1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-27 14:22:17 +00:00
Atmosphere/libraries/libstratosphere/source/fssystem/fssystem_partition_file_system.cpp
2022-03-21 17:21:44 -07:00

465 lines
21 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
constexpr const char RootPath[] = "/";
class PartitionFileSystemDefaultAllocator : public MemoryResource {
private:
virtual void *AllocateImpl(size_t size, size_t alignment) override {
AMS_UNUSED(alignment);
return ::ams::fs::impl::Allocate(size);
}
virtual void DeallocateImpl(void *buffer, size_t size, size_t alignment) override {
AMS_UNUSED(alignment);
::ams::fs::impl::Deallocate(buffer, size);
}
virtual bool IsEqualImpl(const MemoryResource &rhs) const override {
return this == std::addressof(rhs);
}
};
PartitionFileSystemDefaultAllocator g_partition_filesystem_default_allocator;
}
template <typename MetaType>
class PartitionFileSystemCore<MetaType>::PartitionFile : public fs::fsa::IFile, public fs::impl::Newable {
private:
const typename MetaType::PartitionEntry *m_partition_entry;
const PartitionFileSystemCore<MetaType> *m_parent;
const fs::OpenMode m_mode;
public:
PartitionFile(PartitionFileSystemCore<MetaType> *parent, const typename MetaType::PartitionEntry *partition_entry, fs::OpenMode mode) : m_partition_entry(partition_entry), m_parent(parent), m_mode(mode) { /* ... */ }
private:
virtual Result DoRead(size_t *out, s64 offset, void *buffer, size_t size, const fs::ReadOption &option) override final;
virtual Result DoGetSize(s64 *out) override final {
*out = m_partition_entry->size;
R_SUCCEED();
}
virtual Result DoFlush() override final {
/* Nothing to do if writing disallowed. */
R_SUCCEED_IF((m_mode & fs::OpenMode_Write) == 0);
/* Flush base storage. */
R_RETURN(m_parent->m_base_storage->Flush());
}
virtual Result DoWrite(s64 offset, const void *buffer, size_t size, const fs::WriteOption &option) override final {
/* Ensure appending is not required. */
bool needs_append;
R_TRY(this->DryWrite(std::addressof(needs_append), offset, size, option, m_mode));
R_UNLESS(!needs_append, fs::ResultUnsupportedWriteForPartitionFile());
/* Appending is prohibited. */
AMS_ASSERT((m_mode & fs::OpenMode_AllowAppend) == 0);
/* Validate offset and size. */
R_UNLESS(offset <= static_cast<s64>(m_partition_entry->size), fs::ResultOutOfRange());
R_UNLESS(static_cast<s64>(offset + size) <= static_cast<s64>(m_partition_entry->size), fs::ResultInvalidSize());
/* Write to the base storage. */
R_RETURN(m_parent->m_base_storage->Write(m_parent->m_meta_data_size + m_partition_entry->offset + offset, buffer, size));
}
virtual Result DoSetSize(s64 size) override final {
R_TRY(this->DrySetSize(size, m_mode));
R_RETURN(fs::ResultUnsupportedWriteForPartitionFile());
}
virtual Result DoOperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) override final {
/* Validate preconditions for operation. */
switch (op_id) {
case fs::OperationId::Invalidate:
R_UNLESS((m_mode & fs::OpenMode_Read) != 0, fs::ResultReadNotPermitted());
R_UNLESS((m_mode & fs::OpenMode_Write) == 0, fs::ResultUnsupportedOperateRangeForPartitionFile());
break;
case fs::OperationId::QueryRange:
break;
default:
R_THROW(fs::ResultUnsupportedOperateRangeForPartitionFile());
}
/* Validate offset and size. */
R_UNLESS(offset >= 0, fs::ResultOutOfRange());
R_UNLESS(offset <= static_cast<s64>(m_partition_entry->size), fs::ResultOutOfRange());
R_UNLESS(static_cast<s64>(offset + size) <= static_cast<s64>(m_partition_entry->size), fs::ResultInvalidSize());
R_UNLESS(static_cast<s64>(offset + size) >= offset, fs::ResultInvalidSize());
R_RETURN(m_parent->m_base_storage->OperateRange(dst, dst_size, op_id, m_parent->m_meta_data_size + m_partition_entry->offset + offset, size, src, src_size));
}
public:
virtual sf::cmif::DomainObjectId GetDomainObjectId() const override {
/* TODO: How should this be handled? */
return sf::cmif::InvalidDomainObjectId;
}
};
template<>
