recv_list_broken = true; } };
/* We process in order send, recv, exch. Buffers after send (recv/exch) are ReadWrite. */
const KMemoryPermission perm = (i >= src_header.GetSendCount()) ? KMemoryPermission_UserReadWrite : KMemoryPermission_UserRead;
/* Buffer is send if it is send or exch. */
const bool send = (i < src_header.GetSendCount()) || (i >= src_header.GetSendCount() + src_header.GetReceiveCount());
R_TRY(ProcessReceiveMessageMapAliasDescriptors(offset, dst_page_table, src_page_table, dst_msg, src_msg, request, perm, send));
}
/* Process any raw data. */
if (const auto raw_count = src_header.GetRawCount(); raw_count != 0) {
/* After we process, make sure we track whether the receive list is broken. */
ON_SCOPE_EXIT { if (offset + raw_count > dst_recv_list_idx) { recv_list_broken = true; } };
/* Get the offset and size. */
const size_t offset_words = offset * sizeof(u32);
const size_t raw_size = raw_count * sizeof(u32);
/* Fast case is TLS -> TLS, do raw memcpy if we can. */
if (!dst_user && !src_user) {
std::memcpy(dst_msg_ptr + offset, src_msg_ptr + offset, raw_size);
} else if (dst_user) {
/* Determine how much fast size we can copy. */
const size_t max_fast_size = std::min<size_t>(offset_words + raw_size, PageSize);
const size_t fast_size = max_fast_size - offset_words;
/* Determine source state; if user buffer, we require heap, and otherwise only linear mapped (to enable tls use). */
const auto src_state = src_user ? KMemoryState_FlagReferenceCounted : KMemoryState_FlagLinearMapped;
/* Determine the source permission. User buffer should be unmapped + read, TLS should be user readable. */
const KMemoryPermission src_perm = static_cast<KMemoryPermission>(src_user ? (KMemoryPermission_NotMapped | KMemoryPermission_KernelRead) : KMemoryPermission_UserRead);
/* Perform the fast part of the copy. */
R_TRY(src_page_table.CopyMemoryFromLinearToKernel(reinterpret_cast<uintptr_t>(dst_msg_ptr) + offset_words, fast_size, src_message_buffer + offset_words,
src_state, src_state,
src_perm,
KMemoryAttribute_Uncached, KMemoryAttribute_None));
/* If the fast part of the copy didn't get everything, perform the slow part of the copy. */
if (fast_size < raw_size) {
R_TRY(src_page_table.CopyMemoryFromHeapToHeap(dst_page_table, dst_message_buffer + max_fast_size, raw_size - fast_size,
KMemoryState_FlagReferenceCounted, KMemoryState_FlagReferenceCounted,
static_cast<KMemoryPermission>(KMemoryPermission_NotMapped | KMemoryPermission_KernelReadWrite),
KMemoryAttribute_Uncached | KMemoryAttribute_Locked, KMemoryAttribute_Locked,
src_message_buffer + max_fast_size,
src_state, src_state,
src_perm,
KMemoryAttribute_Uncached, KMemoryAttribute_None));
}
} else /* if (src_user) */ {
/* The source is a user buffer, so it should be unmapped + readable. */
constexpr KMemoryPermission SourcePermission = static_cast<KMemoryPermission>(KMemoryPermission_NotMapped | KMemoryPermission_KernelRead);
/* Copy the memory. */
R_TRY(src_page_table.CopyMemoryFromLinearToUser(dst_message_buffer + offset_words, raw_size, src_message_buffer + offset_words,
KMemoryState_FlagReferenceCounted, KMemoryState_FlagReferenceCounted,
SourcePermission,
KMemoryAttribute_Uncached, KMemoryAttribute_None));
}
}
/* We succeeded! */
R_SUCCEED();
}
ALWAYS_INLINE Result ProcessSendMessageReceiveMapping(KProcessPageTable &dst_page_table, KProcessAddress client_address, KProcessAddress server_address, size_t size, KMemoryState src_state) {
/* If the size is zero, there's nothing to process. */
R_SUCCEED_IF(size == 0);
/* Get the memory state and attribute mask to test. */
u32 test_state;
