1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-26 22:02:15 +00:00
Atmosphere/libraries/libstratosphere/source/fssystem/fssystem_buffered_storage.cpp
2022-03-28 00:54:10 -07:00

1082 lines
42 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::fssystem {
namespace {
constexpr inline uintptr_t InvalidAddress = 0;
constexpr inline s64 InvalidOffset = std::numeric_limits<s64>::max();
}
class BufferedStorage::Cache : public ::ams::fs::impl::Newable {
private:
struct FetchParameter {
s64 offset;
void *buffer;
size_t size;
};
static_assert(util::is_pod<FetchParameter>::value);
private:
BufferedStorage *m_buffered_storage;
std::pair<uintptr_t, size_t> m_memory_range;
fs::IBufferManager::CacheHandle m_cache_handle;
s64 m_offset;
std::atomic<bool> m_is_valid;
std::atomic<bool> m_is_dirty;
u8 m_reserved[2];
s32 m_reference_count;
Cache *m_next;
Cache *m_prev;
public:
Cache() : m_buffered_storage(nullptr), m_memory_range(InvalidAddress, 0), m_cache_handle(), m_offset(InvalidOffset), m_is_valid(false), m_is_dirty(false), m_reference_count(1), m_next(nullptr), m_prev(nullptr) {
/* ... */
}
~Cache() {
this->Finalize();
}
void Initialize(BufferedStorage *bs) {
AMS_ASSERT(bs != nullptr);
AMS_ASSERT(m_buffered_storage == nullptr);
m_buffered_storage = bs;
this->Link();
}
void Finalize() {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_buffered_storage->m_buffer_manager != nullptr);
AMS_ASSERT(m_reference_count == 0);
/* If we're valid, acquire our cache handle and free our buffer. */
if (this->IsValid()) {
const auto buffer_manager = m_buffered_storage->m_buffer_manager;
if (!m_is_dirty) {
AMS_ASSERT(m_memory_range.first == InvalidAddress);
m_memory_range = buffer_manager->AcquireCache(m_cache_handle);
}
if (m_memory_range.first != InvalidAddress) {
buffer_manager->DeallocateBuffer(m_memory_range.first, m_memory_range.second);
m_memory_range.first = InvalidAddress;
m_memory_range.second = 0;
}
}
/* Clear all our members. */
m_buffered_storage = nullptr;
m_offset = InvalidOffset;
m_is_valid = false;
m_is_dirty = false;
m_next = nullptr;
m_prev = nullptr;
}
void Link() {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_buffered_storage->m_buffer_manager != nullptr);
AMS_ASSERT(m_reference_count > 0);
if ((--m_reference_count) == 0) {
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
if (m_buffered_storage->m_next_fetch_cache == nullptr) {
m_buffered_storage->m_next_fetch_cache = this;
m_next = this;
m_prev = this;
} else {
/* Check against a cache being registered twice. */
{
auto cache = m_buffered_storage->m_next_fetch_cache;
do {
if (cache->IsValid() && this->Hits(cache->m_offset, m_buffered_storage->m_block_size)) {
m_is_valid = false;
break;
}
cache = cache->m_next;
} while (cache != m_buffered_storage->m_next_fetch_cache);
}
/* Link into the fetch list. */
{
AMS_ASSERT(m_buffered_storage->m_next_fetch_cache->m_prev != nullptr);
AMS_ASSERT(m_buffered_storage->m_next_fetch_cache->m_prev->m_next == m_buffered_storage->m_next_fetch_cache);
m_next = m_buffered_storage->m_next_fetch_cache;
m_prev = m_buffered_storage->m_next_fetch_cache->m_prev;
m_next->m_prev = this;
m_prev->m_next = this;
}
/* Insert invalid caches at the start of the list. */
if (!this->IsValid()) {
m_buffered_storage->m_next_fetch_cache = this;
}
}
/* If we're not valid, clear our offset. */
if (!this->IsValid()) {
m_offset = InvalidOffset;
m_is_dirty = false;
}
/* Ensure our buffer state is coherent. */
if (m_memory_range.first != InvalidAddress && !m_is_dirty) {
if (this->IsValid()) {
m_cache_handle = m_buffered_storage->m_buffer_manager->RegisterCache(m_memory_range.first, m_memory_range.second, fs::IBufferManager::BufferAttribute());
