1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-21 09:52:09 +00:00
Atmosphere/libraries/libexosphere/source/fuse/fuse_api.cpp
2021-09-06 16:26:50 -07:00

504 lines
19 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "fuse_registers.hpp"
namespace ams::fuse {
namespace {
static constexpr SocType SocType_CommonInternal = static_cast<SocType>(-1);
static_assert(SocType_CommonInternal != SocType_Erista);
static_assert(SocType_CommonInternal != SocType_Mariko);
constinit SocType g_soc_type = SocType_CommonInternal;
struct BypassEntry {
u32 offset;
u32 value;
};
struct OdmWord2 {
using DeviceUniqueKeyGeneration = util::BitPack32::Field<0, 5, int>;
using Reserved = util::BitPack32::Field<5, 27, int>;
};
struct OdmWord4 {
using HardwareState1 = util::BitPack32::Field<0, 2, int>;
using HardwareType1 = util::BitPack32::Field<HardwareState1::Next, 1, int>;
using DramId = util::BitPack32::Field<HardwareType1::Next, 5, int>;
using HardwareType2 = util::BitPack32::Field<DramId::Next, 1, int>;
using HardwareState2 = util::BitPack32::Field<HardwareType2::Next, 1, int>;
using QuestState = util::BitPack32::Field<HardwareState2::Next, 1, int>;
using FormatVersion = util::BitPack32::Field<QuestState::Next, 1, int>;
using Reserved = util::BitPack32::Field<FormatVersion::Next, 4, int>;
using HardwareType3 = util::BitPack32::Field<Reserved::Next, 4, int>;
};
struct OdmWord28 {
using Regulator = util::BitPack32::Field<0, 1, int>;
using Reserved = util::BitPack32::Field<1, 31, int>;
};
constexpr ALWAYS_INLINE int GetHardwareStateValue(const util::BitPack32 odm_word4) {
constexpr auto HardwareState1Shift = 0;
constexpr auto HardwareState2Shift = OdmWord4::HardwareState1::Count + HardwareState1Shift;
return (odm_word4.Get<OdmWord4::HardwareState1>() << HardwareState1Shift) |
(odm_word4.Get<OdmWord4::HardwareState2>() << HardwareState2Shift);
}
constexpr ALWAYS_INLINE int GetHardwareTypeValue(const util::BitPack32 odm_word4) {
constexpr auto HardwareType1Shift = 0;
constexpr auto HardwareType2Shift = OdmWord4::HardwareType1::Count + HardwareType1Shift;
constexpr auto HardwareType3Shift = OdmWord4::HardwareType2::Count + HardwareType2Shift;
return (odm_word4.Get<OdmWord4::HardwareType1>() << HardwareType1Shift) |
(odm_word4.Get<OdmWord4::HardwareType2>() << HardwareType2Shift) |
(odm_word4.Get<OdmWord4::HardwareType3>() << HardwareType3Shift);
}
constinit uintptr_t g_register_address = secmon::MemoryRegionPhysicalDeviceFuses.GetAddress();
constinit bool g_checked_for_rcm_bug_patch = false;
constinit bool g_has_rcm_bug_patch = false;
ALWAYS_INLINE volatile FuseRegisterRegion *GetRegisterRegion() {
return reinterpret_cast<volatile FuseRegisterRegion *>(g_register_address);
}
ALWAYS_INLINE volatile FuseRegisters &GetRegisters() {
return GetRegisterRegion()->fuse;
}
ALWAYS_INLINE volatile FuseChipRegistersCommon &GetChipRegistersCommon() {
return GetRegisterRegion()->chip_common;
}
ALWAYS_INLINE volatile FuseChipRegistersErista &GetChipRegistersErista() {
