1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-18 09:56:40 +00:00
Atmosphere/libraries/libmesosphere/source/arch/arm64/kern_cpu.cpp

499 lines
20 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern::arch::arm64::cpu {
/* Declare prototype to be implemented in asm. */
void SynchronizeAllCoresImpl(s32 *sync_var, s32 num_cores);
namespace {
class KScopedCoreMigrationDisable {
public:
ALWAYS_INLINE KScopedCoreMigrationDisable() { GetCurrentThread().DisableCoreMigration(); }
ALWAYS_INLINE ~KScopedCoreMigrationDisable() { GetCurrentThread().EnableCoreMigration(); }
};
/* Nintendo registers a handler for a SGI on thread termination, but does not handle anything. */
/* This is sufficient, because post-interrupt scheduling is all they really intend to occur. */
class KThreadTerminationInterruptHandler : public KInterruptHandler {
public:
constexpr KThreadTerminationInterruptHandler() : KInterruptHandler() { /* ... */ }
virtual KInterruptTask *OnInterrupt(s32 interrupt_id) override {
MESOSPHERE_UNUSED(interrupt_id);
return nullptr;
}
};
class KPerformanceCounterInterruptHandler : public KInterruptHandler {
private:
static inline KLightLock s_lock;
private:
u64 m_counter;
s32 m_which;
bool m_done;
public:
constexpr KPerformanceCounterInterruptHandler() : KInterruptHandler(), m_counter(), m_which(), m_done() { /* ... */ }
static KLightLock &GetLock() { return s_lock; }
void Setup(s32 w) {
m_done = false;
m_which = w;
}
void Wait() {
while (!m_done) {
cpu::Yield();
}
}
u64 GetCounter() const { return m_counter; }
/* Nintendo misuses this per their own API, but it's functional. */
virtual KInterruptTask *OnInterrupt(s32 interrupt_id) override {
MESOSPHERE_UNUSED(interrupt_id);
if (m_which < 0) {
m_counter = cpu::GetCycleCounter();
} else {
m_counter = cpu::GetPerformanceCounter(m_which);
}
DataMemoryBarrier();
m_done = true;
return nullptr;
}
};
class KCacheHelperInterruptHandler : public KInterruptHandler {
private:
static constexpr s32 ThreadPriority = 8;
public:
enum class Operation {
Idle,
InstructionMemoryBarrier,
StoreDataCache,
FlushDataCache,
};
private:
KLightLock m_lock;
KLightLock m_cv_lock;
KLightConditionVariable m_cv;
std::atomic<u64> m_target_cores;
volatile Operation m_operation;
private:
static void ThreadFunction(uintptr_t _this) {
reinterpret_cast<KCacheHelperInterruptHandler *>(_this)->ThreadFunctionImpl();
}
void ThreadFunctionImpl() {
const s32 core_id = GetCurrentCoreId();
while (true) {
/* Wait for a request to come in. */
{
KScopedLightLock lk(m_cv_lock);
while ((m_target_cores.load() & (1ul << core_id)) == 0) {
m_cv.Wait(std::addressof(m_cv_lock));
}
}
/* Process the request. */
this->ProcessOperation();
/* Broadcast, if there's nothing pending. */
{
KScopedLightLock lk(m_cv_lock);
if (m_target_cores.load() == 0) {
m_cv.Broadcast();
}
}
}
}
void ProcessOperation();
public:
constexpr KCacheHelperInterruptHandler() : KInterruptHandler(), m_lock(), m_cv_lock(), m_cv(), m_target_cores(), m_operation(Operation::Idle) { /* ... */ }
void Initialize(s32 core_id) {
/* Reserve a thread from the system limit. */
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_ThreadCountMax, 1));
/* Create a new thread. */
KThread *new_thread = KThread::Create();
MESOSPHERE_ABORT_UNLESS(new_thread != nullptr);
MESOSPHERE_R_ABORT_UNLESS(KThread::InitializeKernelThread(new_thread, ThreadFunction, reinterpret_cast<uintptr_t>(this), ThreadPriority, core_id));
/* Register the new thread. */
KThread::Register(new_thread);
/* Run the thread. */
new_thread->Run();
}
virtual KInterruptTask *OnInterrupt(s32 interrupt_id) override {
MESOSPHERE_UNUSED(interrupt_id);
this->ProcessOperation();
return nullptr;
}
void RequestOperation(Operation op) {
KScopedLightLock lk(m_lock);
/* Create core masks for us to use. */