} else {
m_buffered_storage->m_buffer_manager->DeallocateBuffer(m_memory_range.first, m_memory_range.second);
}
m_memory_range.first = InvalidAddress;
m_memory_range.second = 0;
}
}
}
void Unlink() {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_reference_count >= 0);
if ((++m_reference_count) == 1) {
AMS_ASSERT(m_next != nullptr);
AMS_ASSERT(m_prev != nullptr);
AMS_ASSERT(m_next->m_prev == this);
AMS_ASSERT(m_prev->m_next == this);
if (m_buffered_storage->m_next_fetch_cache == this) {
if (m_next != this) {
m_buffered_storage->m_next_fetch_cache = m_next;
} else {
m_buffered_storage->m_next_fetch_cache = nullptr;
}
}
m_buffered_storage->m_next_acquire_cache = this;
m_next->m_prev = m_prev;
m_prev->m_next = m_next;
m_next = nullptr;
m_prev = nullptr;
} else {
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
}
}
void Read(s64 offset, void *buffer, size_t size) const {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
AMS_ASSERT(this->IsValid());
AMS_ASSERT(this->Hits(offset, 1));
AMS_ASSERT(m_memory_range.first != InvalidAddress);
const auto read_offset = offset - m_offset;
const auto readable_offset_max = m_buffered_storage->m_block_size - size;
const auto cache_buffer = reinterpret_cast<u8 *>(m_memory_range.first) + read_offset;
AMS_ASSERT(read_offset >= 0);
AMS_ASSERT(static_cast<size_t>(read_offset) <= readable_offset_max);
AMS_UNUSED(readable_offset_max);
std::memcpy(buffer, cache_buffer, size);
}
void Write(s64 offset, const void *buffer, size_t size) {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
AMS_ASSERT(this->IsValid());
AMS_ASSERT(this->Hits(offset, 1));
AMS_ASSERT(m_memory_range.first != InvalidAddress);
const auto write_offset = offset - m_offset;
const auto writable_offset_max = m_buffered_storage->m_block_size - size;
const auto cache_buffer = reinterpret_cast<u8 *>(m_memory_range.first) + write_offset;
AMS_ASSERT(write_offset >= 0);
AMS_ASSERT(static_cast<size_t>(write_offset) <= writable_offset_max);
AMS_UNUSED(writable_offset_max);
std::memcpy(cache_buffer, buffer, size);
m_is_dirty = true;
}
Result Flush() {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
AMS_ASSERT(this->IsValid());
if (m_is_dirty) {
AMS_ASSERT(m_memory_range.first != InvalidAddress);
const auto base_size = m_buffered_storage->m_base_storage_size;
const auto block_size = static_cast<s64>(m_buffered_storage->m_block_size);
const auto flush_size = static_cast<size_t>(std::min(block_size, base_size - m_offset));
auto &base_storage = m_buffered_storage->m_base_storage;
const auto cache_buffer = reinterpret_cast<void *>(m_memory_range.first);
R_TRY(base_storage.Write(m_offset, cache_buffer, flush_size));
m_is_dirty = false;
buffers::EnableBlockingBufferManagerAllocation();
}
R_SUCCEED();
}
const std::pair<Result, bool> PrepareFetch() {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_buffered_storage->m_buffer_manager != nullptr);
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
AMS_ASSERT(this->IsValid());
AMS_ASSERT(m_buffered_storage->m_mutex.IsLockedByCurrentThread());
std::pair<Result, bool> result(ResultSuccess(), false);
if (m_reference_count == 1) {
result.first = this->Flush();
if (R_SUCCEEDED(result.first)) {
m_is_valid = false;
m_reference_count = 0;
result.second = true;
}
}
return result;
}
void UnprepareFetch() {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_buffered_storage->m_buffer_manager != nullptr);
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
AMS_ASSERT(!this->IsValid());
AMS_ASSERT(!m_is_dirty);
AMS_ASSERT(m_buffered_storage->m_mutex.IsLockedByCurrentThread());
m_is_valid = true;
m_reference_count = 1;
}
