mirror of
https://github.com/Atmosphere-NX/Atmosphere.git
synced 2024-12-22 10:22:08 +00:00
417 lines
18 KiB
C++
417 lines
18 KiB
C++
/*
|
|
* Copyright (c) Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <exosphere.hpp>
|
|
#include "secmon_boot.hpp"
|
|
#include "secmon_boot_cache.hpp"
|
|
#include "../secmon_setup.hpp"
|
|
#include "../secmon_key_storage.hpp"
|
|
|
|
namespace ams::secmon::boot {
|
|
|
|
namespace {
|
|
|
|
void ValidateSystemCounters() {
|
|
const uintptr_t sysctr0 = MemoryRegionVirtualDeviceSysCtr0.GetAddress();
|
|
|
|
/* Validate the system counter frequency is as expected. */
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_CNTFID0) == 19'200'000u);
|
|
|
|
/* Validate the system counters are as expected. */
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 0)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 1)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 2)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 3)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 4)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 5)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 6)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 7)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 8)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID( 9)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID(10)) == 0);
|
|
AMS_ABORT_UNLESS(reg::Read(sysctr0 + SYSCTR0_COUNTERID(11)) == 0);
|
|
}
|
|
|
|
void SetupPmcRegisters() {
|
|
const auto pmc = MemoryRegionVirtualDevicePmc.GetAddress();
|
|
|
|
/* Set the physical address of the warmboot binary to scratch 1. */
|
|
if (GetSocType() == fuse::SocType_Mariko) {
|
|
reg::Write(pmc + APBDEV_PMC_SECURE_SCRATCH119, static_cast<u32>(MemoryRegionPhysicalDramSecureDataStoreWarmbootFirmware.GetAddress()));
|
|
} else /* if (GetSocType() == fuse::SocType_Erista) */ {
|
|
reg::Write(pmc + APBDEV_PMC_SCRATCH1, static_cast<u32>(MemoryRegionPhysicalDramSecureDataStoreWarmbootFirmware.GetAddress()));
|
|
}
|
|
|
|
|
|
/* Configure logging by setting bits 18-19 of scratch 20. */
|
|
reg::ReadWrite(pmc + APBDEV_PMC_SCRATCH20, REG_BITS_VALUE(18, 2, 0));
|
|
|
|
/* Clear the wdt reset flag. */
|
|
reg::ReadWrite(pmc + APBDEV_PMC_SCRATCH190, REG_BITS_VALUE(0, 1, 0));
|
|
|
|
/* Configure warmboot to set Set FUSE_PRIVATEKEYDISABLE to KEY_INVISIBLE. */
|
|
reg::ReadWrite(pmc + APBDEV_PMC_SECURE_SCRATCH21, REG_BITS_VALUE(4, 1, 1));
|
|
|
|
/* NOTE: Here, Nintendo writes the warmboot key. */
|
|
/* However, we rely on the bootloader (e.g. fusee/hekate) having already done this. */
|
|
/* reg::Write(pmc + APBDEV_PMC_SECURE_SCRATCH32, ...); */
|
|
}
|
|
|
|
/* This function derives the master kek and device keys using the tsec root key. */
|
|
void DeriveMasterKekAndDeviceKeyErista(bool is_prod) {
|
|
/* NOTE: Exosphere does not use this in practice, and expects the bootloader to set up keys already. */
|
|
/* NOTE: This function is currently not implemented. If implemented, it will only be a reference implementation. */
|
|
if constexpr (false) {
|
|
/* TODO: Consider implementing this as a reference. */
|
|
}
|
|
|
|
AMS_UNUSED(is_prod);
|
|
}
|
|
|
|
void DeriveMasterKekAndDeviceKeyMariko(bool is_prod) {
|
|
/* Clear all keyslots other than KEK and SBK in SE1. */