Result PartitionFileSystemCore<PartitionFileSystemMeta>::PartitionFile::DoRead(size_t *out, s64 offset, void *dst, size_t dst_size, const fs::ReadOption &option) {
/* Perform a dry read. */
size_t read_size = 0;
R_TRY(this->DryRead(std::addressof(read_size), offset, dst_size, option, m_mode));
/* Read from the base storage. */
R_TRY(m_parent->m_base_storage->Read(m_parent->m_meta_data_size + m_partition_entry->offset + offset, dst, read_size));
/* Set output size. */
*out = read_size;
R_SUCCEED();
}
template<>
Result PartitionFileSystemCore<Sha256PartitionFileSystemMeta>::PartitionFile::DoRead(size_t *out, s64 offset, void *dst, size_t dst_size, const fs::ReadOption &option) {
/* Perform a dry read. */
size_t read_size = 0;
R_TRY(this->DryRead(std::addressof(read_size), offset, dst_size, option, m_mode));
const s64 entry_start = m_parent->m_meta_data_size + m_partition_entry->offset;
const s64 read_end = static_cast<s64>(offset + read_size);
const s64 hash_start = static_cast<s64>(m_partition_entry->hash_target_offset);
const s64 hash_end = hash_start + m_partition_entry->hash_target_size;
if (read_end <= hash_start || hash_end <= offset) {
/* We aren't reading hashed data, so we can just read from the base storage. */
R_TRY(m_parent->m_base_storage->Read(entry_start + offset, dst, read_size));
} else {
/* Only hash target offset == 0 is supported. */
R_UNLESS(hash_start == 0, fs::ResultInvalidSha256PartitionHashTarget());
/* Ensure that the hash region is valid. */
R_UNLESS(m_partition_entry->hash_target_offset + m_partition_entry->hash_target_size <= m_partition_entry->size, fs::ResultInvalidSha256PartitionHashTarget());
/* Validate our read offset. */
const s64 read_offset = entry_start + offset;
R_UNLESS(read_offset >= offset, fs::ResultOutOfRange());
/* Prepare a buffer for our calculated hash. */
char hash[crypto::Sha256Generator::HashSize];
crypto::Sha256Generator generator;
/* Ensure we can perform our read. */
const bool hash_in_read = offset <= hash_start && hash_end <= read_end;
const bool read_in_hash = hash_start <= offset && read_end <= hash_end;
R_UNLESS(hash_in_read || read_in_hash, fs::ResultInvalidSha256PartitionHashTarget());
/* Initialize the generator. */
generator.Initialize();
if (hash_in_read) {
/* Easy case: hash region is contained within the bounds. */
R_TRY(m_parent->m_base_storage->Read(entry_start + offset, dst, read_size));
generator.Update(static_cast<u8 *>(dst) + hash_start - offset, m_partition_entry->hash_target_size);
} else /* if (read_in_hash) */ {
/* We're reading a portion of what's hashed. */
s64 remaining_hash_size = m_partition_entry->hash_target_size;
s64 hash_offset = entry_start + hash_start;
s64 remaining_size = read_size;
s64 copy_offset = 0;
while (remaining_hash_size > 0) {
/* Read some portion of data into the buffer. */
constexpr size_t HashBufferSize = 0x200;
char hash_buffer[HashBufferSize];
size_t cur_size = static_cast<size_t>(std::min(static_cast<s64>(HashBufferSize), remaining_hash_size));
R_TRY(m_parent->m_base_storage->Read(hash_offset, hash_buffer, cur_size));
/* Update the hash. */
generator.Update(hash_buffer, cur_size);
/* If we need to copy, do so. */
if (read_offset <= (hash_offset + static_cast<s64>(cur_size)) && remaining_size > 0) {
const s64 hash_buffer_offset = std::max<s64>(read_offset - hash_offset, 0);
const size_t copy_size = static_cast<size_t>(std::min<s64>(cur_size - hash_buffer_offset, remaining_size));
std::memcpy(static_cast<u8 *>(dst) + copy_offset, hash_buffer + hash_buffer_offset, copy_size);
remaining_size -= copy_size;
copy_offset += copy_size;
}
/* Update offsets. */
remaining_hash_size -= cur_size;
hash_offset += cur_size;
}
}
/* Get the hash. */
generator.GetHash(hash, sizeof(hash));
/* Validate the hash. */
auto hash_guard = SCOPE_GUARD { std::memset(dst, 0, read_size); };
R_UNLESS(crypto::IsSameBytes(m_partition_entry->hash, hash, sizeof(hash)), fs::ResultSha256PartitionHashVerificationFailed());
/* We successfully completed our read. */
hash_guard.Cancel();