u32 test_attr_mask;
R_TRY(GetMapAliasTestStateAndAttributeMask(test_state, test_attr_mask, src_state));
/* Determine buffer extents. */
KProcessAddress aligned_dst_start = util::AlignDown(GetInteger(client_address), PageSize);
KProcessAddress aligned_dst_end = util::AlignUp(GetInteger(client_address) + size, PageSize);
KProcessAddress mapping_dst_start = util::AlignUp(GetInteger(client_address), PageSize);
KProcessAddress mapping_dst_end = util::AlignDown(GetInteger(client_address) + size, PageSize);
KProcessAddress mapping_src_end = util::AlignDown(GetInteger(server_address) + size, PageSize);
/* If the start of the buffer is unaligned, handle that. */
if (aligned_dst_start != mapping_dst_start) {
MESOSPHERE_ASSERT(client_address < mapping_dst_start);
const size_t copy_size = std::min<size_t>(size, mapping_dst_start - client_address);
R_TRY(dst_page_table.CopyMemoryFromUserToLinear(client_address, copy_size,
test_state, test_state,
KMemoryPermission_UserReadWrite,
test_attr_mask, KMemoryAttribute_None,
server_address));
}
/* If the end of the buffer is unaligned, handle that. */
if (mapping_dst_end < aligned_dst_end && (aligned_dst_start == mapping_dst_start || aligned_dst_start < mapping_dst_end)) {
const size_t copy_size = client_address + size - mapping_dst_end;
R_TRY(dst_page_table.CopyMemoryFromUserToLinear(mapping_dst_end, copy_size,
test_state, test_state,
KMemoryPermission_UserReadWrite,
test_attr_mask, KMemoryAttribute_None,
mapping_src_end));
}
R_SUCCEED();
}
ALWAYS_INLINE Result ProcessSendMessagePointerDescriptors(int &offset, int &pointer_key, KProcessPageTable &dst_page_table, const ipc::MessageBuffer &dst_msg, const ipc::MessageBuffer &src_msg, const ReceiveList &dst_recv_list, bool dst_user) {
/* Get the offset at the start of processing. */
const int cur_offset = offset;
/* Get the pointer desc. */
ipc::MessageBuffer::PointerDescriptor src_desc(src_msg, cur_offset);
offset += ipc::MessageBuffer::PointerDescriptor::GetDataSize() / sizeof(u32);
/* Extract address/size. */
const uintptr_t src_pointer = src_desc.GetAddress();
const size_t recv_size = src_desc.GetSize();
uintptr_t recv_pointer = 0;
/* Process the buffer, if it has a size. */
if (recv_size > 0) {
/* If using indexing, set index. */
if (dst_recv_list.IsIndex()) {
pointer_key = src_desc.GetIndex();
}
/* Get the buffer. */
dst_recv_list.GetBuffer(recv_pointer, recv_size, pointer_key);
R_UNLESS(recv_pointer != 0, svc::ResultOutOfResource());
/* Perform the pointer data copy. */
const bool dst_heap = dst_user && dst_recv_list.IsToMessageBuffer();
const auto dst_state = dst_heap ? KMemoryState_FlagReferenceCounted : KMemoryState_FlagLinearMapped;
const KMemoryPermission dst_perm = static_cast<KMemoryPermission>(dst_heap ? (KMemoryPermission_NotMapped | KMemoryPermission_KernelReadWrite) : KMemoryPermission_UserReadWrite);
R_TRY(dst_page_table.CopyMemoryFromUserToLinear(recv_pointer, recv_size,
dst_state, dst_state,
dst_perm,
KMemoryAttribute_Uncached, KMemoryAttribute_None,
src_pointer));
}
/* Set the output descriptor. */
dst_msg.Set(cur_offset, ipc::MessageBuffer::PointerDescriptor(reinterpret_cast<void *>(recv_pointer), recv_size, src_desc.GetIndex()));
R_SUCCEED();
}
ALWAYS_INLINE Result SendMessage(uintptr_t src_message_buffer, size_t src_buffer_size, KPhysicalAddress src_message_paddr, KThread &dst_thread, uintptr_t dst_message_buffer, size_t dst_buffer_size, KServerSession *session, KSessionRequest *request) {
/* Prepare variables for send. */
KThread &src_thread = GetCurrentThread();
KProcess &dst_process = *(dst_thread.GetOwnerProcess());
