1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-23 10:52:13 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_process.cpp
SciresM 96f95b9f95
Integrate new result macros. (#1780)
* result: try out some experimental shenanigans

* result: sketch out some more shenanigans

* result: see what it looks like to convert kernel to use result conds instead of guards

* make rest of kernel use experimental new macro-ing
2022-02-14 14:45:32 -08:00

1341 lines
53 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
constexpr u64 InitialProcessIdMin = 1;
constexpr u64 InitialProcessIdMax = 0x50;
constexpr u64 ProcessIdMin = InitialProcessIdMax + 1;
constexpr u64 ProcessIdMax = std::numeric_limits<u64>::max();
constinit util::Atomic<u64> g_initial_process_id = InitialProcessIdMin;
constinit util::Atomic<u64> g_process_id = ProcessIdMin;
Result TerminateChildren(KProcess *process, const KThread *thread_to_not_terminate) {
/* Request that all children threads terminate. */
{
KScopedLightLock proc_lk(process->GetListLock());
KScopedSchedulerLock sl;
if (thread_to_not_terminate != nullptr && process->GetPinnedThread(GetCurrentCoreId()) == thread_to_not_terminate) {
/* NOTE: Here Nintendo unpins the current thread instead of the thread_to_not_terminate. */
/* This is valid because the only caller which uses non-nullptr as argument uses GetCurrentThreadPointer(), */
/* but it's still notable because it seems incorrect at first glance. */
process->UnpinCurrentThread();
}
auto &thread_list = process->GetThreadList();
for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
if (KThread *thread = std::addressof(*it); thread != thread_to_not_terminate) {
if (thread->GetState() != KThread::ThreadState_Terminated) {
thread->RequestTerminate();
}
}
}
}
/* Wait for all children threads to terminate.*/
while (true) {
/* Get the next child. */
KThread *cur_child = nullptr;
{
KScopedLightLock proc_lk(process->GetListLock());
auto &thread_list = process->GetThreadList();
for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
if (KThread *thread = std::addressof(*it); thread != thread_to_not_terminate) {
if (thread->GetState() != KThread::ThreadState_Terminated) {
if (AMS_LIKELY(thread->Open())) {
cur_child = thread;
break;
}
}
}
}
}
/* If we didn't find any non-terminated children, we're done. */
if (cur_child == nullptr) {
break;
}
/* Terminate and close the thread. */
ON_SCOPE_EXIT { cur_child->Close(); };
if (const Result terminate_result = cur_child->Terminate(); svc::ResultTerminationRequested::Includes(terminate_result)) {
R_THROW(terminate_result);
}
}
R_SUCCEED();
}
class ThreadQueueImplForKProcessEnterUserException final : public KThreadQueue {
private:
KThread **m_exception_thread;
public:
constexpr ThreadQueueImplForKProcessEnterUserException(KThread **t) : KThreadQueue(), m_exception_thread(t) { /* ... */ }
virtual void EndWait(KThread *waiting_thread, Result wait_result) override {
/* Set the exception thread. */
*m_exception_thread = waiting_thread;
/* Invoke the base end wait handler. */
KThreadQueue::EndWait(waiting_thread, wait_result);
}
virtual void CancelWait(KThread *waiting_thread, Result wait_result, bool cancel_timer_task) override {
/* Remove the thread as a waiter on its mutex owner. */
waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
/* Invoke the base cancel wait handler. */
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
};
}
void KProcess::Finalize() {
/* Delete the process local region. */
this->DeleteThreadLocalRegion(m_plr_address);
/* Get the used memory size. */
const size_t used_memory_size = this->GetUsedUserPhysicalMemorySize();
/* Finalize the page table. */
m_page_table.Finalize();
/* Free the system resource. */
if (m_system_resource_address != Null<KVirtualAddress>) {
/* Check that we have no outstanding allocations. */
MESOSPHERE_ABORT_UNLESS(m_memory_block_slab_manager.GetUsed() == 0);
MESOSPHERE_ABORT_UNLESS(m_block_info_manager.GetUsed() == 0);
MESOSPHERE_ABORT_UNLESS(m_page_table_manager.GetUsed() == 0);
/* Free the memory. */
KSystemControl::FreeSecureMemory(m_system_resource_address, m_system_resource_num_pages * PageSize, m_memory_pool);
/* Clear our tracking variables. */
m_system_resource_address = Null<KVirtualAddress>;
m_system_resource_num_pages = 0;
/* Finalize optimized memory. If memory wasn't optimized, this is a no-op. */
Kernel::GetMemoryManager().FinalizeOptimizedMemory(this->GetId(), m_memory_pool);
}
/* Release memory to the resource limit. */
if (m_resource_limit != nullptr) {
MESOSPHERE_ABORT_UNLESS(used_memory_size >= m_memory_release_hint);
m_resource_limit->Release(ams::svc::LimitableResource_PhysicalMemoryMax, used_memory_size, used_memory_size - m_memory_release_hint);
m_resource_limit->Close();
}
/* Free all shared memory infos. */
{
auto it = m_shared_memory_list.begin();
while (it != m_shared_memory_list.end()) {
KSharedMemoryInfo *info = std::addressof(*it);
KSharedMemory *shmem = info->GetSharedMemory();
while (!info->Close()) {
shmem->Close();
}
shmem->Close();
it = m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(info);
}
}
/* Close all references to our io regions. */
{
auto it = m_io_region_list.begin();
while (it != m_io_region_list.end()) {
KIoRegion *io_region = std::addressof(*it);