Result Fetch(s64 offset) {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_buffered_storage->m_buffer_manager != nullptr);
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
AMS_ASSERT(!this->IsValid());
AMS_ASSERT(!m_is_dirty);
if (m_memory_range.first == InvalidAddress) {
R_TRY(this->AllocateFetchBuffer());
}
FetchParameter fetch_param = {};
this->CalcFetchParameter(std::addressof(fetch_param), offset);
auto &base_storage = m_buffered_storage->m_base_storage;
R_TRY(base_storage.Read(fetch_param.offset, fetch_param.buffer, fetch_param.size));
m_offset = fetch_param.offset;
AMS_ASSERT(this->Hits(offset, 1));
R_SUCCEED();
}
Result FetchFromBuffer(s64 offset, const void *buffer, size_t buffer_size) {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_buffered_storage->m_buffer_manager != nullptr);
AMS_ASSERT(m_next == nullptr);
AMS_ASSERT(m_prev == nullptr);
AMS_ASSERT(!this->IsValid());
AMS_ASSERT(!m_is_dirty);
AMS_ASSERT(util::IsAligned(offset, m_buffered_storage->m_block_size));
if (m_memory_range.first == InvalidAddress) {
R_TRY(this->AllocateFetchBuffer());
}
FetchParameter fetch_param = {};
this->CalcFetchParameter(std::addressof(fetch_param), offset);
AMS_ASSERT(fetch_param.offset == offset);
AMS_ASSERT(fetch_param.size <= buffer_size);
AMS_UNUSED(buffer_size);
std::memcpy(fetch_param.buffer, buffer, fetch_param.size);
m_offset = fetch_param.offset;
AMS_ASSERT(this->Hits(offset, 1));
R_SUCCEED();
}
bool TryAcquireCache() {
AMS_ASSERT(m_buffered_storage != nullptr);
AMS_ASSERT(m_buffered_storage->m_buffer_manager != nullptr);
AMS_ASSERT(this->IsValid());
if (m_memory_range.first != InvalidAddress) {
return true;
} else {
m_memory_range = m_buffered_storage->m_buffer_manager->AcquireCache(m_cache_handle);
m_is_valid = m_memory_range.first != InvalidAddress;
return m_is_valid;
}
}
void Invalidate() {
AMS_ASSERT(m_buffered_storage != nullptr);
m_is_valid = false;
}
bool IsValid() const {
AMS_ASSERT(m_buffered_storage != nullptr);
return m_is_valid || m_reference_count > 0;
}
bool IsDirty() const {
AMS_ASSERT(m_buffered_storage != nullptr);
return m_is_dirty;
}
bool Hits(s64 offset, s64 size) const {
AMS_ASSERT(m_buffered_storage != nullptr);
const auto block_size = static_cast<s64>(m_buffered_storage->m_block_size);
return (offset < m_offset + block_size) && (m_offset < offset + size);
}
private:
Result AllocateFetchBuffer() {
fs::IBufferManager *buffer_manager = m_buffered_storage->m_buffer_manager;
AMS_ASSERT(buffer_manager->AcquireCache(m_cache_handle).first == InvalidAddress);
auto range_guard = SCOPE_GUARD { m_memory_range.first = InvalidAddress; };
R_TRY(buffers::AllocateBufferUsingBufferManagerContext(std::addressof(m_memory_range), buffer_manager, m_buffered_storage->m_block_size, fs::IBufferManager::BufferAttribute(), [](const std::pair<uintptr_t, size_t> &buffer) {
return buffer.first != 0;
}, AMS_CURRENT_FUNCTION_NAME));
range_guard.Cancel();
R_SUCCEED();
}
void CalcFetchParameter(FetchParameter *out, s64 offset) const {
AMS_ASSERT(out != nullptr);
const auto block_size = static_cast<s64>(m_buffered_storage->m_block_size);
const auto cache_offset = util::AlignDown(offset, m_buffered_storage->m_block_size);
const auto base_size = m_buffered_storage->m_base_storage_size;
const auto cache_size = static_cast<size_t>(std::min(block_size, base_size - cache_offset));
const auto cache_buffer = reinterpret_cast<void *>(m_memory_range.first);
AMS_ASSERT(offset >= 0);
AMS_ASSERT(offset < base_size);
out->offset = cache_offset;
out->buffer = cache_buffer;
out->size = cache_size;
}
};
class BufferedStorage::SharedCache {
NON_COPYABLE(SharedCache);
NON_MOVEABLE(SharedCache);
friend class UniqueCache;
private:
Cache *m_cache;