KProcess &src_process = *(src_thread.GetOwnerProcess());
auto &dst_page_table = dst_process.GetPageTable();
auto &src_page_table = src_process.GetPageTable();
/* NOTE: Session is used only for debugging, and so may go unused. */
MESOSPHERE_UNUSED(session);
/* NOTE: Source page table is not used, and so may go unused. */
MESOSPHERE_UNUSED(src_page_table);
/* Determine the message buffers. */
u32 *dst_msg_ptr, *src_msg_ptr;
bool dst_user, src_user;
if (dst_message_buffer) {
/* NOTE: Nintendo does not check the result of this GetPhysicalAddress call. */
KPhysicalAddress dst_message_paddr;
dst_page_table.GetPhysicalAddress(std::addressof(dst_message_paddr), dst_message_buffer);
dst_msg_ptr = GetPointer<u32>(KPageTable::GetHeapVirtualAddress(dst_message_paddr));
dst_user = true;
} else {
dst_msg_ptr = static_cast<ams::svc::ThreadLocalRegion *>(dst_thread.GetThreadLocalRegionHeapAddress())->message_buffer;
dst_buffer_size = sizeof(ams::svc::ThreadLocalRegion{}.message_buffer);
dst_message_buffer = GetInteger(dst_thread.GetThreadLocalRegionAddress());
dst_user = false;
}
if (src_message_buffer) {
src_msg_ptr = GetPointer<u32>(KPageTable::GetHeapVirtualAddress(src_message_paddr));
src_user = true;
} else {
src_msg_ptr = static_cast<ams::svc::ThreadLocalRegion *>(src_thread.GetThreadLocalRegionHeapAddress())->message_buffer;
src_buffer_size = sizeof(ams::svc::ThreadLocalRegion{}.message_buffer);
src_message_buffer = GetInteger(src_thread.GetThreadLocalRegionAddress());
src_user = false;
}
/* Parse the headers. */
const ipc::MessageBuffer dst_msg(dst_msg_ptr, dst_buffer_size);
const ipc::MessageBuffer src_msg(src_msg_ptr, src_buffer_size);
const ipc::MessageBuffer::MessageHeader dst_header(dst_msg);
const ipc::MessageBuffer::MessageHeader src_header(src_msg);
const ipc::MessageBuffer::SpecialHeader dst_special_header(dst_msg, dst_header);
const ipc::MessageBuffer::SpecialHeader src_special_header(src_msg, src_header);
/* Get the end of the source message. */
const size_t src_end_offset = ipc::MessageBuffer::GetRawDataIndex(src_header, src_special_header) + src_header.GetRawCount();
/* Declare variables for processing. */
int offset = 0;
int pointer_key = 0;
bool processed_special_data = false;
/* Send the message. */
{
/* Make sure that we end up in a clean state on error. */
ON_RESULT_FAILURE {
/* Cleanup special data. */
if (processed_special_data) {
if (src_header.GetHasSpecialHeader()) {
CleanupSpecialData(dst_process, dst_msg_ptr, dst_buffer_size);
}
} else {
CleanupServerHandles(src_user ? src_message_buffer : 0, src_buffer_size, src_message_paddr);
}
/* Cleanup mappings. */
CleanupMap(request, std::addressof(src_process), std::addressof(dst_page_table));
};
/* Ensure that the headers fit. */
R_UNLESS(ipc::MessageBuffer::GetMessageBufferSize(src_header, src_special_header) <= src_buffer_size, svc::ResultInvalidCombination());
R_UNLESS(ipc::MessageBuffer::GetMessageBufferSize(dst_header, dst_special_header) <= dst_buffer_size, svc::ResultInvalidCombination());
/* Ensure the receive list offset is after the end of raw data. */
if (dst_header.GetReceiveListOffset()) {
R_UNLESS(dst_header.GetReceiveListOffset() >= ipc::MessageBuffer::GetRawDataIndex(dst_header, dst_special_header) + dst_header.GetRawCount(), svc::ResultInvalidCombination());
}
/* Ensure that the destination buffer is big enough to receive the source. */
R_UNLESS(dst_buffer_size >= src_end_offset * sizeof(u32), svc::ResultMessageTooLarge());
/* Replies must have no buffers. */
R_UNLESS(src_header.GetSendCount() == 0, svc::ResultInvalidCombination());