|
|
for (int i = 0; i < pkg1::AesKeySlot_Count; ++i) {
|
|
if (i != pkg1::AesKeySlot_MarikoKek && i != pkg1::AesKeySlot_SecureBoot) {
|
|
se::ClearAesKeySlot(i);
|
|
}
|
|
}
|
|
|
|
/* Clear all keyslots in SE2. */
|
|
for (int i = 0; i < pkg1::AesKeySlot_Count; ++i) {
|
|
se::ClearAesKeySlot2(i);
|
|
}
|
|
|
|
/* Derive the master kek. */
|
|
se::SetEncryptedAesKey128(pkg1::AesKeySlot_MasterKek, pkg1::AesKeySlot_MarikoKek, GetMarikoMasterKekSource(is_prod), se::AesBlockSize);
|
|
|
|
/* Derive the device master key source kek. */
|
|
se::SetEncryptedAesKey128(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, pkg1::AesKeySlot_SecureBoot, GetDeviceMasterKeySourceKekSource(), se::AesBlockSize);
|
|
|
|
/* Clear the KEK, now that we're done using it. */
|
|
se::ClearAesKeySlot(pkg1::AesKeySlot_MarikoKek);
|
|
}
|
|
|
|
void DeriveMasterKekAndDeviceKey(bool is_prod) {
|
|
if (GetSocType() == fuse::SocType_Mariko) {
|
|
DeriveMasterKekAndDeviceKeyMariko(is_prod);
|
|
} else /* if (GetSocType() == fuse::SocType_Erista) */ {
|
|
DeriveMasterKekAndDeviceKeyErista(is_prod);
|
|
}
|
|
}
|
|
|
|
void DeriveMasterKey() {
|
|
if (GetSocType() == fuse::SocType_Mariko) {
|
|
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Master, pkg1::AesKeySlot_MasterKek, GetMasterKeySource(), se::AesBlockSize);
|
|
} else /* if (GetSocType() == fuse::SocType_Erista) */ {
|
|
/* Nothing to do here; erista bootloader will have derived master key already. */
|
|
}
|
|
}
|
|
|
|
void SetupRandomKey(int slot, se::KeySlotLockFlags flags) {
|
|
/* Create an aligned buffer to hold the key. */
|
|
constexpr size_t KeySize = se::AesBlockSize;
|
|
util::AlignedBuffer<hw::DataCacheLineSize, KeySize> key;
|
|
|
|
/* Ensure data is consistent before triggering the SE. */
|
|
hw::FlushDataCache(key, KeySize);
|
|
hw::DataSynchronizationBarrierInnerShareable();
|
|
|
|
/* Generate random bytes into the key. */
|
|
se::GenerateRandomBytes(key, KeySize);
|
|
|
|
/* Ensure that the CPU sees consistent data. */
|
|
hw::DataSynchronizationBarrierInnerShareable();
|
|
hw::FlushDataCache(key, KeySize);
|
|
hw::DataSynchronizationBarrierInnerShareable();
|
|
|
|
/* Use the random bytes as a key source. */
|
|
se::SetEncryptedAesKey128(slot, pkg1::AesKeySlot_DeviceMaster, key, KeySize);
|
|
|
|
/* Lock the keyslot. */
|
|
se::LockAesKeySlot(slot, flags);
|
|
}
|
|
|
|
bool TestKeyGeneration(int generation, bool is_prod) {
|
|
/* Decrypt the vector chain from generation to start. */
|
|
int slot = pkg1::AesKeySlot_Master;
|
|
for (int i = generation; i > 0; --i) {
|
|
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Temporary, slot, GetMasterKeyVector(is_prod, i), se::AesBlockSize);
|
|
slot = pkg1::AesKeySlot_Temporary;
|
|
}
|
|
|
|
/* Decrypt the final vector. */
|
|
u8 test_vector[se::AesBlockSize];
|
|
se::DecryptAes128(test_vector, se::AesBlockSize, slot, GetMasterKeyVector(is_prod, 0), se::AesBlockSize);
|
|
|
|
constexpr u8 ZeroBlock[se::AesBlockSize] = {};
|
|
return crypto::IsSameBytes(ZeroBlock, test_vector, se::AesBlockSize);
|
|
}
|
|
|
|
int DetermineKeyGeneration(bool is_prod) {
|
|
/* Test each generation in order. */
|
|
for (int generation = 0; generation < pkg1::KeyGeneration_Count; ++generation) {
|
|
if (TestKeyGeneration(generation, is_prod)) {
|