it = m_io_region_list.erase(it);
io_region->Close();
}
}
/* Our thread local page list must be empty at this point. */
MESOSPHERE_ABORT_UNLESS(m_partially_used_tlp_tree.empty());
MESOSPHERE_ABORT_UNLESS(m_fully_used_tlp_tree.empty());
/* Log that we finalized for debug. */
MESOSPHERE_LOG("KProcess::Finalize() pid=%ld name=%-12s\n", m_process_id, m_name);
/* Perform inherited finalization. */
KSynchronizationObject::Finalize();
}
Result KProcess::Initialize(const ams::svc::CreateProcessParameter &params) {
/* Validate that the intended kernel version is high enough for us to support. */
R_UNLESS(m_capabilities.GetIntendedKernelVersion() >= ams::svc::RequiredKernelVersion, svc::ResultInvalidCombination());
/* Validate that the intended kernel version isn't too high for us to support. */
R_UNLESS(m_capabilities.GetIntendedKernelVersion() <= ams::svc::SupportedKernelVersion, svc::ResultInvalidCombination());
/* Create and clear the process local region. */
R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
m_plr_heap_address = this->GetThreadLocalRegionPointer(m_plr_address);
std::memset(m_plr_heap_address, 0, ams::svc::ThreadLocalRegionSize);
/* Copy in the name from parameters. */
static_assert(sizeof(params.name) < sizeof(m_name));
std::memcpy(m_name, params.name, sizeof(params.name));
m_name[sizeof(params.name)] = 0;
/* Set misc fields. */
m_state = State_Created;
m_main_thread_stack_size = 0;
m_creation_time = KHardwareTimer::GetTick();
m_used_kernel_memory_size = 0;
m_ideal_core_id = 0;
m_flags = params.flags;
m_version = params.version;
m_program_id = params.program_id;
m_code_address = params.code_address;
m_code_size = params.code_num_pages * PageSize;
m_is_application = (params.flags & ams::svc::CreateProcessFlag_IsApplication);
m_is_jit_debug = false;
/* Set thread fields. */
for (size_t i = 0; i < cpu::NumCores; i++) {
m_running_threads[i] = nullptr;
m_pinned_threads[i] = nullptr;
m_running_thread_idle_counts[i] = 0;
}
/* Set max memory based on address space type. */
switch ((params.flags & ams::svc::CreateProcessFlag_AddressSpaceMask)) {
case ams::svc::CreateProcessFlag_AddressSpace32Bit:
case ams::svc::CreateProcessFlag_AddressSpace64BitDeprecated:
case ams::svc::CreateProcessFlag_AddressSpace64Bit:
m_max_process_memory = m_page_table.GetHeapRegionSize();
break;
case ams::svc::CreateProcessFlag_AddressSpace32BitWithoutAlias:
m_max_process_memory = m_page_table.GetHeapRegionSize() + m_page_table.GetAliasRegionSize();
break;
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
/* Generate random entropy. */
KSystemControl::GenerateRandom(m_entropy, util::size(m_entropy));
/* Clear remaining fields. */
m_num_running_threads = 0;
m_num_process_switches = 0;
m_num_thread_switches = 0;
m_num_fpu_switches = 0;
m_num_supervisor_calls = 0;
m_num_ipc_messages = 0;
m_is_signaled = false;
m_attached_object = nullptr;
m_exception_thread = nullptr;
m_is_suspended = false;
m_memory_release_hint = 0;
m_schedule_count = 0;
m_is_handle_table_initialized = false;
/* We're initialized! */
m_is_initialized = true;
R_SUCCEED();
}
Result KProcess::Initialize(const ams::svc::CreateProcessParameter &params, const KPageGroup &pg, const u32 *caps, s32 num_caps, KResourceLimit *res_limit, KMemoryManager::Pool pool, bool immortal) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(res_limit != nullptr);
MESOSPHERE_ABORT_UNLESS((params.code_num_pages * PageSize) / PageSize == static_cast<size_t>(params.code_num_pages));
/* Set members. */
m_memory_pool = pool;
m_resource_limit = res_limit;
m_system_resource_address = Null<KVirtualAddress>;
m_system_resource_num_pages = 0;
m_is_immortal = immortal;
/* Setup page table. */
/* NOTE: Nintendo passes process ID despite not having set it yet. */
/* This goes completely unused, but even so... */
{
const auto as_type = static_cast<ams::svc::CreateProcessFlag>(params.flags & ams::svc::CreateProcessFlag_AddressSpaceMask);
const bool enable_aslr = (params.flags & ams::svc::CreateProcessFlag_EnableAslr) != 0;
const bool enable_das_merge = (params.flags & ams::svc::CreateProcessFlag_DisableDeviceAddressSpaceMerge) == 0;
const bool is_app = (params.flags & ams::svc::CreateProcessFlag_IsApplication) != 0;
auto *mem_block_manager = std::addressof(is_app ? Kernel::GetApplicationMemoryBlockManager() : Kernel::GetSystemMemoryBlockManager());
auto *block_info_manager = std::addressof(is_app ? Kernel::GetApplicationBlockInfoManager() : Kernel::GetSystemBlockInfoManager());
auto *pt_manager = std::addressof(is_app ? Kernel::GetApplicationPageTableManager() : Kernel::GetSystemPageTableManager());
R_TRY(m_page_table.Initialize(m_process_id, as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, params.code_address, params.code_num_pages * PageSize, mem_block_manager, block_info_manager, pt_manager, res_limit));
}
ON_RESULT_FAILURE { m_page_table.Finalize(); };
/* Ensure we can insert the code region. */
R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize, KMemoryState_Code), svc::ResultInvalidMemoryRegion());
/* Map the code region. */
R_TRY(m_page_table.MapPageGroup(params.code_address, pg, KMemoryState_Code, KMemoryPermission_KernelRead));
/* Initialize capabilities. */
R_TRY(m_capabilities.Initialize(caps, num_caps, std::addressof(m_page_table)));