R_UNLESS(src_header.GetReceiveCount() == 0, svc::ResultInvalidCombination());
R_UNLESS(src_header.GetExchangeCount() == 0, svc::ResultInvalidCombination());
/* Get the receive list. */
const s32 dst_recv_list_idx = ipc::MessageBuffer::GetReceiveListIndex(dst_header, dst_special_header);
ReceiveList dst_recv_list(dst_msg_ptr, dst_message_buffer, dst_page_table, dst_header, dst_special_header, dst_buffer_size, src_end_offset, dst_recv_list_idx, !dst_user);
/* Handle any receive buffers. */
for (size_t i = 0; i < request->GetReceiveCount(); ++i) {
R_TRY(ProcessSendMessageReceiveMapping(dst_page_table, request->GetReceiveClientAddress(i), request->GetReceiveServerAddress(i), request->GetReceiveSize(i), request->GetReceiveMemoryState(i)));
}
/* Handle any exchange buffers. */
for (size_t i = 0; i < request->GetExchangeCount(); ++i) {
R_TRY(ProcessSendMessageReceiveMapping(dst_page_table, request->GetExchangeClientAddress(i), request->GetExchangeServerAddress(i), request->GetExchangeSize(i), request->GetExchangeMemoryState(i)));
}
/* Set the header. */
offset = dst_msg.Set(src_header);
/* Process any special data. */
MESOSPHERE_ASSERT(GetCurrentThreadPointer() == std::addressof(src_thread));
processed_special_data = true;
if (src_header.GetHasSpecialHeader()) {
R_TRY(ProcessMessageSpecialData<true>(offset, dst_process, src_process, src_thread, dst_msg, src_msg, src_special_header));
}
/* Process any pointer buffers. */
for (auto i = 0; i < src_header.GetPointerCount(); ++i) {
R_TRY(ProcessSendMessagePointerDescriptors(offset, pointer_key, dst_page_table, dst_msg, src_msg, dst_recv_list, dst_user && dst_header.GetReceiveListCount() == ipc::MessageBuffer::MessageHeader::ReceiveListCountType_ToMessageBuffer));
}
/* Clear any map alias buffers. */
for (auto i = 0; i < src_header.GetMapAliasCount(); ++i) {
offset = dst_msg.Set(offset, ipc::MessageBuffer::MapAliasDescriptor());
}
/* Process any raw data. */
if (const auto raw_count = src_header.GetRawCount(); raw_count != 0) {
/* Get the offset and size. */
const size_t offset_words = offset * sizeof(u32);
const size_t raw_size = raw_count * sizeof(u32);
/* Fast case is TLS -> TLS, do raw memcpy if we can. */
if (!dst_user && !src_user) {
std::memcpy(dst_msg_ptr + offset, src_msg_ptr + offset, raw_size);
} else if (src_user) {
/* Determine how much fast size we can copy. */
const size_t max_fast_size = std::min<size_t>(offset_words + raw_size, PageSize);
const size_t fast_size = max_fast_size - offset_words;
/* Determine dst state; if user buffer, we require heap, and otherwise only linear mapped (to enable tls use). */
const auto dst_state = dst_user ? KMemoryState_FlagReferenceCounted : KMemoryState_FlagLinearMapped;
/* Determine the dst permission. User buffer should be unmapped + read, TLS should be user readable. */
const KMemoryPermission dst_perm = static_cast<KMemoryPermission>(dst_user ? (KMemoryPermission_NotMapped | KMemoryPermission_KernelReadWrite) : KMemoryPermission_UserReadWrite);
/* Perform the fast part of the copy. */
R_TRY(dst_page_table.CopyMemoryFromKernelToLinear(dst_message_buffer + offset_words, fast_size,
dst_state, dst_state,
dst_perm,
KMemoryAttribute_Uncached, KMemoryAttribute_None,
reinterpret_cast<uintptr_t>(src_msg_ptr) + offset_words));
/* If the fast part of the copy didn't get everything, perform the slow part of the copy. */
if (fast_size < raw_size) {
R_TRY(dst_page_table.CopyMemoryFromHeapToHeap(dst_page_table, dst_message_buffer + max_fast_size, raw_size - fast_size,
dst_state, dst_state,
dst_perm,
KMemoryAttribute_Uncached, KMemoryAttribute_None,
src_message_buffer + max_fast_size,