|
return generation;
|
|
}
|
|
}
|
|
|
|
/* We must have found a correct key generation. */
|
|
AMS_ABORT();
|
|
}
|
|
|
|
void DeriveAllMasterKeys(bool is_prod, u8 * const work_block) {
|
|
/* Determine the generation. */
|
|
const int generation = DetermineKeyGeneration(is_prod);
|
|
AMS_SECMON_LOG("KeyGen: %02X\n", static_cast<unsigned int>(generation));
|
|
|
|
/* Set the global generation. */
|
|
::ams::secmon::impl::SetKeyGeneration(generation);
|
|
|
|
/* Derive all old keys. */
|
|
int slot = pkg1::AesKeySlot_Master;
|
|
for (int i = generation; i > 0; --i) {
|
|
/* Decrypt the old master key. */
|
|
se::DecryptAes128(work_block, se::AesBlockSize, slot, GetMasterKeyVector(is_prod, i), se::AesBlockSize);
|
|
|
|
/* Set the old master key. */
|
|
SetMasterKey(i - 1, work_block, se::AesBlockSize);
|
|
|
|
/* Set the old master key into a temporary keyslot. */
|
|
se::SetAesKey(pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
|
|
|
|
/* Perform the next decryption with the older master key. */
|
|
slot = pkg1::AesKeySlot_Temporary;
|
|
}
|
|
}
|
|
|
|
void DeriveAllDeviceMasterKeys(bool is_prod, u8 * const work_block) {
|
|
/* Get the current key generation. */
|
|
const int current_generation = secmon::GetKeyGeneration();
|
|
|
|
/* Get the kek slot. */
|
|
const int kek_slot = GetSocType() == fuse::SocType_Mariko ? pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko : pkg1::AesKeySlot_DeviceMasterKeySourceKekErista;
|
|
|
|
/* Iterate for all generations. */
|
|
for (int i = 0; i < pkg1::OldDeviceMasterKeyCount; ++i) {
|
|
const int generation = pkg1::KeyGeneration_4_0_0 + i;
|
|
|
|
/* Load the first master key into the temporary keyslot keyslot. */
|
|
LoadMasterKey(pkg1::AesKeySlot_Temporary, pkg1::KeyGeneration_1_0_0);
|
|
|
|
/* Decrypt the device master kek for the generation. */
|
|
se::SetEncryptedAesKey128(pkg1::AesKeySlot_Temporary, pkg1::AesKeySlot_Temporary, GetDeviceMasterKekSource(is_prod, i), se::AesBlockSize);
|
|
|
|
/* Decrypt the device master key source into the work block. */
|
|
se::DecryptAes128(work_block, se::AesBlockSize, kek_slot, GetDeviceMasterKeySourceSource(i), se::AesBlockSize);
|
|
|
|
/* If we're decrypting the current device master key, decrypt into the keyslot. */
|
|
if (generation == current_generation) {
|
|
se::SetEncryptedAesKey128(pkg1::AesKeySlot_DeviceMaster, pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
|
|
} else {
|
|
/* Otherwise, decrypt the work block into itself and set the old device master key. */
|
|
se::DecryptAes128(work_block, se::AesBlockSize, pkg1::AesKeySlot_Temporary, work_block, se::AesBlockSize);
|
|
|
|
/* Set the device master key. */
|
|
SetDeviceMasterKey(generation, work_block, se::AesBlockSize);
|
|
}
|
|
}
|
|
|
|
/* Clear and lock the Device Master Key Source Kek. */
|
|
se::ClearAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko);
|
|
se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMasterKeySourceKekMariko, se::KeySlotLockFlags_AllLockKek);
|
|
}
|
|
|
|
void DeriveAllKeys(bool is_prod) {
|
|
/* Get the ephemeral work block. */
|
|
u8 * const work_block = se::GetEphemeralWorkBlock();
|
|
ON_SCOPE_EXIT { util::ClearMemory(work_block, se::AesBlockSize); };
|
|
|
|
/* Lock the master key as a key. */
|
|