/* Initialize the process id. */
m_process_id = g_initial_process_id++;
MESOSPHERE_ABORT_UNLESS(InitialProcessIdMin <= m_process_id);
MESOSPHERE_ABORT_UNLESS(m_process_id <= InitialProcessIdMax);
/* Initialize the rest of the process. */
R_TRY(this->Initialize(params));
/* Open a reference to the resource limit. */
m_resource_limit->Open();
/* We succeeded! */
R_SUCCEED();
}
Result KProcess::Initialize(const ams::svc::CreateProcessParameter &params, svc::KUserPointer<const u32 *> user_caps, s32 num_caps, KResourceLimit *res_limit, KMemoryManager::Pool pool) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(res_limit != nullptr);
/* Set pool and resource limit. */
m_memory_pool = pool;
m_resource_limit = res_limit;
m_is_immortal = false;
/* Get the memory sizes. */
const size_t code_num_pages = params.code_num_pages;
const size_t system_resource_num_pages = params.system_resource_num_pages;
const size_t code_size = code_num_pages * PageSize;
const size_t system_resource_size = system_resource_num_pages * PageSize;
/* Reserve memory for the system resource. */
KScopedResourceReservation memory_reservation(this, ams::svc::LimitableResource_PhysicalMemoryMax, code_size + KSystemControl::CalculateRequiredSecureMemorySize(system_resource_size, pool));
R_UNLESS(memory_reservation.Succeeded(), svc::ResultLimitReached());
/* Setup page table resource objects. */
KMemoryBlockSlabManager *mem_block_manager;
KBlockInfoManager *block_info_manager;
KPageTableManager *pt_manager;
m_system_resource_address = Null<KVirtualAddress>;
m_system_resource_num_pages = 0;
if (system_resource_num_pages != 0) {
/* Allocate secure memory. */
R_TRY(KSystemControl::AllocateSecureMemory(std::addressof(m_system_resource_address), system_resource_size, pool));
/* Set the number of system resource pages. */
MESOSPHERE_ASSERT(m_system_resource_address != Null<KVirtualAddress>);
m_system_resource_num_pages = system_resource_num_pages;
/* Initialize slab heaps. */
const size_t rc_size = util::AlignUp(KPageTableSlabHeap::CalculateReferenceCountSize(system_resource_size), PageSize);
m_dynamic_page_manager.Initialize(m_system_resource_address + rc_size, system_resource_size - rc_size);
m_page_table_heap.Initialize(std::addressof(m_dynamic_page_manager), 0, GetPointer<KPageTableManager::RefCount>(m_system_resource_address));
m_memory_block_heap.Initialize(std::addressof(m_dynamic_page_manager), 0);
m_block_info_heap.Initialize(std::addressof(m_dynamic_page_manager), 0);
/* Initialize managers. */
m_page_table_manager.Initialize(std::addressof(m_dynamic_page_manager), std::addressof(m_page_table_heap));
m_memory_block_slab_manager.Initialize(std::addressof(m_dynamic_page_manager), std::addressof(m_memory_block_heap));
m_block_info_manager.Initialize(std::addressof(m_dynamic_page_manager), std::addressof(m_block_info_heap));
mem_block_manager = std::addressof(m_memory_block_slab_manager);
block_info_manager = std::addressof(m_block_info_manager);
pt_manager = std::addressof(m_page_table_manager);
} else {
const bool is_app = (params.flags & ams::svc::CreateProcessFlag_IsApplication);
mem_block_manager = std::addressof(is_app ? Kernel::GetApplicationMemoryBlockManager() : Kernel::GetSystemMemoryBlockManager());
block_info_manager = std::addressof(is_app ? Kernel::GetApplicationBlockInfoManager() : Kernel::GetSystemBlockInfoManager());
pt_manager = std::addressof(is_app ? Kernel::GetApplicationPageTableManager() : Kernel::GetSystemPageTableManager());
}
/* Ensure we don't leak any secure memory we allocated. */
ON_RESULT_FAILURE {
if (m_system_resource_address != Null<KVirtualAddress>) {
/* Check that we have no outstanding allocations. */
MESOSPHERE_ABORT_UNLESS(m_memory_block_slab_manager.GetUsed() == 0);
MESOSPHERE_ABORT_UNLESS(m_block_info_manager.GetUsed() == 0);
MESOSPHERE_ABORT_UNLESS(m_page_table_manager.GetUsed() == 0);
/* Free the memory. */
KSystemControl::FreeSecureMemory(m_system_resource_address, system_resource_size, pool);
/* Clear our tracking variables. */
m_system_resource_address = Null<KVirtualAddress>;
m_system_resource_num_pages = 0;
}
};
/* Setup page table. */
/* NOTE: Nintendo passes process ID despite not having set it yet. */
/* This goes completely unused, but even so... */
{
const auto as_type = static_cast<ams::svc::CreateProcessFlag>(params.flags & ams::svc::CreateProcessFlag_AddressSpaceMask);
const bool enable_aslr = (params.flags & ams::svc::CreateProcessFlag_EnableAslr) != 0;
const bool enable_das_merge = (params.flags & ams::svc::CreateProcessFlag_DisableDeviceAddressSpaceMerge) == 0;
R_TRY(m_page_table.Initialize(m_process_id, as_type, enable_aslr, enable_das_merge, !enable_aslr, pool, params.code_address, code_size, mem_block_manager, block_info_manager, pt_manager, res_limit));
}
ON_RESULT_FAILURE_2 { m_page_table.Finalize(); };
/* Ensure we can insert the code region. */
R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState_Code), svc::ResultInvalidMemoryRegion());
/* Map the code region. */
R_TRY(m_page_table.MapPages(params.code_address, code_num_pages, KMemoryState_Code, static_cast<KMemoryPermission>(KMemoryPermission_KernelRead | KMemoryPermission_NotMapped)));
/* Initialize capabilities. */