KMemoryState_FlagReferenceCounted, KMemoryState_FlagReferenceCounted,
static_cast<KMemoryPermission>(KMemoryPermission_NotMapped | KMemoryPermission_KernelRead),
KMemoryAttribute_Uncached | KMemoryAttribute_Locked, KMemoryAttribute_Locked));
}
} else /* if (dst_user) */ {
/* The destination is a user buffer, so it should be unmapped + readable. */
constexpr KMemoryPermission DestinationPermission = static_cast<KMemoryPermission>(KMemoryPermission_NotMapped | KMemoryPermission_KernelReadWrite);
/* Copy the memory. */
R_TRY(dst_page_table.CopyMemoryFromUserToLinear(dst_message_buffer + offset_words, raw_size,
KMemoryState_FlagReferenceCounted, KMemoryState_FlagReferenceCounted,
DestinationPermission,
KMemoryAttribute_Uncached, KMemoryAttribute_None,
src_message_buffer + offset_words));
}
}
}
/* Perform (and validate) any remaining cleanup. */
R_RETURN(CleanupMap(request, std::addressof(src_process), std::addressof(dst_page_table)));
}
ALWAYS_INLINE void ReplyAsyncError(KProcess *to_process, uintptr_t to_msg_buf, size_t to_msg_buf_size, Result result) {
/* Convert the buffer to a physical address. */
KPhysicalAddress phys_addr;
to_process->GetPageTable().GetPhysicalAddress(std::addressof(phys_addr), KProcessAddress(to_msg_buf));
/* Convert the physical address to a linear pointer. */
u32 *to_msg = GetPointer<u32>(KPageTable::GetHeapVirtualAddress(phys_addr));
/* Set the error. */
ipc::MessageBuffer msg(to_msg, to_msg_buf_size);
msg.SetAsyncResult(result);
}
}
void KServerSession::Destroy() {
MESOSPHERE_ASSERT_THIS();
m_parent->OnServerClosed();
this->CleanupRequests();
m_parent->Close();
}
Result KServerSession::ReceiveRequest(uintptr_t server_message, uintptr_t server_buffer_size, KPhysicalAddress server_message_paddr) {
MESOSPHERE_ASSERT_THIS();
/* Lock the session. */
KScopedLightLock lk(m_lock);
/* Get the request and client thread. */
KSessionRequest *request;
KThread *client_thread;
{
KScopedSchedulerLock sl;
/* Ensure that we can service the request. */
R_UNLESS(!m_parent->IsClientClosed(), svc::ResultSessionClosed());
/* Ensure we aren't already servicing a request. */
R_UNLESS(m_current_request == nullptr, svc::ResultNotFound());
/* Ensure we have a request to service. */
R_UNLESS(!m_request_list.empty(), svc::ResultNotFound());
/* Pop the first request from the list. */
request = std::addressof(m_request_list.front());
m_request_list.pop_front();
/* Get the thread for the request. */
client_thread = request->GetThread();
R_UNLESS(client_thread != nullptr, svc::ResultSessionClosed());
/* Open the client thread. */
client_thread->Open();
}
ON_SCOPE_EXIT { client_thread->Close(); };
/* Set the request as our current. */
m_current_request = request;
/* Get the client address. */
uintptr_t client_message = request->GetAddress();
size_t client_buffer_size = request->GetSize();
bool recv_list_broken = false;
/* Receive the message. */
Result result = ReceiveMessage(recv_list_broken, server_message, server_buffer_size, server_message_paddr, *client_thread, client_message, client_buffer_size, this, request);
/* Handle cleanup on receive failure. */
if (R_FAILED(result)) {
/* Cache the result to return it to the client. */
const Result result_for_client = result;
/* Clear the current request. */
{
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(m_current_request == request);
m_current_request = nullptr;
if (!m_request_list.empty()) {
this->NotifyAvailable();
}
}
/* Reply to the client. */
{
/* After we reply, close our reference to the request. */
ON_SCOPE_EXIT { request->Close(); };
/* Get the event to check whether the request is async. */