se::LockAesKeySlot(pkg1::AesKeySlot_Master, se::KeySlotLockFlags_AllLockKey);
|
|
|
|
/* Setup a random key to protect the old master and device master keys. */
|
|
SetupRandomKey(pkg1::AesKeySlot_RandomForKeyStorageWrap, se::KeySlotLockFlags_AllLockKey);
|
|
|
|
/* Derive the master keys. */
|
|
DeriveAllMasterKeys(is_prod, work_block);
|
|
|
|
/* Lock the master key as a kek. */
|
|
se::LockAesKeySlot(pkg1::AesKeySlot_Master, se::KeySlotLockFlags_AllLockKek);
|
|
|
|
/* Derive the device master keys. */
|
|
DeriveAllDeviceMasterKeys(is_prod, work_block);
|
|
|
|
/* Lock the device master key as a kek. */
|
|
se::LockAesKeySlot(pkg1::AesKeySlot_DeviceMaster, se::KeySlotLockFlags_AllLockKek);
|
|
|
|
/* Setup a random key to protect user keys. */
|
|
SetupRandomKey(pkg1::AesKeySlot_RandomForUserWrap, se::KeySlotLockFlags_AllLockKek);
|
|
}
|
|
|
|
void InitializeKeys() {
|
|
/* Read lock all aes keys. */
|
|
for (int i = 0; i < se::AesKeySlotCount; ++i) {
|
|
se::LockAesKeySlot(i, se::KeySlotLockFlags_AllReadLock);
|
|
}
|
|
|
|
/* Lock the secure monitor aes keys to be secmon only and non-readable. */
|
|
for (int i = pkg1::AesKeySlot_SecmonStart; i < pkg1::AesKeySlot_SecmonEnd; ++i) {
|
|
se::LockAesKeySlot(i, se::KeySlotLockFlags_KeyUse | se::KeySlotLockFlags_PerKey);
|
|
}
|
|
|
|
/* Lock the unused keyslots entirely. */
|
|
static_assert(pkg1::AesKeySlot_UserEnd <= pkg1::AesKeySlot_SecmonStart);
|
|
for (int i = pkg1::AesKeySlot_UserEnd; i < pkg1::AesKeySlot_SecmonStart; ++i) {
|
|
se::LockAesKeySlot(i, se::KeySlotLockFlags_AllLockKek);
|
|
}
|
|
|
|
/* Read lock all rsa keys. */
|
|
for (int i = 0; i < se::RsaKeySlotCount; ++i) {
|
|
se::LockRsaKeySlot(i, se::KeySlotLockFlags_KeyUse | se::KeySlotLockFlags_PerKey | se::KeySlotLockFlags_KeyRead);
|
|
}
|
|
|
|
/* Initialize the rng. */
|
|
se::InitializeRandom();
|
|
|
|
/* Determine whether we're production. */
|
|
const bool is_prod = IsProduction();
|
|
|
|
/* Derive the master kek and device key. */
|
|
/* NOTE: This is a no-op on erista, because fusee will have set up keys. */
|
|
DeriveMasterKekAndDeviceKey(is_prod);
|
|
|
|
/* Lock the device key as only usable as a kek. */
|
|
se::LockAesKeySlot(pkg1::AesKeySlot_Device, se::KeySlotLockFlags_AllLockKek);
|
|
|
|
/* Derive the master key. */
|
|
DeriveMasterKey();
|
|
|
|
/* Derive all other keys. */
|
|
DeriveAllKeys(is_prod);
|
|
}
|
|
|
|
}
|
|
|
|
namespace {
|
|
|
|
using namespace ams::mmu;
|
|
|
|
constexpr void UnmapPhysicalIdentityMappingImpl(u64 *l1, u64 *l2, u64 *l3) {
|
|
/* Invalidate the L3 entries for the tzram and iram boot code regions. */
|
|
InvalidateL3Entries(l3, MemoryRegionPhysicalTzram.GetAddress(), MemoryRegionPhysicalTzram.GetSize());
|
|
InvalidateL3Entries(l3, MemoryRegionPhysicalIramBootCode.GetAddress(), MemoryRegionPhysicalIramBootCode.GetSize());
|
|
|
|
/* Unmap the L2 entries corresponding to those L3 entries. */
|
|
InvalidateL2Entries(l2, MemoryRegionPhysicalIramL2.GetAddress(), MemoryRegionPhysicalIramL2.GetSize());
|
|
InvalidateL2Entries(l2, MemoryRegionPhysicalTzramL2.GetAddress(), MemoryRegionPhysicalTzramL2.GetSize());
|
|
|
|
/* Unmap the L1 entry corresponding to to those L2 entries. */
|
|
InvalidateL1Entries(l1, MemoryRegionPhysical.GetAddress(), MemoryRegionPhysical.GetSize());
|
|
}
|
|
|
|