return GetRegisterRegion()->chip_erista;
}
ALWAYS_INLINE volatile FuseChipRegistersMariko &GetChipRegistersMariko() {
return GetRegisterRegion()->chip_mariko;
}
bool IsIdle() {
return reg::HasValue(GetRegisters().FUSE_FUSECTRL, FUSE_REG_BITS_ENUM(FUSECTRL_STATE, IDLE));
}
void WaitForIdle() {
while (!IsIdle()) { /* ... */ }
}
u32 GetOdmWordImpl(int index, fuse::SocType soc_type) {
if (index < 8) {
volatile auto &chip = GetChipRegistersCommon();
return chip.FUSE_RESERVED_ODM_0[index - 0];
} else if (soc_type == SocType_Mariko) {
volatile auto &chip = GetChipRegistersMariko();
if (index < 22) {
return chip.FUSE_RESERVED_ODM_8[index - 8];
} else if (index < 25) {
return chip.FUSE_RESERVED_ODM_22[index - 22];
} else if (index < 26) {
return chip.FUSE_RESERVED_ODM_25[index - 25];
} else if (index < 29) {
return chip.FUSE_RESERVED_ODM_26[index - 26];
} else if (index < 30) {
return chip.FUSE_RESERVED_ODM_29[index - 29];
}
}
AMS_ABORT("Invalid ODM fuse read");
}
u32 GetCommonOdmWord(int index) {
return GetOdmWordImpl(index, SocType_CommonInternal);
}
bool IsNewFuseFormat() {
/* On mariko, this should always be true. */
if (GetSocType() != SocType_Erista) {
return true;
}
/* Require that the format version be non-zero in odm4. */
if (util::BitPack32{GetCommonOdmWord(4)}.Get<OdmWord4::FormatVersion>() == 0) {
return false;
}
/* Check that odm word 0/1 are fused with the magic values. */
constexpr u32 NewFuseFormatMagic0 = 0x8E61ECAE;
constexpr u32 NewFuseFormatMagic1 = 0xF2BA3BB2;
const u32 w0 = GetCommonOdmWord(0);
const u32 w1 = GetCommonOdmWord(1);
return w0 == NewFuseFormatMagic0 && w1 == NewFuseFormatMagic1;
}
constexpr u32 CompressLotCode(u32 lot0) {
constexpr int Radix = 36;
constexpr int Count = 5;
constexpr int Width = 6;
constexpr u32 Mask = (1u << Width) - 1;
u32 compressed = 0;
for (int i = Count - 1; i >= 0; --i) {
compressed *= Radix;
compressed += (lot0 >> (i * Width)) & Mask;
}
return compressed;
}
constexpr const TargetFirmware FuseVersionIncrementFirmwares[] = {
TargetFirmware_12_0_2,
TargetFirmware_11_0_0,
TargetFirmware_10_0_0,
TargetFirmware_9_1_0,
TargetFirmware_9_0_0,
TargetFirmware_8_1_0,
TargetFirmware_7_0_0,
TargetFirmware_6_2_0,
TargetFirmware_6_0_0,
TargetFirmware_5_0_0,
TargetFirmware_4_0_0,
TargetFirmware_3_0_2,
TargetFirmware_3_0_0,
TargetFirmware_2_0_0,
TargetFirmware_1_0_0,
};
constexpr inline int NumFuseIncrements = util::size(FuseVersionIncrementFirmwares);
constexpr const BypassEntry FuseBypassEntries[] = {
/* Don't configure any fuse bypass entries. */
};
constexpr inline int NumFuseBypassEntries = util::size(FuseBypassEntries);
/* Verify that the fuse version increment list is sorted. */
static_assert([] {
for (size_t i = 0; i < util::size(FuseVersionIncrementFirmwares) - 1; ++i) {
if (FuseVersionIncrementFirmwares[i] <= FuseVersionIncrementFirmwares[i + 1]) {
return false;
}
}
return true;
}());
constexpr int GetExpectedFuseVersionImpl(TargetFirmware target_fw) {
for (int i = 0; i < NumFuseIncrements; ++i) {
if (target_fw >= FuseVersionIncrementFirmwares[i]) {