R_TRY(m_capabilities.Initialize(user_caps, num_caps, std::addressof(m_page_table)));
/* Initialize the process id. */
m_process_id = g_process_id++;
MESOSPHERE_ABORT_UNLESS(ProcessIdMin <= m_process_id);
MESOSPHERE_ABORT_UNLESS(m_process_id <= ProcessIdMax);
/* If we should optimize memory allocations, do so. */
if (m_system_resource_address != Null<KVirtualAddress> && (params.flags & ams::svc::CreateProcessFlag_OptimizeMemoryAllocation) != 0) {
R_TRY(Kernel::GetMemoryManager().InitializeOptimizedMemory(m_process_id, pool));
}
/* Initialize the rest of the process. */
R_TRY(this->Initialize(params));
/* Open a reference to the resource limit. */
m_resource_limit->Open();
/* We succeeded, so commit our memory reservation. */
memory_reservation.Commit();
R_SUCCEED();
}
void KProcess::DoWorkerTaskImpl() {
/* Terminate child threads. */
TerminateChildren(this, nullptr);
/* Finalize the handle table, if we're not immortal. */
if (!m_is_immortal && m_is_handle_table_initialized) {
this->FinalizeHandleTable();
}
/* Call the debug callback. */
KDebug::OnExitProcess(this);
/* Finish termination. */
this->FinishTermination();
}
Result KProcess::StartTermination() {
/* Finalize the handle table when we're done, if the process isn't immortal. */
ON_SCOPE_EXIT {
if (!m_is_immortal) {
this->FinalizeHandleTable();
}
};
/* Terminate child threads other than the current one. */
R_RETURN(TerminateChildren(this, GetCurrentThreadPointer()));
}
void KProcess::FinishTermination() {
/* Only allow termination to occur if the process isn't immortal. */
if (!m_is_immortal) {
/* Release resource limit hint. */
if (m_resource_limit != nullptr) {
m_memory_release_hint = this->GetUsedUserPhysicalMemorySize();
m_resource_limit->Release(ams::svc::LimitableResource_PhysicalMemoryMax, 0, m_memory_release_hint);
}
/* Change state. */
{
KScopedSchedulerLock sl;
this->ChangeState(State_Terminated);
}
/* Close. */
this->Close();
}
}
void KProcess::Exit() {
MESOSPHERE_ASSERT_THIS();
/* Determine whether we need to start terminating */
bool needs_terminate = false;
{
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(m_state != State_Created);
MESOSPHERE_ASSERT(m_state != State_CreatedAttached);
MESOSPHERE_ASSERT(m_state != State_Crashed);
MESOSPHERE_ASSERT(m_state != State_Terminated);
if (m_state == State_Running || m_state == State_RunningAttached || m_state == State_DebugBreak) {
this->ChangeState(State_Terminating);
needs_terminate = true;
}
}
/* If we need to start termination, do so. */
if (needs_terminate) {
this->StartTermination();
/* Note for debug that we're exiting the process. */
MESOSPHERE_LOG("KProcess::Exit() pid=%ld name=%-12s\n", m_process_id, m_name);
/* Register the process as a work task. */
KWorkerTaskManager::AddTask(KWorkerTaskManager::WorkerType_Exit, this);
}
/* Exit the current thread. */
GetCurrentThread().Exit();
MESOSPHERE_PANIC("Thread survived call to exit");
}
Result KProcess::Terminate() {
MESOSPHERE_ASSERT_THIS();
/* Determine whether we need to start terminating */
bool needs_terminate = false;
{
KScopedLightLock lk(m_state_lock);
/* Check whether we're allowed to terminate. */
R_UNLESS(m_state != State_Created, svc::ResultInvalidState());
R_UNLESS(m_state != State_CreatedAttached, svc::ResultInvalidState());
KScopedSchedulerLock sl;
if (m_state == State_Running || m_state == State_RunningAttached || m_state == State_Crashed || m_state == State_DebugBreak) {
this->ChangeState(State_Terminating);
needs_terminate = true;
}
}
/* If we need to terminate, do so. */
if (needs_terminate) {
/* Start termination. */
if (R_SUCCEEDED(this->StartTermination())) {
/* Note for debug that we're terminating the process. */
MESOSPHERE_LOG("KProcess::Terminate() OK pid=%ld name=%-12s\n", m_process_id, m_name);
/* Call the debug callback. */
KDebug::OnTerminateProcess(this);
/* Finish termination. */
this->FinishTermination();
} else {
/* Note for debug that we're terminating the process. */
MESOSPHERE_LOG("KProcess::Terminate() FAIL pid=%ld name=%-12s\n", m_process_id, m_name);
/* Register the process as a work task. */
KWorkerTaskManager::AddTask(KWorkerTaskManager::WorkerType_Exit, this);
}
}
R_SUCCEED();
}
Result KProcess::AddSharedMemory(KSharedMemory *shmem, KProcessAddress address, size_t size) {
/* Lock ourselves, to prevent concurrent access. */
KScopedLightLock lk(m_state_lock);
/* Address and size parameters aren't used. */
MESOSPHERE_UNUSED(address, size);
/* Try to find an existing info for the memory. */
KSharedMemoryInfo *info = nullptr;
for (auto it = m_shared_memory_list.begin(); it != m_shared_memory_list.end(); ++it) {
if (it->GetSharedMemory() == shmem) {
info = std::addressof(*it);
break;
}
}
/* If we didn't find an info, create one. */
if (info == nullptr) {
/* Allocate a new info. */
info = KSharedMemoryInfo::Allocate();
R_UNLESS(info != nullptr, svc::ResultOutOfResource());
/* Initialize the info and add it to our list. */
info->Initialize(shmem);
m_shared_memory_list.push_back(*info);
}
/* Open a reference to the shared memory and its info. */
shmem->Open();
info->Open();
R_SUCCEED();
}
void KProcess::RemoveSharedMemory(KSharedMemory *shmem, KProcessAddress address, size_t size) {
/* Lock ourselves, to prevent concurrent access. */
KScopedLightLock lk(m_state_lock);