Cache *m_start_cache;
BufferedStorage *m_buffered_storage;
public:
explicit SharedCache(BufferedStorage *bs) : m_cache(nullptr), m_start_cache(bs->m_next_acquire_cache), m_buffered_storage(bs) {
AMS_ASSERT(m_buffered_storage != nullptr);
}
~SharedCache() {
std::scoped_lock lk(m_buffered_storage->m_mutex);
this->Release();
}
bool AcquireNextOverlappedCache(s64 offset, s64 size) {
AMS_ASSERT(m_buffered_storage != nullptr);
auto is_first = m_cache == nullptr;
const auto start = is_first ? m_start_cache : m_cache + 1;
AMS_ASSERT(start >= m_buffered_storage->m_caches.get());
AMS_ASSERT(start <= m_buffered_storage->m_caches.get() + m_buffered_storage->m_cache_count);
std::scoped_lock lk(m_buffered_storage->m_mutex);
this->Release();
AMS_ASSERT(m_cache == nullptr);
for (auto cache = start; true; ++cache) {
if (m_buffered_storage->m_caches.get() + m_buffered_storage->m_cache_count <= cache) {
cache = m_buffered_storage->m_caches.get();
}
if (!is_first && cache == m_start_cache) {
break;
}
if (cache->IsValid() && cache->Hits(offset, size) && cache->TryAcquireCache()) {
cache->Unlink();
m_cache = cache;
return true;
}
is_first = false;
}
m_cache = nullptr;
return false;
}
bool AcquireNextDirtyCache() {
AMS_ASSERT(m_buffered_storage != nullptr);
const auto start = m_cache != nullptr ? m_cache + 1 : m_buffered_storage->m_caches.get();
const auto end = m_buffered_storage->m_caches.get() + m_buffered_storage->m_cache_count;
AMS_ASSERT(start >= m_buffered_storage->m_caches.get());
AMS_ASSERT(start <= end);
this->Release();
AMS_ASSERT(m_cache == nullptr);
for (auto cache = start; cache < end; ++cache) {
if (cache->IsValid() && cache->IsDirty() && cache->TryAcquireCache()) {
cache->Unlink();
m_cache = cache;
return true;
}
}
m_cache = nullptr;
return false;
}
bool AcquireNextValidCache() {
AMS_ASSERT(m_buffered_storage != nullptr);
const auto start = m_cache != nullptr ? m_cache + 1 : m_buffered_storage->m_caches.get();
const auto end = m_buffered_storage->m_caches.get() + m_buffered_storage->m_cache_count;
AMS_ASSERT(start >= m_buffered_storage->m_caches.get());
AMS_ASSERT(start <= end);
this->Release();
AMS_ASSERT(m_cache == nullptr);
for (auto cache = start; cache < end; ++cache) {
if (cache->IsValid() && cache->TryAcquireCache()) {
cache->Unlink();
m_cache = cache;
return true;
}
}
m_cache = nullptr;
return false;
}
bool AcquireFetchableCache() {
AMS_ASSERT(m_buffered_storage != nullptr);
std::scoped_lock lk(m_buffered_storage->m_mutex);
this->Release();
AMS_ASSERT(m_cache == nullptr);
m_cache = m_buffered_storage->m_next_fetch_cache;
if (m_cache != nullptr) {
if (m_cache->IsValid()) {
m_cache->TryAcquireCache();
}
m_cache->Unlink();
}
return m_cache != nullptr;
}
void Read(s64 offset, void *buffer, size_t size) {
AMS_ASSERT(m_cache != nullptr);
m_cache->Read(offset, buffer, size);
}
void Write(s64 offset, const void *buffer, size_t size) {
AMS_ASSERT(m_cache != nullptr);
m_cache->Write(offset, buffer, size);
}
Result Flush() {
AMS_ASSERT(m_cache != nullptr);
R_RETURN(m_cache->Flush());
}
void Invalidate() {
AMS_ASSERT(m_cache != nullptr);
return m_cache->Invalidate();
}
bool Hits(s64 offset, s64 size) const {
AMS_ASSERT(m_cache != nullptr);
return m_cache->Hits(offset, size);
}
private:
void Release() {
if (m_cache != nullptr) {
AMS_ASSERT(m_buffered_storage->m_caches.get() <= m_cache);
AMS_ASSERT(m_cache <= m_buffered_storage->m_caches.get() + m_buffered_storage->m_cache_count);
m_cache->Link();
m_cache = nullptr;
}
}
};
class BufferedStorage::UniqueCache {
NON_COPYABLE(UniqueCache);
NON_MOVEABLE(UniqueCache);
private:
Cache *m_cache;
BufferedStorage *m_buffered_storage;
public:
explicit UniqueCache(BufferedStorage *bs) : m_cache(nullptr), m_buffered_storage(bs) {
