1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-11 04:52:03 +00:00
Atmosphere/libraries/libstratosphere/source/spl/impl/spl_ctr_drbg.hpp
2021-10-10 12:57:36 -07:00

277 lines
11 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <stratosphere.hpp>
namespace ams::spl::impl {
constexpr inline int BitsPerByte = BITSIZEOF(u8);
/* Nintendo implements CTR_DRBG for their csrng. We will do the same. */
template<typename BlockCipher, size_t KeySize, bool UseDerivation>
class CtrDrbg {
public:
static constexpr int KeyLen = KeySize * BitsPerByte;
static constexpr int OutLen = BlockCipher::BlockSize * BitsPerByte;
static constexpr int SeedLen = KeyLen + OutLen;
static constexpr int MaxNumberOfBitsPerRequest = (1 << 19);
static constexpr int ReseedInterval = 0x7FFFFFF0;
static constexpr size_t OutSize = OutLen / BitsPerByte;
static constexpr size_t SeedSize = SeedLen / BitsPerByte;
static constexpr size_t RequestSizeMax = MaxNumberOfBitsPerRequest / BitsPerByte;
static_assert(SeedSize % OutSize == 0);
private:
class Bcc {
private:
u8 *m_buffer;
const BlockCipher *m_cipher;
size_t m_offset;
public:
Bcc(u8 *buffer, const BlockCipher *cipher) : m_buffer(buffer), m_cipher(cipher), m_offset(0) { /* ... */ }
void Process(const void *data, size_t size) {
const u8 *data_8 = static_cast<const u8 *>(data);
size_t remaining = size;
while (m_offset + remaining >= OutSize) {
const size_t xor_size = OutSize - m_offset;
Xor(m_buffer + m_offset, data_8, xor_size);
m_cipher->EncryptBlock(m_buffer, OutSize, m_buffer, OutSize);
data_8 += xor_size;
remaining -= xor_size;
m_offset = 0;
}
Xor(m_buffer + m_offset, data_8, remaining);
m_offset += remaining;
}
void Flush() {
if (m_offset != 0) {
m_cipher->EncryptBlock(m_buffer, OutSize, m_buffer, OutSize);
m_offset = 0;
}
}
};
private:
BlockCipher m_block_cipher;
u8 m_v[OutSize];
u8 m_key[KeySize];
u8 m_work1[SeedSize];
u8 m_work2[SeedSize];
int m_reseed_counter;
private:
static void Xor(void *dst, const void *src, size_t size) {
const u8 *src_u8 = static_cast<const u8 *>(src);
u8 *dst_u8 = static_cast<u8 *>(dst);
for (size_t i = 0; i < size; i++) {
dst_u8[i] ^= src_u8[i];
}
}
static void Increment(void *v) {
u8 *v_8 = static_cast<u8 *>(v);
for (int i = OutSize - 1; i >= 0; --i) {
if ((++v_8[i]) != 0) {
break;
}
}
}
private:
void DeriveSeed(void *seed, const void *a, size_t a_size, const void *b, size_t b_size, const void *c, size_t c_size) {
/* Determine sizes. */
const u32 in_size = a_size + b_size + c_size;
const u32 out_size = SeedSize;
/* Create header/footer. */
u32 header[2];
util::StoreBigEndian(header + 0, in_size);
util::StoreBigEndian(header + 1, out_size);
const u8 footer = 0x80;
/* Create seed as 000102... */
u8 *seed_8 = static_cast<u8 *>(seed);
for (size_t i = 0; i < KeySize; ++i) {
seed_8[i] = i;
}
/* Initialize block cipher. */
m_block_cipher.Initialize(seed_8, KeySize);
/* Perform derivation. */
for (u32 block = 0; block < SeedSize / OutSize; ++block) {
/* Create the block index value. */
u32 block_value;
util::StoreBigEndian(std::addressof(block_value), block);
/* Get the target block. */
u8 *target = seed_8 + block * OutSize;
std::memset(target, 0, OutSize);
/* Create block processor. */
Bcc bcc(target, std::addressof(m_block_cipher));
/* Process block value. */
bcc.Process(std::addressof(block_value), sizeof(block_value));
bcc.Flush();
/* Process header/data. */
bcc.Process(header, sizeof(header));
bcc.Process(a, a_size);
bcc.Process(b, b_size);
bcc.Process(c, c_size);
bcc.Process(footer, std::addressof(footer));