constexpr void UnmapDramImpl(u64 *l1, u64 *l2, u64 *l3) {
|
|
/* Unmap the L1 entry corresponding to to the Dram entries. */
|
|
AMS_UNUSED(l2, l3);
|
|
InvalidateL1Entries(l1, MemoryRegionDram.GetAddress(), MemoryRegionDram.GetSize());
|
|
}
|
|
|
|
constexpr void UnmapMarikoProgramImpl(u64 *l1, u64 *l2, u64 *l3) {
|
|
/* Unmap the L1 entry corresponding to to the Dram entries. */
|
|
AMS_UNUSED(l1, l2);
|
|
InvalidateL3Entries(l3, MemoryRegionVirtualTzramMarikoProgram.GetAddress(), MemoryRegionVirtualTzramMarikoProgram.GetSize());
|
|
}
|
|
|
|
}
|
|
|
|
void InitializeColdBoot() {
|
|
/* Ensure that the system counters are valid. */
|
|
ValidateSystemCounters();
|
|
|
|
/* Set the security engine to Tzram Secure. */
|
|
se::SetTzramSecure();
|
|
|
|
/* Set the security engine to Per Key Secure. */
|
|
se::SetPerKeySecure();
|
|
|
|
/* Set the security engine to Context Save Secure. */
|
|
se::SetContextSaveSecure();
|
|
|
|
/* Setup the PMC registers. */
|
|
SetupPmcRegisters();
|
|
|
|
/* Lockout the scratch that we've just written. */
|
|
/* pmc::LockSecureRegisters(1); */
|
|
|
|
/* Generate a random srk. */
|
|
se::GenerateSrk();
|
|
|
|
/* Initialize the SE keyslots. */
|
|
InitializeKeys();
|
|
|
|
/* Save a test vector for the SE keyslots. */
|
|
SaveSecurityEngineAesKeySlotTestVector();
|
|
}
|
|
|
|
void UnmapPhysicalIdentityMapping() {
|
|
/* Get the tables. */
|
|
u64 * const l1 = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
|
|
u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
|
|
|
|
/* Unmap. */
|
|
UnmapPhysicalIdentityMappingImpl(l1, l2_l3, l2_l3);
|
|
|
|
/* Ensure the mappings are consistent. */
|
|
secmon::boot::EnsureMappingConsistency();
|
|
}
|
|
|
|
void UnmapDram() {
|
|
/* Get the tables. */
|
|
u64 * const l1 = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
|
|
u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
|
|
|
|
/* Unmap. */
|
|
UnmapDramImpl(l1, l2_l3, l2_l3);
|
|
|
|
/* Ensure the mappings are consistent. */
|
|
secmon::boot::EnsureMappingConsistency();
|
|
}
|
|
|
|
void LoadMarikoProgram() {
|
|
void * const mariko_program_dst = MemoryRegionVirtualTzramMarikoProgram.GetPointer<void>();
|
|
void * const mariko_program_src = MemoryRegionPhysicalMarikoProgramImage.GetPointer<void>();
|
|
const size_t mariko_program_size = MemoryRegionVirtualTzramMarikoProgram.GetSize();
|
|
|
|
if (fuse::GetSocType() == fuse::SocType_Mariko) {
|
|
/* On Mariko, we want to load the mariko program image into mariko tzram. */
|
|
std::memcpy(mariko_program_dst, mariko_program_src, mariko_program_size);
|
|
hw::FlushDataCache(mariko_program_dst, mariko_program_size);
|
|
} else {
|
|
/* On Erista, we don't have mariko-only-tzram, so unmap it. */
|
|
u64 * const l1 = MemoryRegionVirtualTzramL1PageTable.GetPointer<u64>();
|
|
u64 * const l2_l3 = MemoryRegionVirtualTzramL2L3PageTable.GetPointer<u64>();
|
|
|
|
UnmapMarikoProgramImpl(l1, l2_l3, l2_l3);
|
|
}
|
|
|
|
/* Clear the Mariko program image from DRAM. */
|
|
util::ClearMemory(mariko_program_src, mariko_program_size);
|
|
hw::FlushDataCache(mariko_program_src, mariko_program_size);
|
|
hw::DataSynchronizationBarrierInnerShareable();
|
|
|
|
/* Ensure the mappings are consistent. */
|
|
secmon::boot::EnsureMappingConsistency();
|
|
}
|
|
|
|
}
|