/* Address and size parameters aren't used. */
MESOSPHERE_UNUSED(address, size);
/* Find an existing info for the memory. */
KSharedMemoryInfo *info = nullptr;
auto it = m_shared_memory_list.begin();
for (/* ... */; it != m_shared_memory_list.end(); ++it) {
if (it->GetSharedMemory() == shmem) {
info = std::addressof(*it);
break;
}
}
MESOSPHERE_ABORT_UNLESS(info != nullptr);
/* Close a reference to the info and its memory. */
if (info->Close()) {
m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(info);
}
shmem->Close();
}
void KProcess::AddIoRegion(KIoRegion *io_region) {
/* Lock ourselves, to prevent concurrent access. */
KScopedLightLock lk(m_state_lock);
/* Open a reference to the region. */
io_region->Open();
/* Add the region to our list. */
m_io_region_list.push_back(*io_region);
}
void KProcess::RemoveIoRegion(KIoRegion *io_region) {
/* Remove the region from our list. */
{
/* Lock ourselves, to prevent concurrent access. */
KScopedLightLock lk(m_state_lock);
/* Remove the region from our list. */
m_io_region_list.erase(m_io_region_list.iterator_to(*io_region));
}
/* Close our reference to the io region. */
io_region->Close();
}
Result KProcess::CreateThreadLocalRegion(KProcessAddress *out) {
KThreadLocalPage *tlp = nullptr;
KProcessAddress tlr = Null<KProcessAddress>;
/* See if we can get a region from a partially used TLP. */
{
KScopedSchedulerLock sl;
if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
tlr = it->Reserve();
MESOSPHERE_ABORT_UNLESS(tlr != Null<KProcessAddress>);
if (it->IsAllUsed()) {
tlp = std::addressof(*it);
m_partially_used_tlp_tree.erase(it);
m_fully_used_tlp_tree.insert(*tlp);
}
*out = tlr;
R_SUCCEED();
}
}
/* Allocate a new page. */
tlp = KThreadLocalPage::Allocate();
R_UNLESS(tlp != nullptr, svc::ResultOutOfMemory());
ON_RESULT_FAILURE { KThreadLocalPage::Free(tlp); };
/* Initialize the new page. */
R_TRY(tlp->Initialize(this));
/* Reserve a TLR. */
tlr = tlp->Reserve();
MESOSPHERE_ABORT_UNLESS(tlr != Null<KProcessAddress>);
/* Insert into our tree. */
{
KScopedSchedulerLock sl;
if (tlp->IsAllUsed()) {
m_fully_used_tlp_tree.insert(*tlp);
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
}
/* We succeeded! */
*out = tlr;
R_SUCCEED();
}
Result KProcess::DeleteThreadLocalRegion(KProcessAddress addr) {
KThreadLocalPage *page_to_free = nullptr;
/* Release the region. */
{
KScopedSchedulerLock sl;
/* Try to find the page in the partially used list. */
auto it = m_partially_used_tlp_tree.find_key(util::AlignDown(GetInteger(addr), PageSize));
if (it == m_partially_used_tlp_tree.end()) {
/* If we don't find it, it has to be in the fully used list. */
it = m_fully_used_tlp_tree.find_key(util::AlignDown(GetInteger(addr), PageSize));
R_UNLESS(it != m_fully_used_tlp_tree.end(), svc::ResultInvalidAddress());
/* Release the region. */
it->Release(addr);
/* Move the page out of the fully used list. */
KThreadLocalPage *tlp = std::addressof(*it);
m_fully_used_tlp_tree.erase(it);
if (tlp->IsAllFree()) {
page_to_free = tlp;
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
} else {
/* Release the region. */
it->Release(addr);
/* Handle the all-free case. */
KThreadLocalPage *tlp = std::addressof(*it);
if (tlp->IsAllFree()) {
m_partially_used_tlp_tree.erase(it);
page_to_free = tlp;
}
}
}
/* If we should free the page it was in, do so. */
if (page_to_free != nullptr) {
page_to_free->Finalize();
KThreadLocalPage::Free(page_to_free);
}
R_SUCCEED();
}
void *KProcess::GetThreadLocalRegionPointer(KProcessAddress addr) {
KThreadLocalPage *tlp = nullptr;
{
KScopedSchedulerLock sl;
if (auto it = m_partially_used_tlp_tree.find_key(util::AlignDown(GetInteger(addr), PageSize)); it != m_partially_used_tlp_tree.end()) {
tlp = std::addressof(*it);
} else if (auto it = m_fully_used_tlp_tree.find_key(util::AlignDown(GetInteger(addr), PageSize)); it != m_fully_used_tlp_tree.end()) {
tlp = std::addressof(*it);
} else {
return nullptr;
}
}
return static_cast<u8 *>(tlp->GetPointer()) + (GetInteger(addr) & (PageSize - 1));
}
bool KProcess::ReserveResource(ams::svc::LimitableResource which, s64 value) {
if (KResourceLimit *rl = this->GetResourceLimit(); rl != nullptr) {
return rl->Reserve(which, value);
} else {
return true;
}
}
bool KProcess::ReserveResource(ams::svc::LimitableResource which, s64 value, s64 timeout) {
if (KResourceLimit *rl = this->GetResourceLimit(); rl != nullptr) {
return rl->Reserve(which, value, timeout);
} else {
return true;
}
}
void KProcess::ReleaseResource(ams::svc::LimitableResource which, s64 value) {
if (KResourceLimit *rl = this->GetResourceLimit(); rl != nullptr) {
rl->Release(which, value);
}
}
void KProcess::ReleaseResource(ams::svc::LimitableResource which, s64 value, s64 hint) {
if (KResourceLimit *rl = this->GetResourceLimit(); rl != nullptr) {
rl->Release(which, value, hint);
}
}
void KProcess::IncrementRunningThreadCount() {
MESOSPHERE_ASSERT(m_num_running_threads.Load() >= 0);
++m_num_running_threads;
}
void KProcess::DecrementRunningThreadCount() {
MESOSPHERE_ASSERT(m_num_running_threads.Load() > 0);
if (const auto prev = m_num_running_threads--; prev == 1) {
this->Terminate();
}
}
bool KProcess::EnterUserException() {
/* Get the current thread. */
KThread *cur_thread = GetCurrentThreadPointer();
MESOSPHERE_ASSERT(this == cur_thread->GetOwnerProcess());