bcc.Flush();
}
/* Initialize block cipher. */
m_block_cipher.Initialize(seed_8, KeySize);
/* Encrypt seed. */
m_block_cipher.EncryptBlock(seed_8, OutSize, seed_8 + KeySize, OutSize);
for (size_t offset = 0; offset < SeedSize - OutSize; offset += OutSize) {
m_block_cipher.EncryptBlock(seed_8 + offset + OutSize, OutSize, seed_8 + offset, OutSize);
}
}
void UpdateStates(void *key, void *v, const void *provided_data) {
/* Initialize block cipher. */
m_block_cipher.Initialize(key, KeySize);
/* Update work. */
for (size_t offset = 0; offset < SeedSize; offset += OutSize) {
Increment(v);
m_block_cipher.EncryptBlock(std::addressof(m_work2[offset]), OutSize, v, OutSize);
}
/* Xor work with provided data. */
Xor(m_work2, provided_data, SeedSize);
/* Copy to key/v. */
std::memcpy(key, m_work2 + 0, KeySize);
std::memcpy(v, m_work2 + KeySize, OutSize);
}
public:
constexpr CtrDrbg() = default;
void Initialize(const void *entropy, size_t entropy_size, const void *nonce, size_t nonce_size, const void *personalization, size_t personalization_size) {
/* Handle init. */
if constexpr (UseDerivation) {
this->DeriveSeed(m_work1, entropy, entropy_size, nonce, nonce_size, personalization, personalization_size);
} else {
AMS_ASSERT(entropy_size == SeedSize);
AMS_ASSERT(nonce_size == 0);
AMS_ASSERT(personalization_size <= SeedSize);
AMS_UNUSED(entropy_size, nonce, nonce_size);
std::memcpy(m_work1, entropy, SeedSize);
Xor(m_work1, personalization, personalization_size);
}
/* Clear key/v. */
std::memset(m_key, 0, sizeof(m_key));
std::memset(m_v, 0, sizeof(m_v));
/* Set key/v. */
this->UpdateStates(m_key, m_v, m_work1);
/* Set reseed counter. */
m_reseed_counter = 1;
}
void Reseed(const void *entropy, size_t entropy_size, const void *addl, size_t addl_size) {
/* Handle init. */
if constexpr (UseDerivation) {
this->DeriveSeed(m_work1, entropy, entropy_size, addl, addl_size, nullptr, 0);
} else {
AMS_ASSERT(entropy_size == SeedSize);
AMS_ASSERT(addl_size <= SeedSize);
AMS_UNUSED(entropy_size);
std::memcpy(m_work1, entropy, SeedSize);
Xor(m_work1, addl, addl_size);
}
/* Set key/v. */
this->UpdateStates(m_key, m_v, m_work1);
/* Set reseed counter. */
m_reseed_counter = 1;
}
bool Generate(void *out, size_t size, const void *addl, size_t addl_size) {
/* Check that the request is small enough. */
if (size > RequestSizeMax) {
return false;
}
/* Check if we need reseed. */
if (m_reseed_counter > ReseedInterval) {
return false;
}
/* Clear work buffer. */
std::memset(m_work1, 0, sizeof(m_work1));
/* Process additional input, if we have any. */
if (addl_size > 0) {
if constexpr (UseDerivation) {
this->DeriveSeed(m_work1, addl, addl_size, nullptr, 0, nullptr, 0);
} else {
AMS_ASSERT(addl_size <= SeedSize);
std::memcpy(m_work1, addl, addl_size);
}
/* Set key/v. */
this->UpdateStates(m_key, m_v, m_work1);
}
/* Get buffer and aligned size. */
u8 *out_8 = static_cast<u8 *>(out);
const size_t aligned_size = util::AlignDown(size, OutSize);
/* Generate ctr bytes. */
m_block_cipher.Initialize(m_key, KeySize);
for (size_t offset = 0; offset < aligned_size; offset += OutSize) {
Increment(m_v);
m_block_cipher.EncryptBlock(out_8 + offset, OutSize, m_v, OutSize);
}
/* Handle any unaligned data. */
if (size > aligned_size) {
u8 temp[OutSize];
Increment(m_v);
m_block_cipher.EncryptBlock(temp, sizeof(temp), m_v, OutSize);
std::memcpy(out_8 + aligned_size, temp, size - aligned_size);
}
/* Set key/v. */
this->UpdateStates(m_key, m_v, m_work1);
/* Increment reseed counter. */
++m_reseed_counter;
return true;
}
};
}