AMS_ASSERT(m_buffered_storage != nullptr);
}
~UniqueCache() {
if (m_cache != nullptr) {
std::scoped_lock lk(m_buffered_storage->m_mutex);
m_cache->UnprepareFetch();
}
}
const std::pair<Result, bool> Upgrade(const SharedCache &shared_cache) {
AMS_ASSERT(m_buffered_storage == shared_cache.m_buffered_storage);
AMS_ASSERT(shared_cache.m_cache != nullptr);
std::scoped_lock lk(m_buffered_storage->m_mutex);
const auto result = shared_cache.m_cache->PrepareFetch();
if (R_SUCCEEDED(result.first) && result.second) {
m_cache = shared_cache.m_cache;
}
return result;
}
Result Fetch(s64 offset) {
AMS_ASSERT(m_cache != nullptr);
R_RETURN(m_cache->Fetch(offset));
}
Result FetchFromBuffer(s64 offset, const void *buffer, size_t buffer_size) {
AMS_ASSERT(m_cache != nullptr);
R_TRY(m_cache->FetchFromBuffer(offset, buffer, buffer_size));
R_SUCCEED();
}
};
BufferedStorage::BufferedStorage() : m_base_storage(), m_buffer_manager(), m_block_size(), m_base_storage_size(), m_caches(), m_cache_count(), m_next_acquire_cache(), m_next_fetch_cache(), m_mutex(), m_bulk_read_enabled() {
/* ... */
}
BufferedStorage::~BufferedStorage() {
this->Finalize();
}
Result BufferedStorage::Initialize(fs::SubStorage base_storage, fs::IBufferManager *buffer_manager, size_t block_size, s32 buffer_count) {
AMS_ASSERT(buffer_manager != nullptr);
AMS_ASSERT(block_size > 0);
AMS_ASSERT(util::IsPowerOfTwo(block_size));
AMS_ASSERT(buffer_count > 0);
/* Get the base storage size. */
R_TRY(base_storage.GetSize(std::addressof(m_base_storage_size)));
/* Set members. */
m_base_storage = base_storage;
m_buffer_manager = buffer_manager;
m_block_size = block_size;
m_cache_count = buffer_count;
/* Allocate the caches. */
m_caches.reset(new Cache[buffer_count]);
R_UNLESS(m_caches != nullptr, fs::ResultAllocationMemoryFailedInBufferedStorageA());
/* Initialize the caches. */
for (auto i = 0; i < buffer_count; i++) {
m_caches[i].Initialize(this);
}
m_next_acquire_cache = std::addressof(m_caches[0]);
R_SUCCEED();
}
void BufferedStorage::Finalize() {
m_base_storage = fs::SubStorage();
m_base_storage_size = 0;
m_caches.reset();
m_cache_count = 0;
m_next_fetch_cache = nullptr;
}
Result BufferedStorage::Read(s64 offset, void *buffer, size_t size) {
AMS_ASSERT(this->IsInitialized());
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Do the read. */
R_TRY(this->ReadCore(offset, buffer, size));
R_SUCCEED();
}
Result BufferedStorage::Write(s64 offset, const void *buffer, size_t size) {
AMS_ASSERT(this->IsInitialized());
/* Succeed if zero size. */
R_SUCCEED_IF(size == 0);
/* Validate arguments. */
R_UNLESS(buffer != nullptr, fs::ResultNullptrArgument());
/* Do the write. */
R_TRY(this->WriteCore(offset, buffer, size));
R_SUCCEED();
}
Result BufferedStorage::GetSize(s64 *out) {
AMS_ASSERT(out != nullptr);
AMS_ASSERT(this->IsInitialized());
*out = m_base_storage_size;
R_SUCCEED();
}
Result BufferedStorage::SetSize(s64 size) {
AMS_ASSERT(this->IsInitialized());
const s64 prev_size = m_base_storage_size;
if (prev_size < size) {
/* Prepare to expand. */
if (!util::IsAligned(prev_size, m_block_size)) {
SharedCache cache(this);
const auto invalidate_offset = prev_size;
const auto invalidate_size = size - prev_size;
if (cache.AcquireNextOverlappedCache(invalidate_offset, invalidate_size)) {
R_TRY(cache.Flush());
cache.Invalidate();
}
AMS_ASSERT(!cache.AcquireNextOverlappedCache(invalidate_offset, invalidate_size));
}
} else if (size < prev_size) {
/* Prepare to do a shrink. */
SharedCache cache(this);
const auto invalidate_offset = prev_size;
const auto invalidate_size = size - prev_size;
const auto is_fragment = util::IsAligned(size, m_block_size);