return NumFuseIncrements - i;
}
}
return 0;
}
static_assert(GetExpectedFuseVersionImpl(TargetFirmware_11_0_0) == 14);
static_assert(GetExpectedFuseVersionImpl(TargetFirmware_1_0_0) == 1);
static_assert(GetExpectedFuseVersionImpl(static_cast<TargetFirmware>(0)) == 0);
}
void SetRegisterAddress(uintptr_t address) {
g_register_address = address;
}
void SetWriteSecureOnly() {
reg::Write(GetRegisters().FUSE_PRIVATEKEYDISABLE, FUSE_REG_BITS_ENUM(PRIVATEKEYDISABLE_TZ_STICKY_BIT_VAL, KEY_INVISIBLE));
}
void Lockout() {
reg::Write(GetRegisters().FUSE_DISABLEREGPROGRAM, FUSE_REG_BITS_ENUM(DISABLEREGPROGRAM_VAL, ENABLE));
}
u32 ReadWord(int address) {
/* Require that the fuse array be idle. */
AMS_ABORT_UNLESS(IsIdle());
/* Get the registers. */
volatile auto &FUSE = GetRegisters();
/* Write the address to read. */
reg::Write(FUSE.FUSE_FUSEADDR, address);
/* Set control to read. */
reg::ReadWrite(FUSE.FUSE_FUSECTRL, FUSE_REG_BITS_ENUM(FUSECTRL_CMD, READ));
/* Wait 1 us. */
util::WaitMicroSeconds(1);
/* Wait for the array to be idle. */
WaitForIdle();
return reg::Read(FUSE.FUSE_FUSERDATA);
}
u32 GetOdmWord(int index) {
return GetOdmWordImpl(index, GetSocType());
}
void GetEcid(br::BootEcid *out) {
/* Get the registers. */
volatile auto &chip = GetChipRegistersCommon();
/* Read the ecid components. */
const u32 vendor = reg::Read(chip.FUSE_OPT_VENDOR_CODE) & ((1u << 4) - 1);
const u32 fab = reg::Read(chip.FUSE_OPT_FAB_CODE) & ((1u << 6) - 1);
const u32 lot0 = reg::Read(chip.FUSE_OPT_LOT_CODE_0) /* all 32 bits */ ;
const u32 lot1 = reg::Read(chip.FUSE_OPT_LOT_CODE_1) & ((1u << 28) - 1);
const u32 wafer = reg::Read(chip.FUSE_OPT_WAFER_ID) & ((1u << 6) - 1);
const u32 x_coord = reg::Read(chip.FUSE_OPT_X_COORDINATE) & ((1u << 9) - 1);
const u32 y_coord = reg::Read(chip.FUSE_OPT_Y_COORDINATE) & ((1u << 9) - 1);
const u32 reserved = reg::Read(chip.FUSE_OPT_OPS_RESERVED) & ((1u << 6) - 1);
/* Clear the output. */
util::ClearMemory(out, sizeof(*out));
/* Copy the component bits. */
out->ecid[0] = static_cast<u32>((lot1 << 30) | (wafer << 24) | (x_coord << 15) | (y_coord << 6) | (reserved));
out->ecid[1] = static_cast<u32>((lot0 << 26) | (lot1 >> 2));
out->ecid[2] = static_cast<u32>((fab << 26) | (lot0 >> 6));
out->ecid[3] = static_cast<u32>(vendor);
}
u64 GetDeviceId() {
/* Get the registers. */
volatile auto &chip = GetChipRegistersCommon();
/* Read the device id components. */
/* NOTE: Device ID is "basically" just an alternate encoding of Ecid. */
/* It elides lot1 (and compresses lot0), but this is fine because */
/* lot1 is fixed-value for all fused devices. */
const u64 fab = reg::Read(chip.FUSE_OPT_FAB_CODE) & ((1u << 6) - 1);
const u32 lot0 = reg::Read(chip.FUSE_OPT_LOT_CODE_0) /* all 32 bits */ ;
const u64 wafer = reg::Read(chip.FUSE_OPT_WAFER_ID) & ((1u << 6) - 1);
const u64 x_coord = reg::Read(chip.FUSE_OPT_X_COORDINATE) & ((1u << 9) - 1);
const u64 y_coord = reg::Read(chip.FUSE_OPT_Y_COORDINATE) & ((1u << 9) - 1);
/* Compress lot0 down from 32-bits to 26. */
