1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-19 00:42:06 +00:00
Atmosphere/libraries/libvapours/source/crypto/impl/crypto_sha1_impl.arch.arm64.cpp

247 lines
No EOL
8.9 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vapours.hpp>
#if defined(ATMOSPHERE_IS_STRATOSPHERE)
#include <arm_neon.h>
namespace ams::crypto::impl {
namespace {
constexpr const u32 RoundConstants[4] = {
0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
};
/* Define for loading work var from message. */
#define SHA1_LOAD_W_FROM_MESSAGE(which) \
w[which] = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(data))); \
data += 0x10
#define SHA1_CALCULATE_W_FROM_PREVIOUS(i) \
w[i] = vsha1su1q_u32(vsha1su0q_u32(w[i-4], w[i-3], w[i-2]), w[i-1])
/* Define for doing four rounds of SHA1. */
#define SHA1_DO_ROUND(r, insn, constant) \
do { \
const u32 a = vgetq_lane_u32(cur_abcd, 0); \
cur_abcd = v##insn##q_u32(cur_abcd, cur_e, vaddq_u32(w[r], constant)); \
cur_e = vsha1h_u32(a); \
} while (0)
}
void Sha1Impl::Initialize() {
/* Reset buffered bytes/bits. */
m_buffered_bytes = 0;
m_bits_consumed = 0;
/* Set intermediate hash. */
m_intermediate_hash[0] = 0x67452301;
m_intermediate_hash[1] = 0xEFCDAB89;
m_intermediate_hash[2] = 0x98BADCFE;
m_intermediate_hash[3] = 0x10325476;
m_intermediate_hash[4] = 0xC3D2E1F0;
/* Set state. */
m_state = State_Initialized;
}
void Sha1Impl::Update(const void *data, size_t size) {
/* Verify we're in a state to update. */
AMS_ASSERT(m_state == State_Initialized);
/* Advance our input bit count. */
m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize);
/* Process anything we have buffered. */
const u8 *data8 = static_cast<const u8 *>(data);
size_t remaining = size;
if (m_buffered_bytes > 0) {
const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining);
std::memcpy(m_buffer + m_buffered_bytes, data8, copy_size);
data8 += copy_size;
remaining -= copy_size;
m_buffered_bytes += copy_size;
/* Process a block, if we filled one. */
if (m_buffered_bytes == BlockSize) {
this->ProcessBlock(m_buffer);
m_buffered_bytes = 0;
}
}
/* Process blocks, if we have any. */
if (remaining >= BlockSize) {
const size_t blocks = remaining / BlockSize;
this->ProcessBlocks(data8, blocks);
data8 += BlockSize * blocks;
remaining -= BlockSize * blocks;
}
/* Copy any leftover data to our buffer. */
if (remaining > 0) {
m_buffered_bytes = remaining;
std::memcpy(m_buffer, data8, remaining);
}
}
void Sha1Impl::GetHash(void *dst, size_t size) {
/* Verify we're in a state to get hash. */
AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
AMS_ASSERT(size >= HashSize);
AMS_UNUSED(size);
/* If we need to, process the last block. */
if (m_state == State_Initialized) {
this->ProcessLastBlock();
m_state = State_Done;
}
/* Copy the output hash. */
if constexpr (util::IsLittleEndian()) {
static_assert(HashSize % sizeof(u32) == 0);
u32 *dst_32 = static_cast<u32 *>(dst);
for (size_t i = 0; i < HashSize / sizeof(u32); ++i) {
dst_32[i] = util::LoadBigEndian<u32>(m_intermediate_hash + i);
}
} else {
std::memcpy(dst, m_intermediate_hash, HashSize);
}
}
ALWAYS_INLINE void Sha1Impl::ProcessBlock(const void *data) {
return this->ProcessBlocks(static_cast<const u8 *>(data), 1);
}
void Sha1Impl::ProcessBlocks(const u8 *data, size_t block_count) {
/* Setup round constants. */