}
/* Set output size. */
*out = read_size;
R_SUCCEED();
}
template <typename MetaType>
class PartitionFileSystemCore<MetaType>::PartitionDirectory : public fs::fsa::IDirectory, public fs::impl::Newable {
private:
u32 m_cur_index;
const PartitionFileSystemCore<MetaType> *m_parent;
const fs::OpenDirectoryMode m_mode;
public:
PartitionDirectory(PartitionFileSystemCore<MetaType> *parent, fs::OpenDirectoryMode mode) : m_cur_index(0), m_parent(parent), m_mode(mode) { /* ... */ }
public:
virtual Result DoRead(s64 *out_count, fs::DirectoryEntry *out_entries, s64 max_entries) override final {
/* There are no subdirectories. */
if ((m_mode & fs::OpenDirectoryMode_File) == 0) {
*out_count = 0;
R_SUCCEED();
}
/* Calculate number of entries. */
const s64 entry_count = std::min(max_entries, static_cast<s64>(m_parent->m_meta_data->GetEntryCount() - m_cur_index));
/* Populate output directory entries. */
for (auto i = 0; i < entry_count; i++, m_cur_index++) {
fs::DirectoryEntry &dir_entry = out_entries[i];
/* Setup the output directory entry. */
dir_entry.type = fs::DirectoryEntryType_File;
dir_entry.file_size = m_parent->m_meta_data->GetEntry(m_cur_index)->size;
std::strncpy(dir_entry.name, m_parent->m_meta_data->GetEntryName(m_cur_index), sizeof(dir_entry.name) - 1);
dir_entry.name[sizeof(dir_entry.name) - 1] = fs::StringTraits::NullTerminator;
}
*out_count = entry_count;
R_SUCCEED();
}
virtual Result DoGetEntryCount(s64 *out) override final {
/* Output the parent meta data entry count for files, otherwise 0. */
if (m_mode & fs::OpenDirectoryMode_File) {
*out = m_parent->m_meta_data->GetEntryCount();
} else {
*out = 0;
}
R_SUCCEED();
}
virtual sf::cmif::DomainObjectId GetDomainObjectId() const override {
/* TODO: How should this be handled? */
return sf::cmif::InvalidDomainObjectId;
}
};
template <typename MetaType>
PartitionFileSystemCore<MetaType>::PartitionFileSystemCore() : m_initialized(false) {
/* ... */
}
template <typename MetaType>
PartitionFileSystemCore<MetaType>::~PartitionFileSystemCore() {
/* ... */
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::Initialize(fs::IStorage *base_storage, MemoryResource *allocator) {
/* Validate preconditions. */
R_UNLESS(!m_initialized, fs::ResultPreconditionViolation());
/* Allocate meta data. */
m_unique_meta_data = std::make_unique<MetaType>();
R_UNLESS(m_unique_meta_data != nullptr, fs::ResultAllocationMemoryFailedInPartitionFileSystemA());
/* Initialize meta data. */
R_TRY(m_unique_meta_data->Initialize(base_storage, allocator));
/* Initialize members. */
m_meta_data = m_unique_meta_data.get();
m_base_storage = base_storage;
m_meta_data_size = m_meta_data->GetMetaDataSize();
m_initialized = true;
R_SUCCEED();
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::Initialize(std::unique_ptr<MetaType> &&meta_data, std::shared_ptr<fs::IStorage> base_storage) {
m_unique_meta_data = std::move(meta_data);
R_RETURN(this->Initialize(m_unique_meta_data.get(), base_storage));
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::Initialize(MetaType *meta_data, std::shared_ptr<fs::IStorage> base_storage) {
/* Validate preconditions. */
R_UNLESS(!m_initialized, fs::ResultPreconditionViolation());
/* Initialize members. */
m_shared_storage = std::move(base_storage);
m_base_storage = m_shared_storage.get();
m_meta_data = meta_data;
m_meta_data_size = m_meta_data->GetMetaDataSize();
m_initialized = true;
R_SUCCEED();
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::Initialize(fs::IStorage *base_storage) {
R_RETURN(this->Initialize(base_storage, std::addressof(g_partition_filesystem_default_allocator)));
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::Initialize(std::shared_ptr<fs::IStorage> base_storage) {
m_shared_storage = std::move(base_storage);
R_RETURN(this->Initialize(m_shared_storage.get()));
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::Initialize(std::shared_ptr<fs::IStorage> base_storage, MemoryResource *allocator) {