if (KEvent *event = request->GetEvent(); event != nullptr) {
/* The client sent an async request. */
KProcess *client = client_thread->GetOwnerProcess();
auto &client_pt = client->GetPageTable();
/* Send the async result. */
if (R_FAILED(result_for_client)) {
ReplyAsyncError(client, client_message, client_buffer_size, result_for_client);
}
/* Unlock the client buffer. */
/* NOTE: Nintendo does not check the result of this. */
client_pt.UnlockForIpcUserBuffer(client_message, client_buffer_size);
/* Signal the event. */
event->Signal();
} else {
/* End the client thread's wait. */
KScopedSchedulerLock sl;
if (!client_thread->IsTerminationRequested()) {
client_thread->EndWait(result_for_client);
}
}
}
/* Set the server result. */
if (recv_list_broken) {
result = svc::ResultReceiveListBroken();
} else {
result = svc::ResultNotFound();
}
}
R_RETURN(result);
}
Result KServerSession::SendReply(uintptr_t server_message, uintptr_t server_buffer_size, KPhysicalAddress server_message_paddr) {
MESOSPHERE_ASSERT_THIS();
/* Lock the session. */
KScopedLightLock lk(m_lock);
/* Get the request. */
KSessionRequest *request;
{
KScopedSchedulerLock sl;
/* Get the current request. */
request = m_current_request;
R_UNLESS(request != nullptr, svc::ResultInvalidState());
/* Clear the current request, since we're processing it. */
m_current_request = nullptr;
if (!m_request_list.empty()) {
this->NotifyAvailable();
}
}
/* Close reference to the request once we're done processing it. */
ON_SCOPE_EXIT { request->Close(); };
/* Extract relevant information from the request. */
const uintptr_t client_message = request->GetAddress();
const size_t client_buffer_size = request->GetSize();
KThread *client_thread = request->GetThread();
KEvent *event = request->GetEvent();
/* Check whether we're closed. */
const bool closed = (client_thread == nullptr || m_parent->IsClientClosed());
Result result;
if (!closed) {
/* If we're not closed, send the reply. */
result = SendMessage(server_message, server_buffer_size, server_message_paddr, *client_thread, client_message, client_buffer_size, this, request);
} else {
/* Otherwise, we'll need to do some cleanup. */
KProcess *server_process = request->GetServerProcess();
KProcess *client_process = (client_thread != nullptr) ? client_thread->GetOwnerProcess() : nullptr;
KProcessPageTable *client_page_table = (client_process != nullptr) ? std::addressof(client_process->GetPageTable()) : nullptr;
/* Cleanup server handles. */
result = CleanupServerHandles(server_message, server_buffer_size, server_message_paddr);
/* Cleanup mappings. */
Result cleanup_map_result = CleanupMap(request, server_process, client_page_table);
/* If we successfully cleaned up handles, use the map cleanup result as our result. */
if (R_SUCCEEDED(result)) {
result = cleanup_map_result;
}
}
/* Select a result for the client. */
Result client_result = result;
if (closed && R_SUCCEEDED(result)) {
result = svc::ResultSessionClosed();
client_result = svc::ResultSessionClosed();
} else {
result = ResultSuccess();
}
/* If there's a client thread, update it. */
if (client_thread != nullptr) {
if (event != nullptr) {
/* Get the client process/page table. */
KProcess *client_process = client_thread->GetOwnerProcess();
KProcessPageTable *client_page_table = std::addressof(client_process->GetPageTable());
/* If we need to, reply with an async error. */
if (R_FAILED(client_result)) {
ReplyAsyncError(client_process, client_message, client_buffer_size, client_result);
}
/* Unlock the client buffer. */
/* NOTE: Nintendo does not check the result of this. */
