1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-29 23:32:23 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_capabilities.cpp
2020-08-18 15:17:40 -07:00

303 lines
14 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
Result KCapabilities::Initialize(const u32 *caps, s32 num_caps, KProcessPageTable *page_table) {
/* We're initializing an initial process. */
/* Most fields have already been cleared by our constructor. */
/* Initial processes may run on all cores. */
this->core_mask = (1ul << cpu::NumCores) - 1;
/* Initial processes may use any user priority they like. */
this->priority_mask = ~0xFul;
/* Here, Nintendo sets the kernel version to the current kernel version. */
/* We will follow suit and set the version to the highest supported kernel version. */
this->intended_kernel_version.Set<KernelVersion::MajorVersion>(ams::svc::SupportedKernelMajorVersion);
this->intended_kernel_version.Set<KernelVersion::MinorVersion>(ams::svc::SupportedKernelMinorVersion);
/* Parse the capabilities array. */
return this->SetCapabilities(caps, num_caps, page_table);
}
Result KCapabilities::Initialize(svc::KUserPointer<const u32 *> user_caps, s32 num_caps, KProcessPageTable *page_table) {
/* We're initializing a user process. */
/* Most fields have already been cleared by our constructor. */
/* Parse the user capabilities array. */
return this->SetCapabilities(user_caps, num_caps, page_table);
}
Result KCapabilities::SetCorePriorityCapability(const util::BitPack32 cap) {
/* We can't set core/priority if we've already set them. */
R_UNLESS(this->core_mask == 0, svc::ResultInvalidArgument());
R_UNLESS(this->priority_mask == 0, svc::ResultInvalidArgument());
/* Validate the core/priority. */
const auto min_core = cap.Get<CorePriority::MinimumCoreId>();
const auto max_core = cap.Get<CorePriority::MaximumCoreId>();
const auto max_prio = cap.Get<CorePriority::LowestThreadPriority>();
const auto min_prio = cap.Get<CorePriority::HighestThreadPriority>();
R_UNLESS(min_core <= max_core, svc::ResultInvalidCombination());
R_UNLESS(min_prio <= max_prio, svc::ResultInvalidCombination());
R_UNLESS(max_core < cpu::NumCores, svc::ResultInvalidCoreId());
MESOSPHERE_ASSERT(max_core < BITSIZEOF(u64));
MESOSPHERE_ASSERT(max_prio < BITSIZEOF(u64));
/* Set core mask. */
for (auto core_id = min_core; core_id <= max_core; core_id++) {
this->core_mask |= (1ul << core_id);
}
MESOSPHERE_ASSERT((this->core_mask & ((1ul << cpu::NumCores) - 1)) == this->core_mask);
/* Set priority mask. */
for (auto prio = min_prio; prio <= max_prio; prio++) {
this->priority_mask |= (1ul << prio);
}
/* We must have some core/priority we can use. */
R_UNLESS(this->core_mask != 0, svc::ResultInvalidArgument());
R_UNLESS(this->priority_mask != 0, svc::ResultInvalidArgument());
return ResultSuccess();
}
Result KCapabilities::SetSyscallMaskCapability(const util::BitPack32 cap, u32 &set_svc) {
/* Validate the index. */
const auto mask = cap.Get<SyscallMask::Mask>();
const auto index = cap.Get<SyscallMask::Index>();
const u32 index_flag = (1u << index);
R_UNLESS((set_svc & index_flag) == 0, svc::ResultInvalidCombination());
set_svc |= index_flag;
/* Set SVCs. */
for (size_t i = 0; i < SyscallMask::Mask::Count; i++) {
const u32 svc_id = SyscallMask::Mask::Count * index + i;
if (mask & (1u << i)) {
R_UNLESS(this->SetSvcAllowed(svc_id), svc::ResultOutOfRange());
}
}
return ResultSuccess();
}
Result KCapabilities::MapRange(const util::BitPack32 cap, const util::BitPack32 size_cap, KProcessPageTable *page_table) {
/* Validate reserved bits are unused. */
R_UNLESS(size_cap.Get<MapRangeSize::Reserved>() == 0, svc::ResultOutOfRange());
/* Get/validate address/size */