m_shared_storage = std::move(base_storage);
R_RETURN(this->Initialize(m_shared_storage.get(), allocator));
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::GetFileBaseOffset(s64 *out_offset, const char *path) {
/* Validate preconditions. */
R_UNLESS(m_initialized, fs::ResultPreconditionViolation());
/* Obtain and validate the entry index. */
const s32 entry_index = m_meta_data->GetEntryIndex(path + 1);
R_UNLESS(entry_index >= 0, fs::ResultPathNotFound());
/* Output offset. */
*out_offset = m_meta_data_size + m_meta_data->GetEntry(entry_index)->offset;
R_SUCCEED();
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoGetEntryType(fs::DirectoryEntryType *out, const fs::Path &path) {
/* Validate preconditions. */
R_UNLESS(m_initialized, fs::ResultPreconditionViolation());
const char * const p = path.GetString();
R_UNLESS(p[0] == RootPath[0], fs::ResultInvalidPathFormat());
/* Check if the path is for a directory. */
if (util::Strncmp(p, RootPath, sizeof(RootPath)) == 0) {
*out = fs::DirectoryEntryType_Directory;
R_SUCCEED();
}
/* Ensure that path is for a file. */
R_UNLESS(m_meta_data->GetEntryIndex(p + 1) >= 0, fs::ResultPathNotFound());
*out = fs::DirectoryEntryType_File;
R_SUCCEED();
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoOpenFile(std::unique_ptr<fs::fsa::IFile> *out_file, const fs::Path &path, fs::OpenMode mode) {
/* Validate preconditions. */
R_UNLESS(m_initialized, fs::ResultPreconditionViolation());
/* Obtain and validate the entry index. */
const s32 entry_index = m_meta_data->GetEntryIndex(path.GetString() + 1);
R_UNLESS(entry_index >= 0, fs::ResultPathNotFound());
/* Create and output the file directory. */
std::unique_ptr file = std::make_unique<PartitionFile>(this, m_meta_data->GetEntry(entry_index), mode);
R_UNLESS(file != nullptr, fs::ResultAllocationMemoryFailedInPartitionFileSystemB());
*out_file = std::move(file);
R_SUCCEED();
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoOpenDirectory(std::unique_ptr<fs::fsa::IDirectory> *out_dir, const fs::Path &path, fs::OpenDirectoryMode mode) {
/* Validate preconditions. */
R_UNLESS(m_initialized, fs::ResultPreconditionViolation());
R_UNLESS(path == RootPath, fs::ResultPathNotFound());
/* Create and output the partition directory. */
std::unique_ptr directory = std::make_unique<PartitionDirectory>(this, mode);
R_UNLESS(directory != nullptr, fs::ResultAllocationMemoryFailedInPartitionFileSystemC());
*out_dir = std::move(directory);
R_SUCCEED();
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoCommit() {
R_SUCCEED();
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoCleanDirectoryRecursively(const fs::Path &path) {
AMS_UNUSED(path);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoCreateDirectory(const fs::Path &path) {
AMS_UNUSED(path);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoCreateFile(const fs::Path &path, s64 size, int option) {
AMS_UNUSED(path, size, option);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoDeleteDirectory(const fs::Path &path) {
AMS_UNUSED(path);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoDeleteDirectoryRecursively(const fs::Path &path) {
AMS_UNUSED(path);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoDeleteFile(const fs::Path &path) {
AMS_UNUSED(path);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoRenameDirectory(const fs::Path &old_path, const fs::Path &new_path) {
AMS_UNUSED(old_path, new_path);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoRenameFile(const fs::Path &old_path, const fs::Path &new_path) {
AMS_UNUSED(old_path, new_path);
R_THROW(fs::ResultUnsupportedWriteForPartitionFileSystem());
}
template <typename MetaType>
Result PartitionFileSystemCore<MetaType>::DoCommitProvisionally(s64 counter) {
AMS_UNUSED(counter);
R_THROW(fs::ResultUnsupportedCommitProvisionallyForPartitionFileSystem());
}
template class PartitionFileSystemCore<PartitionFileSystemMeta>;
template class PartitionFileSystemCore<Sha256PartitionFileSystemMeta>;
}