/* Check that we haven't already claimed the exception thread. */
if (m_exception_thread == cur_thread) {
return false;
}
/* Create the wait queue we'll be using. */
ThreadQueueImplForKProcessEnterUserException wait_queue(std::addressof(m_exception_thread));
/* Claim the exception thread. */
{
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Check that we're not terminating. */
if (cur_thread->IsTerminationRequested()) {
return false;
}
/* If we don't have an exception thread, we can just claim it directly. */
if (m_exception_thread == nullptr) {
m_exception_thread = cur_thread;
KScheduler::SetSchedulerUpdateNeeded();
return true;
}
/* Otherwise, we need to wait until we don't have an exception thread. */
/* Add the current thread as a waiter on the current exception thread. */
cur_thread->SetAddressKey(reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
m_exception_thread->AddWaiter(cur_thread);
/* Wait to claim the exception thread. */
cur_thread->BeginWait(std::addressof(wait_queue));
}
/* If our wait didn't end due to thread termination, we succeeded. */
return !svc::ResultTerminationRequested::Includes(cur_thread->GetWaitResult());
}
bool KProcess::LeaveUserException() {
return this->ReleaseUserException(GetCurrentThreadPointer());
}
bool KProcess::ReleaseUserException(KThread *thread) {
KScopedSchedulerLock sl;
if (m_exception_thread == thread) {
m_exception_thread = nullptr;
/* Remove waiter thread. */
s32 num_waiters;
if (KThread *next = thread->RemoveWaiterByKey(std::addressof(num_waiters), reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1); next != nullptr) {
next->EndWait(ResultSuccess());
}
KScheduler::SetSchedulerUpdateNeeded();
return true;
} else {
return false;
}
}
void KProcess::RegisterThread(KThread *thread) {
KScopedLightLock lk(m_list_lock);
m_thread_list.push_back(*thread);
}
void KProcess::UnregisterThread(KThread *thread) {
KScopedLightLock lk(m_list_lock);
m_thread_list.erase(m_thread_list.iterator_to(*thread));
}
size_t KProcess::GetUsedUserPhysicalMemorySize() const {
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
const size_t sec_size = KSystemControl::CalculateRequiredSecureMemorySize(m_system_resource_num_pages * PageSize, m_memory_pool);
return norm_size + other_size + sec_size;
}
size_t KProcess::GetTotalUserPhysicalMemorySize() const {
/* Get the amount of free and used size. */
const size_t free_size = m_resource_limit->GetFreeValue(ams::svc::LimitableResource_PhysicalMemoryMax);
const size_t used_size = this->GetUsedUserPhysicalMemorySize();
const size_t max_size = m_max_process_memory;
if (used_size + free_size > max_size) {
return max_size;
} else {
return free_size + used_size;
}
}
size_t KProcess::GetUsedNonSystemUserPhysicalMemorySize() const {
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
return norm_size + other_size;
}
size_t KProcess::GetTotalNonSystemUserPhysicalMemorySize() const {
/* Get the amount of free and used size. */
const size_t free_size = m_resource_limit->GetFreeValue(ams::svc::LimitableResource_PhysicalMemoryMax);
const size_t used_size = this->GetUsedUserPhysicalMemorySize();
const size_t sec_size = KSystemControl::CalculateRequiredSecureMemorySize(m_system_resource_num_pages * PageSize, m_memory_pool);
const size_t max_size = m_max_process_memory;
if (used_size + free_size > max_size) {
return max_size - sec_size;
} else {
return free_size + used_size - sec_size;
}
}
Result KProcess::Run(s32 priority, size_t stack_size) {
MESOSPHERE_ASSERT_THIS();
/* Lock ourselves, to prevent concurrent access. */
KScopedLightLock lk(m_state_lock);
/* Validate that we're in a state where we can initialize. */
const auto state = m_state;
R_UNLESS(state == State_Created || state == State_CreatedAttached, svc::ResultInvalidState());
/* Place a tentative reservation of a thread for this process. */
KScopedResourceReservation thread_reservation(this, ams::svc::LimitableResource_ThreadCountMax);
R_UNLESS(thread_reservation.Succeeded(), svc::ResultLimitReached());
/* Ensure that we haven't already allocated stack. */
MESOSPHERE_ABORT_UNLESS(m_main_thread_stack_size == 0);
/* Ensure that we're allocating a valid stack. */
stack_size = util::AlignUp(stack_size, PageSize);
R_UNLESS(stack_size + m_code_size <= m_max_process_memory, svc::ResultOutOfMemory());
R_UNLESS(stack_size + m_code_size >= m_code_size, svc::ResultOutOfMemory());
/* Place a tentative reservation of memory for our new stack. */
KScopedResourceReservation mem_reservation(this, ams::svc::LimitableResource_PhysicalMemoryMax, stack_size);
R_UNLESS(mem_reservation.Succeeded(), svc::ResultLimitReached());
/* Allocate and map our stack. */
KProcessAddress stack_top = Null<KProcessAddress>;
if (stack_size) {
KProcessAddress stack_bottom;
R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize, KMemoryState_Stack, KMemoryPermission_UserReadWrite));
stack_top = stack_bottom + stack_size;
m_main_thread_stack_size = stack_size;
}
/* Ensure our stack is safe to clean up on exit. */
ON_RESULT_FAILURE {
if (m_main_thread_stack_size) {
MESOSPHERE_R_ABORT_UNLESS(m_page_table.UnmapPages(stack_top - m_main_thread_stack_size, m_main_thread_stack_size / PageSize, KMemoryState_Stack));
m_main_thread_stack_size = 0;
}