constexpr u64 AllCoresMask = (1ul << cpu::NumCores) - 1ul;
const u64 other_cores_mask = AllCoresMask & ~(1ul << GetCurrentCoreId());
if ((op == Operation::InstructionMemoryBarrier) || (Kernel::GetState() == Kernel::State::Initializing)) {
/* Check that there's no on-going operation. */
MESOSPHERE_ABORT_UNLESS(m_operation == Operation::Idle);
MESOSPHERE_ABORT_UNLESS(m_target_cores.load() == 0);
/* Set operation. */
m_operation = op;
/* For certain operations, we want to send an interrupt. */
m_target_cores = other_cores_mask;
const u64 target_mask = m_target_cores.load();
DataSynchronizationBarrier();
Kernel::GetInterruptManager().SendInterProcessorInterrupt(KInterruptName_CacheOperation, target_mask);
this->ProcessOperation();
while (m_target_cores.load() != 0) {
cpu::Yield();
}
/* Go idle again. */
m_operation = Operation::Idle;
} else {
/* Lock condvar so that we can send and wait for acknowledgement of request. */
KScopedLightLock cv_lk(m_cv_lock);
/* Check that there's no on-going operation. */
MESOSPHERE_ABORT_UNLESS(m_operation == Operation::Idle);
MESOSPHERE_ABORT_UNLESS(m_target_cores.load() == 0);
/* Set operation. */
m_operation = op;
/* Request all cores. */
m_target_cores = AllCoresMask;
/* Use the condvar. */
m_cv.Broadcast();
while (m_target_cores.load() != 0) {
m_cv.Wait(std::addressof(m_cv_lock));
}
/* Go idle again. */
m_operation = Operation::Idle;
}
}
};
/* Instances of the interrupt handlers. */
KThreadTerminationInterruptHandler g_thread_termination_handler;
KCacheHelperInterruptHandler g_cache_operation_handler;
KPerformanceCounterInterruptHandler g_performance_counter_handler[cpu::NumCores];
/* Expose this as a global, for asm to use. */
s32 g_all_core_sync_count;
template<bool Init, typename F>
ALWAYS_INLINE void PerformCacheOperationBySetWayImpl(int level, F f) {
/* Used in multiple locations. */
const u64 level_sel_value = static_cast<u64>(level << 1);
u64 ccsidr_value;
if constexpr (Init) {
/* During init, we can just set the selection register directly. */
cpu::SetCsselrEl1(level_sel_value);
cpu::InstructionMemoryBarrier();
ccsidr_value = cpu::GetCcsidrEl1();
} else {
/* After init, we need to care about interrupts. */
KScopedInterruptDisable di;
cpu::SetCsselrEl1(level_sel_value);
cpu::InstructionMemoryBarrier();
ccsidr_value = cpu::GetCcsidrEl1();
}
/* Get cache size id info. */
CacheSizeIdRegisterAccessor ccsidr_el1(ccsidr_value);
const int num_sets = ccsidr_el1.GetNumberOfSets();
const int num_ways = ccsidr_el1.GetAssociativity();
const int line_size = ccsidr_el1.GetLineSize();
const u64 way_shift = static_cast<u64>(__builtin_clz(num_ways));
const u64 set_shift = static_cast<u64>(line_size + 4);
for (int way = 0; way <= num_ways; way++) {
for (int set = 0; set <= num_sets; set++) {
const u64 way_value = static_cast<u64>(way) << way_shift;
const u64 set_value = static_cast<u64>(set) << set_shift;
f(way_value | set_value | level_sel_value);
}
}
}
ALWAYS_INLINE void FlushDataCacheLineBySetWayImpl(const u64 sw_value) {
__asm__ __volatile__("dc cisw, %[v]" :: [v]"r"(sw_value) : "memory");
}
ALWAYS_INLINE void StoreDataCacheLineBySetWayImpl(const u64 sw_value) {
__asm__ __volatile__("dc csw, %[v]" :: [v]"r"(sw_value) : "memory");
}
void StoreDataCacheBySetWay(int level) {
PerformCacheOperationBySetWayImpl<false>(level, StoreDataCacheLineBySetWayImpl);
cpu::DataSynchronizationBarrier();
}
void FlushDataCacheBySetWay(int level) {
PerformCacheOperationBySetWayImpl<false>(level, FlushDataCacheLineBySetWayImpl);
cpu::DataSynchronizationBarrier();
}
void KCacheHelperInterruptHandler::ProcessOperation() {
switch (m_operation) {
case Operation::Idle:
break;
case Operation::InstructionMemoryBarrier:
InstructionMemoryBarrier();
break;
case Operation::StoreDataCache:
StoreDataCacheBySetWay(0);
break;
case Operation::FlushDataCache:
FlushDataCacheBySetWay(0);
break;
}
m_target_cores &= ~(1ul << GetCurrentCoreId());
}
ALWAYS_INLINE void SetEventLocally() {
__asm__ __volatile__("sevl" ::: "memory");
}
ALWAYS_INLINE void WaitForEvent() {
__asm__ __volatile__("wfe" ::: "memory");
}
ALWAYS_INLINE Result InvalidateDataCacheRange(uintptr_t start, uintptr_t end) {
MESOSPHERE_ASSERT(util::IsAligned(start, DataCacheLineSize));
MESOSPHERE_ASSERT(util::IsAligned(end, DataCacheLineSize));
R_UNLESS(UserspaceAccess::InvalidateDataCache(start, end), svc::ResultInvalidCurrentMemory());
DataSynchronizationBarrier();
return ResultSuccess();
}
ALWAYS_INLINE Result StoreDataCacheRange(uintptr_t start, uintptr_t end) {
MESOSPHERE_ASSERT(util::IsAligned(start, DataCacheLineSize));
MESOSPHERE_ASSERT(util::IsAligned(end, DataCacheLineSize));
R_UNLESS(UserspaceAccess::StoreDataCache(start, end), svc::ResultInvalidCurrentMemory());
DataSynchronizationBarrier();
return ResultSuccess();
}
ALWAYS_INLINE Result FlushDataCacheRange(uintptr_t start, uintptr_t end) {
MESOSPHERE_ASSERT(util::IsAligned(start, DataCacheLineSize));
MESOSPHERE_ASSERT(util::IsAligned(end, DataCacheLineSize));
R_UNLESS(UserspaceAccess::FlushDataCache(start, end), svc::ResultInvalidCurrentMemory());
DataSynchronizationBarrier();
return ResultSuccess();
}
ALWAYS_INLINE Result InvalidateInstructionCacheRange(uintptr_t start, uintptr_t end) {
MESOSPHERE_ASSERT(util::IsAligned(start, InstructionCacheLineSize));
MESOSPHERE_ASSERT(util::IsAligned(end, InstructionCacheLineSize));
R_UNLESS(UserspaceAccess::InvalidateInstructionCache(start, end), svc::ResultInvalidCurrentMemory());
EnsureInstructionConsistency();
return ResultSuccess();
}
ALWAYS_INLINE void InvalidateEntireInstructionCacheLocalImpl() {
__asm__ __volatile__("ic iallu" ::: "memory");
}
ALWAYS_INLINE void InvalidateEntireInstructionCacheGlobalImpl() {
__asm__ __volatile__("ic ialluis" ::: "memory");
}
}
void StoreEntireCacheForInit() {
/* Store local. */
{
CacheLineIdRegisterAccessor clidr_el1;
const int levels_of_unification = clidr_el1.GetLevelsOfUnification();
for (int level = 0; level != levels_of_unification; ++level) {
PerformCacheOperationBySetWayImpl<true>(level, StoreDataCacheLineBySetWayImpl);
}
}
/* Store shared. */
{
CacheLineIdRegisterAccessor clidr_el1;
const int levels_of_coherency = clidr_el1.GetLevelsOfCoherency();
const int levels_of_unification = clidr_el1.GetLevelsOfUnification();
for (int level = levels_of_unification; level <= levels_of_coherency; ++level) {
PerformCacheOperationBySetWayImpl<true>(level, StoreDataCacheLineBySetWayImpl);
}
}
/* Data synchronization barrier. */
DataSynchronizationBarrierInnerShareable();
/* Invalidate instruction cache. */
InvalidateEntireInstructionCacheLocalImpl();
/* Ensure local instruction consistency. */
DataSynchronizationBarrierInnerShareable();
InstructionMemoryBarrier();
}
void FlushEntireCacheForInit() {
/* Flush data cache. */
{
/* Get levels of coherence/unificaiton. */
CacheLineIdRegisterAccessor clidr_el1;
const int levels_of_coherency = clidr_el1.GetLevelsOfCoherency();
/* Store cache from L1 up to (level of coherence - 1). */
for (int level = 0; level < levels_of_coherency - 1; ++level) {
PerformCacheOperationBySetWayImpl<true>(level, StoreDataCacheLineBySetWayImpl);
}
/* Flush cache from (level of coherence - 1) down to L0. */
for (int level = levels_of_coherency; level > 0; --level) {
PerformCacheOperationBySetWayImpl<true>(level - 1, FlushDataCacheLineBySetWayImpl);
}
}
/* Invalidate instruction cache. */
InvalidateEntireInstructionCacheLocalImpl();
EnsureInstructionConsistency();
/* Invalidate entire TLB. */
InvalidateEntireTlb();
}
void FlushEntireDataCache() {
KScopedCoreMigrationDisable dm;