const u64 phys_addr = cap.Get<MapRange::Address>() * PageSize;
const size_t num_pages = size_cap.Get<MapRangeSize::Pages>();
const size_t size = num_pages * PageSize;
R_UNLESS(phys_addr == GetInteger(KPhysicalAddress(phys_addr)), svc::ResultInvalidAddress());
R_UNLESS(num_pages != 0, svc::ResultInvalidSize());
R_UNLESS(phys_addr < phys_addr + size, svc::ResultInvalidAddress());
R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, svc::ResultInvalidAddress());
/* Do the mapping. */
const KMemoryPermission perm = cap.Get<MapRange::ReadOnly>() ? KMemoryPermission_UserRead : KMemoryPermission_UserReadWrite;
if (size_cap.Get<MapRangeSize::Normal>()) {
return page_table->MapStatic(phys_addr, size, perm);
} else {
return page_table->MapIo(phys_addr, size, perm);
}
}
Result KCapabilities::MapIoPage(const util::BitPack32 cap, KProcessPageTable *page_table) {
/* Get/validate address/size */
const u64 phys_addr = cap.Get<MapIoPage::Address>() * PageSize;
const size_t num_pages = 1;
const size_t size = num_pages * PageSize;
R_UNLESS(phys_addr == GetInteger(KPhysicalAddress(phys_addr)), svc::ResultInvalidAddress());
R_UNLESS(num_pages != 0, svc::ResultInvalidSize());
R_UNLESS(phys_addr < phys_addr + size, svc::ResultInvalidAddress());
R_UNLESS(((phys_addr + size - 1) & ~PhysicalMapAllowedMask) == 0, svc::ResultInvalidAddress());
/* Do the mapping. */
return page_table->MapIo(phys_addr, size, KMemoryPermission_UserReadWrite);
}
Result KCapabilities::MapRegion(const util::BitPack32 cap, KProcessPageTable *page_table) {
/* Define the allowed memory regions. */
constexpr KMemoryRegionType MemoryRegions[] = {
KMemoryRegionType_None,
KMemoryRegionType_KernelTraceBuffer,
KMemoryRegionType_OnMemoryBootImage,
KMemoryRegionType_DTB,
};
/* Extract regions/read only. */
const RegionType types[3] = { cap.Get<MapRegion::Region0>(), cap.Get<MapRegion::Region1>(), cap.Get<MapRegion::Region2>(), };
const bool ro[3] = { cap.Get<MapRegion::ReadOnly0>(), cap.Get<MapRegion::ReadOnly1>(), cap.Get<MapRegion::ReadOnly2>(), };
for (size_t i = 0; i < util::size(types); i++) {
const auto type = types[i];
const auto perm = ro[i] ? KMemoryPermission_UserRead : KMemoryPermission_UserReadWrite;
switch (type) {
case RegionType::None:
break;
case RegionType::KernelTraceBuffer:
case RegionType::OnMemoryBootImage:
case RegionType::DTB:
R_TRY(page_table->MapRegion(MemoryRegions[static_cast<u32>(type)], perm));
break;
default:
return svc::ResultNotFound();
}
}
return ResultSuccess();
}
Result KCapabilities::SetInterruptPairCapability(const util::BitPack32 cap) {
/* Extract interrupts. */
const u32 ids[2] = { cap.Get<InterruptPair::InterruptId0>(), cap.Get<InterruptPair::InterruptId1>(), };
for (size_t i = 0; i < util::size(ids); i++) {
if (ids[i] != PaddingInterruptId) {
R_UNLESS(Kernel::GetInterruptManager().IsInterruptDefined(ids[i]), svc::ResultOutOfRange());
R_UNLESS(this->SetInterruptPermitted(ids[i]), svc::ResultOutOfRange());
}
}
return ResultSuccess();
}
Result KCapabilities::SetProgramTypeCapability(const util::BitPack32 cap) {
/* Validate. */
R_UNLESS(cap.Get<ProgramType::Reserved>() == 0, svc::ResultReservedUsed());
this->program_type = cap.Get<ProgramType::Type>();
return ResultSuccess();
}
Result KCapabilities::SetKernelVersionCapability(const util::BitPack32 cap) {
/* Ensure we haven't set our version before. */
R_UNLESS(this->intended_kernel_version.Get<KernelVersion::MajorVersion>() == 0, svc::ResultInvalidArgument());
/* Set, ensure that we set a valid version. */
this->intended_kernel_version = cap;
R_UNLESS(this->intended_kernel_version.Get<KernelVersion::MajorVersion>() != 0, svc::ResultInvalidArgument());
return ResultSuccess();
}
Result KCapabilities::SetHandleTableCapability(const util::BitPack32 cap) {