};
/* Set our maximum heap size. */
R_TRY(m_page_table.SetMaxHeapSize(m_max_process_memory - (m_main_thread_stack_size + m_code_size)));
/* Initialize our handle table. */
R_TRY(this->InitializeHandleTable(m_capabilities.GetHandleTableSize()));
ON_RESULT_FAILURE_2 { this->FinalizeHandleTable(); };
/* Create a new thread for the process. */
KThread *main_thread = KThread::Create();
R_UNLESS(main_thread != nullptr, svc::ResultOutOfResource());
ON_SCOPE_EXIT { main_thread->Close(); };
/* Initialize the thread. */
R_TRY(KThread::InitializeUserThread(main_thread, reinterpret_cast<KThreadFunction>(GetVoidPointer(this->GetEntryPoint())), 0, stack_top, priority, m_ideal_core_id, this));
/* Register the thread, and commit our reservation. */
KThread::Register(main_thread);
thread_reservation.Commit();
/* Add the thread to our handle table. */
ams::svc::Handle thread_handle;
R_TRY(m_handle_table.Add(std::addressof(thread_handle), main_thread));
/* Set the thread arguments. */
main_thread->GetContext().SetArguments(0, thread_handle);
/* Update our state. */
this->ChangeState((state == State_Created) ? State_Running : State_RunningAttached);
ON_RESULT_FAILURE_2 { this->ChangeState(state); };
/* Run our thread. */
R_TRY(main_thread->Run());
/* Open a reference to represent that we're running. */
this->Open();
/* We succeeded! Commit our memory reservation. */
mem_reservation.Commit();
/* Note for debug that we're running a new process. */
MESOSPHERE_LOG("KProcess::Run() pid=%ld name=%-12s thread=%ld affinity=0x%lx ideal_core=%d active_core=%d\n", m_process_id, m_name, main_thread->GetId(), main_thread->GetVirtualAffinityMask(), main_thread->GetIdealVirtualCore(), main_thread->GetActiveCore());
R_SUCCEED();
}
Result KProcess::Reset() {
MESOSPHERE_ASSERT_THIS();
/* Lock the process and the scheduler. */
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl;
/* Validate that we're in a state that we can reset. */
R_UNLESS(m_state != State_Terminated, svc::ResultInvalidState());
R_UNLESS(m_is_signaled, svc::ResultInvalidState());
/* Clear signaled. */
m_is_signaled = false;
R_SUCCEED();
}
Result KProcess::SetActivity(ams::svc::ProcessActivity activity) {
/* Lock ourselves and the scheduler. */
KScopedLightLock lk(m_state_lock);
KScopedLightLock list_lk(m_list_lock);
KScopedSchedulerLock sl;
/* Validate our state. */
R_UNLESS(m_state != State_Terminating, svc::ResultInvalidState());
R_UNLESS(m_state != State_Terminated, svc::ResultInvalidState());
/* Either pause or resume. */
if (activity == ams::svc::ProcessActivity_Paused) {
/* Verify that we're not suspended. */
R_UNLESS(!m_is_suspended, svc::ResultInvalidState());
/* Suspend all threads. */
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
it->RequestSuspend(KThread::SuspendType_Process);
}
/* Set ourselves as suspended. */
this->SetSuspended(true);
} else {
MESOSPHERE_ASSERT(activity == ams::svc::ProcessActivity_Runnable);
/* Verify that we're suspended. */
R_UNLESS(m_is_suspended, svc::ResultInvalidState());
/* Resume all threads. */
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
it->Resume(KThread::SuspendType_Process);
}
/* Set ourselves as resumed. */
this->SetSuspended(false);
}
R_SUCCEED();
}
void KProcess::PinCurrentThread() {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Get the current thread. */
const s32 core_id = GetCurrentCoreId();
KThread *cur_thread = GetCurrentThreadPointer();
/* If the thread isn't terminated, pin it. */
if (!cur_thread->IsTerminationRequested()) {
/* Pin it. */
this->PinThread(core_id, cur_thread);
cur_thread->Pin();
/* An update is needed. */
KScheduler::SetSchedulerUpdateNeeded();
}
}
void KProcess::UnpinCurrentThread() {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Get the current thread. */
const s32 core_id = GetCurrentCoreId();
KThread *cur_thread = GetCurrentThreadPointer();
/* Unpin it. */
cur_thread->Unpin();
this->UnpinThread(core_id, cur_thread);
/* An update is needed. */
KScheduler::SetSchedulerUpdateNeeded();
}
void KProcess::UnpinThread(KThread *thread) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Get the thread's core id. */
const auto core_id = thread->GetActiveCore();
/* Unpin it. */
this->UnpinThread(core_id, thread);
thread->Unpin();
/* An update is needed. */
KScheduler::SetSchedulerUpdateNeeded();
}
Result KProcess::GetThreadList(s32 *out_num_threads, ams::kern::svc::KUserPointer<u64 *> out_thread_ids, s32 max_out_count) {
/* Lock the list. */
KScopedLightLock lk(m_list_lock);
/* Iterate over the list. */
s32 count = 0;
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
/* If we're within array bounds, write the id. */
if (count < max_out_count) {
/* Get the thread id. */
KThread *thread = std::addressof(*it);
const u64 id = thread->GetId();
/* Copy the id to userland. */
R_TRY(out_thread_ids.CopyArrayElementFrom(std::addressof(id), count));
}
/* Increment the count. */
++count;
}
/* We successfully iterated the list. */
*out_num_threads = count;
R_SUCCEED();
}
KProcess::State KProcess::SetDebugObject(void *debug_object) {
/* Attaching should only happen to non-null objects while the scheduler is locked. */
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(debug_object != nullptr);
/* Cache our state to return it to the debug object. */