client_page_table->UnlockForIpcUserBuffer(client_message, client_buffer_size);
/* Signal the event. */
event->Signal();
} else {
/* End the client thread's wait. */
KScopedSchedulerLock sl;
if (!client_thread->IsTerminationRequested()) {
client_thread->EndWait(client_result);
}
}
}
R_RETURN(result);
}
Result KServerSession::OnRequest(KSessionRequest *request) {
MESOSPHERE_ASSERT_THIS();
/* Create the wait queue. */
ThreadQueueImplForKServerSessionRequest wait_queue;
/* Handle the request. */
{
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Ensure that we can handle new requests. */
R_UNLESS(!m_parent->IsServerClosed(), svc::ResultSessionClosed());
/* Check that we're not terminating. */
R_UNLESS(!GetCurrentThread().IsTerminationRequested(), svc::ResultTerminationRequested());
/* Get whether we're empty. */
const bool was_empty = m_request_list.empty();
/* Add the request to the list. */
request->Open();
m_request_list.push_back(*request);
/* If we were empty, signal. */
if (was_empty) {
this->NotifyAvailable();
}
/* If we have a request, this is asynchronous, and we don't need to wait. */
R_SUCCEED_IF(request->GetEvent() != nullptr);
/* This is a synchronous request, so we should wait for our request to complete. */
GetCurrentThread().BeginWait(std::addressof(wait_queue));
}
R_RETURN(GetCurrentThread().GetWaitResult());
}
bool KServerSession::IsSignaledImpl() const {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* If the client is closed, we're always signaled. */
if (m_parent->IsClientClosed()) {
return true;
}
/* Otherwise, we're signaled if we have a request and aren't handling one. */
return !m_request_list.empty() && m_current_request == nullptr;
}
bool KServerSession::IsSignaled() const {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
return this->IsSignaledImpl();
}
void KServerSession::CleanupRequests() {
MESOSPHERE_ASSERT_THIS();
KScopedLightLock lk(m_lock);
/* Clean up any pending requests. */
while (true) {
/* Get the next request. */
KSessionRequest *request = nullptr;
{
KScopedSchedulerLock sl;
if (m_current_request) {
/* Choose the current request if we have one. */
request = m_current_request;
m_current_request = nullptr;
} else if (!m_request_list.empty()) {
/* Pop the request from the front of the list. */
request = std::addressof(m_request_list.front());
m_request_list.pop_front();
}
}
/* If there's no request, we're done. */
if (request == nullptr) {
break;
}
/* Close a reference to the request once it's cleaned up. */
ON_SCOPE_EXIT { request->Close(); };
/* Extract relevant information from the request. */
const uintptr_t client_message = request->GetAddress();
const size_t client_buffer_size = request->GetSize();
KThread *client_thread = request->GetThread();
KEvent *event = request->GetEvent();
KProcess *server_process = request->GetServerProcess();
KProcess *client_process = (client_thread != nullptr) ? client_thread->GetOwnerProcess() : nullptr;
KProcessPageTable *client_page_table = (client_process != nullptr) ? std::addressof(client_process->GetPageTable()) : nullptr;
/* Cleanup the mappings. */
Result result = CleanupMap(request, server_process, client_page_table);
/* If there's a client thread, update it. */
if (client_thread != nullptr) {
if (event != nullptr) {
/* We need to reply async. */
ReplyAsyncError(client_process, client_message, client_buffer_size, (R_SUCCEEDED(result) ? svc::ResultSessionClosed() : result));
/* Unlock the client buffer. */
/* NOTE: Nintendo does not check the result of this. */
client_page_table->UnlockForIpcUserBuffer(client_message, client_buffer_size);