/* Validate. */
R_UNLESS(cap.Get<HandleTable::Reserved>() == 0, svc::ResultReservedUsed());
this->handle_table_size = cap.Get<HandleTable::Size>();
return ResultSuccess();
}
Result KCapabilities::SetDebugFlagsCapability(const util::BitPack32 cap) {
/* Validate. */
R_UNLESS(cap.Get<DebugFlags::Reserved>() == 0, svc::ResultReservedUsed());
this->debug_capabilities.Set<DebugFlags::AllowDebug>(cap.Get<DebugFlags::AllowDebug>());
this->debug_capabilities.Set<DebugFlags::ForceDebug>(cap.Get<DebugFlags::ForceDebug>());
return ResultSuccess();
}
Result KCapabilities::SetCapability(const util::BitPack32 cap, u32 &set_flags, u32 &set_svc, KProcessPageTable *page_table) {
/* Validate this is a capability we can act on. */
const auto type = GetCapabilityType(cap);
R_UNLESS(type != CapabilityType::Invalid, svc::ResultInvalidArgument());
/* If the type is padding, we have no work to do. */
R_SUCCEED_IF(type == CapabilityType::Padding);
/* Check that we haven't already processed this capability. */
const auto flag = GetCapabilityFlag(type);
R_UNLESS(((set_flags & InitializeOnceFlags) & flag) == 0, svc::ResultInvalidCombination());
set_flags |= flag;
/* Process the capability. */
switch (type) {
case CapabilityType::CorePriority: return this->SetCorePriorityCapability(cap);
case CapabilityType::SyscallMask: return this->SetSyscallMaskCapability(cap, set_svc);
case CapabilityType::MapIoPage: return this->MapIoPage(cap, page_table);
case CapabilityType::MapRegion: return this->MapRegion(cap, page_table);
case CapabilityType::InterruptPair: return this->SetInterruptPairCapability(cap);
case CapabilityType::ProgramType: return this->SetProgramTypeCapability(cap);
case CapabilityType::KernelVersion: return this->SetKernelVersionCapability(cap);
case CapabilityType::HandleTable: return this->SetHandleTableCapability(cap);
case CapabilityType::DebugFlags: return this->SetDebugFlagsCapability(cap);
default: return svc::ResultInvalidArgument();
}
}
Result KCapabilities::SetCapabilities(const u32 *caps, s32 num_caps, KProcessPageTable *page_table) {
u32 set_flags = 0, set_svc = 0;
for (s32 i = 0; i < num_caps; i++) {
const util::BitPack32 cap = { caps[i] };
if (GetCapabilityType(cap) == CapabilityType::MapRange) {
/* Check that the pair cap exists. */
R_UNLESS((++i) < num_caps, svc::ResultInvalidCombination());
/* Check the pair cap is a map range cap. */
const util::BitPack32 size_cap = { caps[i] };
R_UNLESS(GetCapabilityType(size_cap) == CapabilityType::MapRange, svc::ResultInvalidCombination());
/* Map the range. */
R_TRY(this->MapRange(cap, size_cap, page_table));
} else {
R_TRY(this->SetCapability(cap, set_flags, set_svc, page_table));
}
}
return ResultSuccess();
}
Result KCapabilities::SetCapabilities(svc::KUserPointer<const u32 *> user_caps, s32 num_caps, KProcessPageTable *page_table) {
u32 set_flags = 0, set_svc = 0;
for (s32 i = 0; i < num_caps; i++) {
/* Read the cap from userspace. */
u32 cap0;
R_TRY(user_caps.CopyArrayElementTo(std::addressof(cap0), i));
const util::BitPack32 cap = { cap0 };
if (GetCapabilityType(cap) == CapabilityType::MapRange) {
/* Check that the pair cap exists. */
R_UNLESS((++i) < num_caps, svc::ResultInvalidCombination());
/* Read the second cap from userspace. */
u32 cap1;
R_TRY(user_caps.CopyArrayElementTo(std::addressof(cap1), i));
/* Check the pair cap is a map range cap. */
const util::BitPack32 size_cap = { cap1 };
R_UNLESS(GetCapabilityType(size_cap) == CapabilityType::MapRange, svc::ResultInvalidCombination());
/* Map the range. */
R_TRY(this->MapRange(cap, size_cap, page_table));
} else {
R_TRY(this->SetCapability(cap, set_flags, set_svc, page_table));
}
}
return ResultSuccess();
}
}