const auto old_state = m_state;
/* Set the object. */
m_attached_object = debug_object;
/* Check that our state is valid for attach. */
MESOSPHERE_ASSERT(m_state == State_Created || m_state == State_Running || m_state == State_Crashed);
/* Update our state. */
if (m_state != State_DebugBreak) {
if (m_state == State_Created) {
this->ChangeState(State_CreatedAttached);
} else {
this->ChangeState(State_DebugBreak);
}
}
return old_state;
}
void KProcess::ClearDebugObject(KProcess::State old_state) {
/* Detaching from process should only happen while the scheduler is locked. */
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Clear the attached object. */
m_attached_object = nullptr;
/* Validate that the process is in an attached state. */
MESOSPHERE_ASSERT(m_state == State_CreatedAttached || m_state == State_RunningAttached || m_state == State_DebugBreak || m_state == State_Terminating || m_state == State_Terminated);
/* Change the state appropriately. */
if (m_state == State_CreatedAttached) {
this->ChangeState(State_Created);
} else if (m_state == State_RunningAttached || m_state == State_DebugBreak) {
/* Disallow transition back to created from running. */
if (old_state == State_Created) {
old_state = State_Running;
}
this->ChangeState(old_state);
}
}
bool KProcess::EnterJitDebug(ams::svc::DebugEvent event, ams::svc::DebugException exception, uintptr_t param1, uintptr_t param2, uintptr_t param3, uintptr_t param4) {
/* Check that we're the current process. */
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this == GetCurrentProcessPointer());
/* If we aren't allowed to enter jit debug, don't. */
if ((m_flags & ams::svc::CreateProcessFlag_EnableDebug) == 0) {
return false;
}
/* We're the current process, so we should be some kind of running. */
MESOSPHERE_ASSERT(m_state != State_Created);
MESOSPHERE_ASSERT(m_state != State_CreatedAttached);
MESOSPHERE_ASSERT(m_state != State_Terminated);
/* Try to enter JIT debug. */
while (true) {
/* Lock ourselves and the scheduler. */
KScopedLightLock lk(m_state_lock);
KScopedLightLock list_lk(m_list_lock);
KScopedSchedulerLock sl;
/* If we're attached to a debugger, we're necessarily in debug. */
if (this->IsAttachedToDebugger()) {
return true;
}
/* If the current thread is terminating, we can't enter debug. */
if (GetCurrentThread().IsTerminationRequested()) {
return false;
}
/* We're not attached to debugger, so check that. */
MESOSPHERE_ASSERT(m_state != State_RunningAttached);
MESOSPHERE_ASSERT(m_state != State_DebugBreak);
/* If we're terminating, we can't enter debug. */
if (m_state != State_Running && m_state != State_Crashed) {
MESOSPHERE_ASSERT(m_state == State_Terminating);
return false;
}
/* If the current thread is suspended, retry. */
if (GetCurrentThread().IsSuspended()) {
continue;
}
/* Suspend all our threads. */
{
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
it->RequestSuspend(KThread::SuspendType_Debug);
}
}
/* Change our state to crashed. */
this->ChangeState(State_Crashed);
/* Enter jit debug. */
m_is_jit_debug = true;
m_jit_debug_event_type = event;
m_jit_debug_exception_type = exception;
m_jit_debug_params[0] = param1;
m_jit_debug_params[1] = param2;
m_jit_debug_params[2] = param3;
m_jit_debug_params[3] = param4;
m_jit_debug_thread_id = GetCurrentThread().GetId();
/* Exit our retry loop. */
break;
}
/* Check if our state indicates we're in jit debug. */
{
KScopedSchedulerLock sl;
if (m_state == State_Running || m_state == State_RunningAttached || m_state == State_Crashed || m_state == State_DebugBreak) {
return true;
}
}
return false;
}
KEventInfo *KProcess::GetJitDebugInfo() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
if (m_is_jit_debug) {
return KDebugBase::CreateDebugEvent(m_jit_debug_event_type, m_jit_debug_exception_type, m_jit_debug_params[0], m_jit_debug_params[1], m_jit_debug_params[2], m_jit_debug_params[3], m_jit_debug_thread_id);
} else {
return nullptr;
}
}
void KProcess::ClearJitDebugInfo() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
m_is_jit_debug = false;
}
KProcess *KProcess::GetProcessFromId(u64 process_id) {
/* Lock the list. */
KProcess::ListAccessor accessor;
const auto end = accessor.end();
/* Iterate over the list. */
for (auto it = accessor.begin(); it != end; ++it) {
/* Get the process. */
KProcess *process = static_cast<KProcess *>(std::addressof(*it));
if (process->GetId() == process_id) {
if (AMS_LIKELY(process->Open())) {
return process;
}
}
}
/* We failed to find the process. */
return nullptr;
}
Result KProcess::GetProcessList(s32 *out_num_processes, ams::kern::svc::KUserPointer<u64 *> out_process_ids, s32 max_out_count) {
/* Lock the list. */
KProcess::ListAccessor accessor;
const auto end = accessor.end();
/* Iterate over the list. */
s32 count = 0;
for (auto it = accessor.begin(); it != end; ++it) {
/* If we're within array bounds, write the id. */
if (count < max_out_count) {
/* Get the process id. */
KProcess *process = static_cast<KProcess *>(std::addressof(*it));
const u64 id = process->GetId();
/* Copy the id to userland. */
R_TRY(out_process_ids.CopyArrayElementFrom(std::addressof(id), count));
}
/* Increment the count. */
++count;
}
/* We successfully iterated the list. */
*out_num_processes = count;
R_SUCCEED();
}
}