const u64 clot0 = CompressLotCode(lot0) & ((1u << 26) - 1);
return (y_coord << 0) |
(x_coord << 9) |
(wafer << 18) |
(clot0 << 24) |
(fab << 50);
}
DramId GetDramId() {
return static_cast<DramId>(util::BitPack32{GetCommonOdmWord(4)}.Get<OdmWord4::DramId>());
}
HardwareType GetHardwareType() {
/* Read the odm word. */
const util::BitPack32 odm_word4 = { GetCommonOdmWord(4) };
/* Get the value. */
const auto value = GetHardwareTypeValue(odm_word4);
switch (value) {
case 0x01: return HardwareType_Icosa;
case 0x02: return (true /* TODO: GetSocType() == SocType_Mariko */) ? HardwareType_Calcio : HardwareType_Copper;
case 0x04: return HardwareType_Iowa;
case 0x08: return HardwareType_Hoag;
case 0x10: return HardwareType_Aula;
default: return HardwareType_Undefined;
}
}
HardwareState GetHardwareState() {
/* Read the odm word. */
const util::BitPack32 odm_word4 = { GetCommonOdmWord(4) };
/* Get the value. */
const auto value = GetHardwareStateValue(odm_word4);
switch (value) {
case 3: return HardwareState_Development;
case 4: return HardwareState_Production;
default: return HardwareState_Undefined;
}
}
PatchVersion GetPatchVersion() {
const auto patch_version = reg::Read(GetChipRegistersCommon().FUSE_SOC_SPEEDO_1_CALIB);
return static_cast<PatchVersion>(static_cast<int>(GetSocType() << 12) | patch_version);
}
QuestState GetQuestState() {
return static_cast<QuestState>(util::BitPack32{GetCommonOdmWord(4)}.Get<OdmWord4::QuestState>());
}
pmic::Regulator GetRegulator() {
if (GetSocType() == SocType_Mariko) {
/* Read the odm word. */
const util::BitPack32 odm_word28 = { GetOdmWordImpl(28, SocType_Mariko) };
return static_cast<pmic::Regulator>(odm_word28.Get<OdmWord28::Regulator>() + 1);
} else /* if (GetSocType() == SocType_Erista) */ {
return pmic::Regulator_Erista_Max77621;
}
}
int GetDeviceUniqueKeyGeneration() {
if (IsNewFuseFormat()) {
return util::BitPack32{GetCommonOdmWord(2)}.Get<OdmWord2::DeviceUniqueKeyGeneration>();
} else {
return 0;
}
}
SocType GetSocType() {
if (AMS_LIKELY(g_soc_type != SocType_CommonInternal)) {
return g_soc_type;
} else {
switch (GetHardwareType()) {
case HardwareType_Icosa:
case HardwareType_Copper:
g_soc_type = SocType_Erista;
break;
case HardwareType_Iowa:
case HardwareType_Hoag:
case HardwareType_Calcio:
case HardwareType_Aula:
g_soc_type = SocType_Mariko;
break;
default:
g_soc_type = SocType_Undefined;
break;
}
return g_soc_type;
}
}
int GetExpectedFuseVersion(TargetFirmware target_fw) {
return GetExpectedFuseVersionImpl(target_fw);
}
int GetFuseVersion() {
return util::PopCount(GetCommonOdmWord(7));
}
bool HasRcmVulnerabilityPatch() {
/* Only check for RCM bug patch once, and cache our result. */
if (!g_checked_for_rcm_bug_patch) {
do {
/* Mariko units are necessarily patched. */
if (fuse::GetSocType() != SocType_Erista) {
g_has_rcm_bug_patch = true;
break;
}
/* Some patched units use XUSB in RCM. */
if (reg::Read(GetChipRegistersCommon().FUSE_RESERVED_SW) & 0x80) {
g_has_rcm_bug_patch = true;
break;
}