while (cache.AcquireNextOverlappedCache(invalidate_offset, invalidate_size)) {
if (is_fragment && cache.Hits(invalidate_offset, 1)) {
R_TRY(cache.Flush());
}
cache.Invalidate();
}
}
/* Set the size. */
R_TRY(m_base_storage.SetSize(size));
/* Get our new size. */
s64 new_size = 0;
R_TRY(m_base_storage.GetSize(std::addressof(new_size)));
m_base_storage_size = new_size;
R_SUCCEED();
}
Result BufferedStorage::Flush() {
AMS_ASSERT(this->IsInitialized());
/* Flush caches. */
SharedCache cache(this);
while (cache.AcquireNextDirtyCache()) {
R_TRY(cache.Flush());
}
/* Flush the base storage. */
R_TRY(m_base_storage.Flush());
R_SUCCEED();
}
Result BufferedStorage::OperateRange(void *dst, size_t dst_size, fs::OperationId op_id, s64 offset, s64 size, const void *src, size_t src_size) {
AMS_ASSERT(this->IsInitialized());
/* Invalidate caches, if we should. */
if (op_id == fs::OperationId::Invalidate) {
this->InvalidateCaches();
}
R_RETURN(m_base_storage.OperateRange(dst, dst_size, op_id, offset, size, src, src_size));
}
void BufferedStorage::InvalidateCaches() {
AMS_ASSERT(this->IsInitialized());
SharedCache cache(this);
while (cache.AcquireNextValidCache()) {
cache.Invalidate();
}
}
Result BufferedStorage::PrepareAllocation() {
const auto flush_threshold = m_buffer_manager->GetTotalSize() / 8;
if (m_buffer_manager->GetTotalAllocatableSize() < flush_threshold) {
R_TRY(this->Flush());
}
R_SUCCEED();
}
Result BufferedStorage::ControlDirtiness() {
const auto flush_threshold = m_buffer_manager->GetTotalSize() / 4;
if (m_buffer_manager->GetTotalAllocatableSize() < flush_threshold) {
s32 dirty_count = 0;
SharedCache cache(this);
while (cache.AcquireNextDirtyCache()) {
if ((++dirty_count) > 1) {
R_TRY(cache.Flush());
cache.Invalidate();
}
}
}
R_SUCCEED();
}
Result BufferedStorage::ReadCore(s64 offset, void *buffer, size_t size) {
AMS_ASSERT(m_caches != nullptr);
AMS_ASSERT(buffer != nullptr);
/* Validate the offset. */
const auto base_storage_size = m_base_storage_size;
R_UNLESS(offset >= 0, fs::ResultInvalidOffset());
R_UNLESS(offset <= base_storage_size, fs::ResultInvalidOffset());
/* Setup tracking variables. */
size_t remaining_size = static_cast<size_t>(std::min<s64>(size, base_storage_size - offset));
s64 cur_offset = offset;
s64 buf_offset = 0;
/* Determine what caches are needed, if we have bulk read set. */
if (m_bulk_read_enabled) {
/* Check head cache. */
const auto head_cache_needed = this->ReadHeadCache(std::addressof(cur_offset), buffer, std::addressof(remaining_size), std::addressof(buf_offset));
R_SUCCEED_IF(remaining_size == 0);
/* Check tail cache. */
const auto tail_cache_needed = this->ReadTailCache(cur_offset, buffer, std::addressof(remaining_size), buf_offset);
R_SUCCEED_IF(remaining_size == 0);
/* Perform bulk reads. */
constexpr size_t BulkReadSizeMax = 2_MB;
if (remaining_size <= BulkReadSizeMax) {
do {
/* Try to do a bulk read. */
R_TRY_CATCH(this->BulkRead(cur_offset, static_cast<u8 *>(buffer) + buf_offset, remaining_size, head_cache_needed, tail_cache_needed)) {
R_CATCH(fs::ResultAllocationPooledBufferNotEnoughSize) {
/* If the read fails due to insufficient pooled buffer size, */
/* then we want to fall back to the normal read path. */
break;
}
} R_END_TRY_CATCH;
R_SUCCEED();
} while(0);
}
}
/* Repeatedly read until we're done. */
while (remaining_size > 0) {
/* Determine how much to read this iteration. */
auto *cur_dst = static_cast<u8 *>(buffer) + buf_offset;
size_t cur_size = 0;
if (!util::IsAligned(cur_offset, m_block_size)) {
const size_t aligned_size = m_block_size - (cur_offset & (m_block_size - 1));
cur_size = std::min(aligned_size, remaining_size);
} else if (remaining_size < m_block_size) {