const uint32x4_t k0 = vdupq_n_u32(RoundConstants[0]);
const uint32x4_t k1 = vdupq_n_u32(RoundConstants[1]);
const uint32x4_t k2 = vdupq_n_u32(RoundConstants[2]);
const uint32x4_t k3 = vdupq_n_u32(RoundConstants[3]);
/* Load hash variables with intermediate state. */
uint32x4_t cur_abcd = vld1q_u32(m_intermediate_hash + 0);
u32 cur_e = m_intermediate_hash[4];
/* Actually do hash processing blocks. */
do {
/* Save current state. */
const uint32x4_t prev_abcd = cur_abcd;
const u32 prev_e = cur_e;
uint32x4_t w[20];
/* Setup w[0-3] with message. */
SHA1_LOAD_W_FROM_MESSAGE(0);
SHA1_LOAD_W_FROM_MESSAGE(1);
SHA1_LOAD_W_FROM_MESSAGE(2);
SHA1_LOAD_W_FROM_MESSAGE(3);
/* Calculate w[4-19], w[i] = sha1su1(sha1su0(w[i-4], w[i-3], w[i-2]), w[i-1]); */
SHA1_CALCULATE_W_FROM_PREVIOUS(4);
SHA1_CALCULATE_W_FROM_PREVIOUS(5);
SHA1_CALCULATE_W_FROM_PREVIOUS(6);
SHA1_CALCULATE_W_FROM_PREVIOUS(7);
SHA1_CALCULATE_W_FROM_PREVIOUS(8);
SHA1_CALCULATE_W_FROM_PREVIOUS(9);
SHA1_CALCULATE_W_FROM_PREVIOUS(10);
SHA1_CALCULATE_W_FROM_PREVIOUS(11);
SHA1_CALCULATE_W_FROM_PREVIOUS(12);
SHA1_CALCULATE_W_FROM_PREVIOUS(13);
SHA1_CALCULATE_W_FROM_PREVIOUS(14);
SHA1_CALCULATE_W_FROM_PREVIOUS(15);
SHA1_CALCULATE_W_FROM_PREVIOUS(16);
SHA1_CALCULATE_W_FROM_PREVIOUS(17);
SHA1_CALCULATE_W_FROM_PREVIOUS(18);
SHA1_CALCULATE_W_FROM_PREVIOUS(19);
/* Do round calculations 0-20. Uses sha1c, k0. */
SHA1_DO_ROUND(0, sha1c, k0);
SHA1_DO_ROUND(1, sha1c, k0);
SHA1_DO_ROUND(2, sha1c, k0);
SHA1_DO_ROUND(3, sha1c, k0);
SHA1_DO_ROUND(4, sha1c, k0);
/* Do round calculations 20-40. Uses sha1p, k1. */
SHA1_DO_ROUND(5, sha1p, k1);
SHA1_DO_ROUND(6, sha1p, k1);
SHA1_DO_ROUND(7, sha1p, k1);
SHA1_DO_ROUND(8, sha1p, k1);
SHA1_DO_ROUND(9, sha1p, k1);
/* Do round calculations 40-60. Uses sha1m, k2. */
SHA1_DO_ROUND(10, sha1m, k2);
SHA1_DO_ROUND(11, sha1m, k2);
SHA1_DO_ROUND(12, sha1m, k2);
SHA1_DO_ROUND(13, sha1m, k2);
SHA1_DO_ROUND(14, sha1m, k2);
/* Do round calculations 60-80. Uses sha1p, k3. */
SHA1_DO_ROUND(15, sha1p, k3);
SHA1_DO_ROUND(16, sha1p, k3);
SHA1_DO_ROUND(17, sha1p, k3);
SHA1_DO_ROUND(18, sha1p, k3);
SHA1_DO_ROUND(19, sha1p, k3);
/* Add to previous. */
cur_abcd = vaddq_u32(cur_abcd, prev_abcd);
cur_e = cur_e + prev_e;
} while (--block_count != 0);
/* Save result to intermediate hash. */
vst1q_u32(m_intermediate_hash, cur_abcd);
m_intermediate_hash[4] = cur_e;
}
void Sha1Impl::ProcessLastBlock() {
/* Setup the final block. */
constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64);
/* Increment our bits consumed. */
m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes;
/* Add 0x80 terminator. */
m_buffer[m_buffered_bytes++] = 0x80;
/* If we can process the size field directly, do so, otherwise set up to process it. */
if (m_buffered_bytes <= BlockSizeWithoutSizeField) {
/* Clear up to size field. */
std::memset(m_buffer + m_buffered_bytes, 0, BlockSizeWithoutSizeField - m_buffered_bytes);
} else {
/* Consume full block */
std::memset(m_buffer + m_buffered_bytes, 0, BlockSize - m_buffered_bytes);
this->ProcessBlock(m_buffer);
/* Clear up to size field. */
std::memset(m_buffer, 0, BlockSizeWithoutSizeField);
}
/* Store the size field. */
util::StoreBigEndian<u64>(reinterpret_cast<u64 *>(m_buffer + BlockSizeWithoutSizeField), m_bits_consumed);
/* Process the final block. */
this->ProcessBlock(m_buffer);
}
}
#endif