/* Other units have a proper ipatch instead. */
u32 word_count = reg::Read(GetChipRegistersCommon().FUSE_FIRST_BOOTROM_PATCH_SIZE) & 0x7F;
u32 word_addr = 191;
while (word_count && !g_has_rcm_bug_patch) {
u32 word0 = ReadWord(word_addr);
u32 ipatch_count = (word0 >> 16) & 0xF;
for (u32 i = 0; i < ipatch_count && !g_has_rcm_bug_patch; ++i) {
u32 word = ReadWord(word_addr - (i + 1));
u32 addr = (word >> 16) * 2;
if (addr == 0x769a) {
g_has_rcm_bug_patch = true;
break;
}
}
word_addr -= word_count;
word_count = word0 >> 25;
}
} while (0);
g_checked_for_rcm_bug_patch = true;
}
return g_has_rcm_bug_patch;
}
bool IsOdmProductionMode() {
return reg::HasValue(GetChipRegistersCommon().FUSE_SECURITY_MODE, FUSE_REG_BITS_ENUM(SECURITY_MODE_SECURITY_MODE, ENABLED));
}
bool GetSecureBootKey(void *dst) {
/* Get the sbk from fuse data. */
bool valid = false;
for (size_t i = 0; i < 4; ++i) {
const u32 key_word = GetChipRegistersCommon().FUSE_PRIVATE_KEY[i];
static_cast<u32 *>(dst)[i] = key_word;
valid |= key_word != 0xFFFFFFFF;
}
return valid;
}
void ConfigureFuseBypass() {
/* Make the fuse registers visible. */
clkrst::SetFuseVisibility(true);
/* Only perform bypass configuration if fuse programming is allowed. */
if (!reg::HasValue(GetRegisters().FUSE_DISABLEREGPROGRAM, FUSE_REG_BITS_ENUM(DISABLEREGPROGRAM_VAL, DISABLE))) {
return;
}
/* Enable software writes to fuses. */
reg::ReadWrite(GetRegisters().FUSE_WRITE_ACCESS_SW, FUSE_REG_BITS_ENUM(WRITE_ACCESS_SW_CTRL, READWRITE),
FUSE_REG_BITS_ENUM(WRITE_ACCESS_SW_STATUS, WRITE));
/* Enable fuse bypass. */
reg::Write(GetRegisters().FUSE_FUSEBYPASS, FUSE_REG_BITS_ENUM(FUSEBYPASS_VAL, ENABLE));
/* Override fuses. */
for (const auto &entry : FuseBypassEntries) {
reg::Write(g_register_address + entry.offset, entry.value);
}
/* Disable software writes to fuses. */
reg::ReadWrite(GetRegisters().FUSE_WRITE_ACCESS_SW, FUSE_REG_BITS_ENUM(WRITE_ACCESS_SW_CTRL, READONLY));
/* NOTE: Here, NVidia almost certainly intends to *disable* fuse bypass, but they write enable instead... */
reg::Write(GetRegisters().FUSE_FUSEBYPASS, FUSE_REG_BITS_ENUM(FUSEBYPASS_VAL, ENABLE));
/* NOTE: Here, NVidia intends to disable fuse programming. However, they fuck up -- and *clear* the disable bit. */
/* It should be noted that this is a sticky bit, and thus software clears have no effect. */
reg::ReadWrite(GetRegisters().FUSE_DISABLEREGPROGRAM, FUSE_REG_BITS_ENUM(DISABLEREGPROGRAM_VAL, DISABLE));
/* Configure FUSE_PRIVATEKEYDISABLE_TZ_STICKY_BIT. */
constexpr const uintptr_t PMC = secmon::MemoryRegionPhysicalDevicePmc.GetAddress();
const bool key_invisible = reg::HasValue(PMC + APBDEV_PMC_SECURE_SCRATCH21, FUSE_REG_BITS_ENUM(PRIVATEKEYDISABLE_TZ_STICKY_BIT_VAL, KEY_INVISIBLE));
reg::ReadWrite(GetRegisters().FUSE_PRIVATEKEYDISABLE, FUSE_REG_BITS_ENUM_SEL(PRIVATEKEYDISABLE_TZ_STICKY_BIT_VAL, key_invisible, KEY_INVISIBLE, KEY_VISIBLE));
/* Write-lock PMC_SECURE_SCRATCH21. */
reg::ReadWrite(PMC + APBDEV_PMC_SEC_DISABLE2, PMC_REG_BITS_ENUM(SEC_DISABLE2_WRITE21, ON));
}
}