cur_size = remaining_size;
} else {
cur_size = util::AlignDown(remaining_size, m_block_size);
}
if (cur_size <= m_block_size) {
SharedCache cache(this);
if (!cache.AcquireNextOverlappedCache(cur_offset, cur_size)) {
R_TRY(this->PrepareAllocation());
while (true) {
R_UNLESS(cache.AcquireFetchableCache(), fs::ResultOutOfResource());
UniqueCache fetch_cache(this);
const auto upgrade_result = fetch_cache.Upgrade(cache);
R_TRY(upgrade_result.first);
if (upgrade_result.second) {
R_TRY(fetch_cache.Fetch(cur_offset));
break;
}
}
R_TRY(this->ControlDirtiness());
}
cache.Read(cur_offset, cur_dst, cur_size);
} else {
{
SharedCache cache(this);
while (cache.AcquireNextOverlappedCache(cur_offset, cur_size)) {
R_TRY(cache.Flush());
cache.Invalidate();
}
}
R_TRY(m_base_storage.Read(cur_offset, cur_dst, cur_size));
}
remaining_size -= cur_size;
cur_offset += cur_size;
buf_offset += cur_size;
}
R_SUCCEED();
}
bool BufferedStorage::ReadHeadCache(s64 *offset, void *buffer, size_t *size, s64 *buffer_offset) {
AMS_ASSERT(offset != nullptr);
AMS_ASSERT(buffer != nullptr);
AMS_ASSERT(size != nullptr);
AMS_ASSERT(buffer_offset != nullptr);
bool is_cache_needed = !util::IsAligned(*offset, m_block_size);
while (*size > 0) {
size_t cur_size = 0;
if (!util::IsAligned(*offset, m_block_size)) {
const s64 aligned_size = util::AlignUp(*offset, m_block_size) - *offset;
cur_size = std::min(aligned_size, static_cast<s64>(*size));
} else if (*size < m_block_size) {
cur_size = *size;
} else {
cur_size = m_block_size;
}
SharedCache cache(this);
if (!cache.AcquireNextOverlappedCache(*offset, cur_size)) {
break;
}
cache.Read(*offset, static_cast<u8 *>(buffer) + *buffer_offset, cur_size);
*offset += cur_size;
*buffer_offset += cur_size;
*size -= cur_size;
is_cache_needed = false;
}
return is_cache_needed;
}
bool BufferedStorage::ReadTailCache(s64 offset, void *buffer, size_t *size, s64 buffer_offset) {
AMS_ASSERT(buffer != nullptr);
AMS_ASSERT(size != nullptr);
bool is_cache_needed = !util::IsAligned(offset + *size, m_block_size);
while (*size > 0) {
const s64 cur_offset_end = offset + *size;
size_t cur_size = 0;
if (!util::IsAligned(cur_offset_end, m_block_size)) {
const s64 aligned_size = cur_offset_end - util::AlignDown(cur_offset_end, m_block_size);
cur_size = std::min(aligned_size, static_cast<s64>(*size));
} else if (*size < m_block_size) {
cur_size = *size;
} else {
cur_size = m_block_size;
}
const s64 cur_offset = cur_offset_end - static_cast<s64>(cur_size);
AMS_ASSERT(cur_offset >= 0);
SharedCache cache(this);
if (!cache.AcquireNextOverlappedCache(cur_offset, cur_size)) {
break;
}
cache.Read(cur_offset, static_cast<u8 *>(buffer) + buffer_offset + cur_offset - offset, cur_size);
*size -= cur_size;
is_cache_needed = false;
}
return is_cache_needed;
}
Result BufferedStorage::BulkRead(s64 offset, void *buffer, size_t size, bool head_cache_needed, bool tail_cache_needed) {
/* Determine aligned extents. */
const s64 aligned_offset = util::AlignDown(offset, m_block_size);
const s64 aligned_offset_end = std::min(util::AlignUp(offset + static_cast<s64>(size), m_block_size), m_base_storage_size);
const s64 aligned_size = aligned_offset_end - aligned_offset;
/* Allocate a work buffer. */
char *work_buffer = nullptr;
PooledBuffer pooled_buffer;
if (offset == aligned_offset && size == static_cast<size_t>(aligned_size)) {
work_buffer = static_cast<char *>(buffer);
} else {
pooled_buffer.AllocateParticularlyLarge(static_cast<size_t>(aligned_size), 1);
R_UNLESS(static_cast<s64>(pooled_buffer.GetSize()) >= aligned_size, fs::ResultAllocationPooledBufferNotEnoughSize());
work_buffer = pooled_buffer.GetBuffer();
}
/* Ensure cache is coherent. */