CacheLineIdRegisterAccessor clidr_el1;
const int levels_of_coherency = clidr_el1.GetLevelsOfCoherency();
/* Store cache from L2 up to the level of coherence (if there's an L3 cache or greater). */
for (int level = 2; level < levels_of_coherency; ++level) {
StoreDataCacheBySetWay(level - 1);
}
/* Flush cache from the level of coherence down to L2. */
for (int level = levels_of_coherency; level > 1; --level) {
FlushDataCacheBySetWay(level - 1);
}
}
Result InvalidateDataCache(void *addr, size_t size) {
KScopedCoreMigrationDisable dm;
const uintptr_t start = reinterpret_cast<uintptr_t>(addr);
const uintptr_t end = start + size;
uintptr_t aligned_start = util::AlignDown(start, DataCacheLineSize);
uintptr_t aligned_end = util::AlignUp(end, DataCacheLineSize);
if (aligned_start != start) {
R_TRY(FlushDataCacheRange(aligned_start, aligned_start + DataCacheLineSize));
aligned_start += DataCacheLineSize;
}
if (aligned_start < aligned_end && (aligned_end != end)) {
aligned_end -= DataCacheLineSize;
R_TRY(FlushDataCacheRange(aligned_end, aligned_end + DataCacheLineSize));
}
if (aligned_start < aligned_end) {
R_TRY(InvalidateDataCacheRange(aligned_start, aligned_end));
}
return ResultSuccess();
}
Result StoreDataCache(const void *addr, size_t size) {
KScopedCoreMigrationDisable dm;
const uintptr_t start = util::AlignDown(reinterpret_cast<uintptr_t>(addr), DataCacheLineSize);
const uintptr_t end = util::AlignUp( reinterpret_cast<uintptr_t>(addr) + size, DataCacheLineSize);
return StoreDataCacheRange(start, end);
}
Result FlushDataCache(const void *addr, size_t size) {
KScopedCoreMigrationDisable dm;
const uintptr_t start = util::AlignDown(reinterpret_cast<uintptr_t>(addr), DataCacheLineSize);
const uintptr_t end = util::AlignUp( reinterpret_cast<uintptr_t>(addr) + size, DataCacheLineSize);
return FlushDataCacheRange(start, end);
}
Result InvalidateInstructionCache(void *addr, size_t size) {
KScopedCoreMigrationDisable dm;
const uintptr_t start = util::AlignDown(reinterpret_cast<uintptr_t>(addr), InstructionCacheLineSize);
const uintptr_t end = util::AlignUp( reinterpret_cast<uintptr_t>(addr) + size, InstructionCacheLineSize);
R_TRY(InvalidateInstructionCacheRange(start, end));
/* Request the interrupt helper to perform an instruction memory barrier. */
g_cache_operation_handler.RequestOperation(KCacheHelperInterruptHandler::Operation::InstructionMemoryBarrier);
return ResultSuccess();
}
void InvalidateEntireInstructionCache() {
KScopedCoreMigrationDisable dm;
/* Invalidate the instruction cache on all cores. */
InvalidateEntireInstructionCacheGlobalImpl();
EnsureInstructionConsistency();
/* Request the interrupt helper to perform an instruction memory barrier. */
g_cache_operation_handler.RequestOperation(KCacheHelperInterruptHandler::Operation::InstructionMemoryBarrier);
}
void InitializeInterruptThreads(s32 core_id) {
/* Initialize the cache operation handler. */
g_cache_operation_handler.Initialize(core_id);
/* Bind all handlers to the relevant interrupts. */
Kernel::GetInterruptManager().BindHandler(std::addressof(g_cache_operation_handler), KInterruptName_CacheOperation, core_id, KInterruptController::PriorityLevel_High, false, false);
Kernel::GetInterruptManager().BindHandler(std::addressof(g_thread_termination_handler), KInterruptName_ThreadTerminate, core_id, KInterruptController::PriorityLevel_Scheduler, false, false);
if (KTargetSystem::IsUserPmuAccessEnabled()) { SetPmUserEnrEl0(1ul); }
Kernel::GetInterruptManager().BindHandler(std::addressof(g_performance_counter_handler[core_id]), KInterruptName_PerformanceCounter, core_id, KInterruptController::PriorityLevel_Timer, false, false);
}
void SynchronizeAllCores() {
SynchronizeAllCoresImpl(&g_all_core_sync_count, static_cast<s32>(cpu::NumCores));
}
}