/* Signal the event. */
event->Signal();
} else {
/* End the client thread's wait. */
KScopedSchedulerLock sl;
if (!client_thread->IsTerminationRequested()) {
client_thread->EndWait(R_SUCCEEDED(result) ? svc::ResultSessionClosed() : result);
}
}
}
}
}
void KServerSession::OnClientClosed() {
MESOSPHERE_ASSERT_THIS();
KScopedLightLock lk(m_lock);
/* Handle any pending requests. */
KSessionRequest *prev_request = nullptr;
while (true) {
/* Declare variables for processing the request. */
KSessionRequest *request = nullptr;
KEvent *event = nullptr;
KThread *thread = nullptr;
bool cur_request = false;
bool terminate = false;
/* Get the next request. */
{
KScopedSchedulerLock sl;
if (m_current_request != nullptr && m_current_request != prev_request) {
/* Set the request, open a reference as we process it. */
request = m_current_request;
request->Open();
cur_request = true;
/* Get thread and event for the request. */
thread = request->GetThread();
event = request->GetEvent();
/* If the thread is terminating, handle that. */
if (thread->IsTerminationRequested()) {
request->ClearThread();
request->ClearEvent();
terminate = true;
}
prev_request = request;
} else if (!m_request_list.empty()) {
/* Pop the request from the front of the list. */
request = std::addressof(m_request_list.front());
m_request_list.pop_front();
/* Get thread and event for the request. */
thread = request->GetThread();
event = request->GetEvent();
}
}
/* If there are no requests, we're done. */
if (request == nullptr) {
break;
}
/* All requests must have threads. */
MESOSPHERE_ASSERT(thread != nullptr);
/* Ensure that we close the request when done. */
ON_SCOPE_EXIT { request->Close(); };
/* If we're terminating, close a reference to the thread and event. */
if (terminate) {
thread->Close();
if (event != nullptr) {
event->Close();
}
}
/* If we need to, reply. */
if (event != nullptr && !cur_request) {
/* There must be no mappings. */
MESOSPHERE_ASSERT(request->GetSendCount() == 0);
MESOSPHERE_ASSERT(request->GetReceiveCount() == 0);
MESOSPHERE_ASSERT(request->GetExchangeCount() == 0);
/* Get the process and page table. */
KProcess *client_process = thread->GetOwnerProcess();
auto &client_pt = client_process->GetPageTable();
/* Reply to the request. */
ReplyAsyncError(client_process, request->GetAddress(), request->GetSize(), svc::ResultSessionClosed());
/* Unlock the buffer. */
/* NOTE: Nintendo does not check the result of this. */
client_pt.UnlockForIpcUserBuffer(request->GetAddress(), request->GetSize());
/* Signal the event. */
event->Signal();
}
}
/* Notify. */
this->NotifyAvailable(svc::ResultSessionClosed());
}
void KServerSession::Dump() {
MESOSPHERE_ASSERT_THIS();
KScopedLightLock lk(m_lock);
{
KScopedSchedulerLock sl;
MESOSPHERE_RELEASE_LOG("Dump Session %p\n", this);
/* Dump current request. */
bool has_request = false;
if (m_current_request != nullptr) {
KThread *thread = m_current_request->GetThread();
const s32 thread_id = thread != nullptr ? static_cast<s32>(thread->GetId()) : -1;
MESOSPHERE_RELEASE_LOG(" CurrentReq %p Thread=%p ID=%d\n", m_current_request, thread, thread_id);
has_request = true;
}
/* Dump all rqeuests in list. */
for (auto it = m_request_list.begin(); it != m_request_list.end(); ++it) {
KThread *thread = it->GetThread();
const s32 thread_id = thread != nullptr ? static_cast<s32>(thread->GetId()) : -1;
MESOSPHERE_RELEASE_LOG(" Req %p Thread=%p ID=%d\n", m_current_request, thread, thread_id);
has_request = true;
}
/* If we didn't have any requests, print so. */
if (!has_request) {
MESOSPHERE_RELEASE_LOG(" None\n");
}
}
}
}
#pragma GCC pop_options