{
SharedCache cache(this);
while (cache.AcquireNextOverlappedCache(aligned_offset, aligned_size)) {
R_TRY(cache.Flush());
cache.Invalidate();
}
}
/* Read from the base storage. */
R_TRY(m_base_storage.Read(aligned_offset, work_buffer, static_cast<size_t>(aligned_size)));
if (work_buffer != static_cast<char *>(buffer)) {
std::memcpy(buffer, work_buffer + offset - aligned_offset, size);
}
bool cached = false;
/* Handle head cache if needed. */
if (head_cache_needed) {
R_TRY(this->PrepareAllocation());
SharedCache cache(this);
while (true) {
R_UNLESS(cache.AcquireFetchableCache(), fs::ResultOutOfResource());
UniqueCache fetch_cache(this);
const auto upgrade_result = fetch_cache.Upgrade(cache);
R_TRY(upgrade_result.first);
if (upgrade_result.second) {
R_TRY(fetch_cache.FetchFromBuffer(aligned_offset, work_buffer, static_cast<size_t>(aligned_size)));
break;
}
}
cached = true;
}
/* Handle tail cache if needed. */
if (tail_cache_needed && (!head_cache_needed || aligned_size > static_cast<s64>(m_block_size))) {
if (!cached) {
R_TRY(this->PrepareAllocation());
}
SharedCache cache(this);
while (true) {
R_UNLESS(cache.AcquireFetchableCache(), fs::ResultOutOfResource());
UniqueCache fetch_cache(this);
const auto upgrade_result = fetch_cache.Upgrade(cache);
R_TRY(upgrade_result.first);
if (upgrade_result.second) {
const s64 tail_cache_offset = util::AlignDown(offset + static_cast<s64>(size), m_block_size);
const size_t tail_cache_size = static_cast<size_t>(aligned_size - tail_cache_offset + aligned_offset);
R_TRY(fetch_cache.FetchFromBuffer(tail_cache_offset, work_buffer + tail_cache_offset - aligned_offset, tail_cache_size));
break;
}
}
}
if (cached) {
R_TRY(this->ControlDirtiness());
}
R_SUCCEED();
}
Result BufferedStorage::WriteCore(s64 offset, const void *buffer, size_t size) {
AMS_ASSERT(m_caches != nullptr);
AMS_ASSERT(buffer != nullptr);
/* Validate the offset. */
const auto base_storage_size = m_base_storage_size;
R_UNLESS(offset >= 0, fs::ResultInvalidOffset());
R_UNLESS(offset <= base_storage_size, fs::ResultInvalidOffset());
/* Setup tracking variables. */
size_t remaining_size = static_cast<size_t>(std::min<s64>(size, base_storage_size - offset));
s64 cur_offset = offset;
s64 buf_offset = 0;
/* Repeatedly read until we're done. */
while (remaining_size > 0) {
/* Determine how much to read this iteration. */
const auto *cur_src = static_cast<const u8 *>(buffer) + buf_offset;
size_t cur_size = 0;
if (!util::IsAligned(cur_offset, m_block_size)) {
const size_t aligned_size = m_block_size - (cur_offset & (m_block_size - 1));
cur_size = std::min(aligned_size, remaining_size);
} else if (remaining_size < m_block_size) {
cur_size = remaining_size;
} else {
cur_size = util::AlignDown(remaining_size, m_block_size);
}
if (cur_size <= m_block_size) {
SharedCache cache(this);
if (!cache.AcquireNextOverlappedCache(cur_offset, cur_size)) {
R_TRY(this->PrepareAllocation());
while (true) {
R_UNLESS(cache.AcquireFetchableCache(), fs::ResultOutOfResource());
UniqueCache fetch_cache(this);
const auto upgrade_result = fetch_cache.Upgrade(cache);
R_TRY(upgrade_result.first);
if (upgrade_result.second) {
R_TRY(fetch_cache.Fetch(cur_offset));
break;
}
}
}
cache.Write(cur_offset, cur_src, cur_size);
buffers::EnableBlockingBufferManagerAllocation();
R_TRY(this->ControlDirtiness());
} else {
{
SharedCache cache(this);
while (cache.AcquireNextOverlappedCache(cur_offset, cur_size)) {
R_TRY(cache.Flush());
cache.Invalidate();
}
}
R_TRY(m_base_storage.Write(cur_offset, cur_src, cur_size));
buffers::EnableBlockingBufferManagerAllocation();
}
remaining_size -= cur_size;
cur_offset += cur_size;
buf_offset += cur_size;
}
R_SUCCEED();
}
}