1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-12 13:32:05 +00:00
Atmosphere/stratosphere/spl/source/spl_api_impl.cpp
SciresM 9fde97cfdd
sf: Change interface definition methodology (#1074)
* sf: Begin experimenting with new interface declaration format

* sf: convert fs interfaces to new format

* sf: finish conversion of libstrat to new definitions

* sf: convert loader to new format

* sf: convert spl to new format

* sf: update ncm for new format

* sf: convert pm to new format

* sf: convert ro/sm to new format

* sf: update fatal for new format

* sf: support building dmnt under new scheme

* sf: update ams.mitm for new format

* sf: correct invocation def for pointer holder

* fs: correct 10.x+ user bindings for Get*SpaceSize
2020-07-07 17:07:23 -07:00

941 lines
40 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "spl_api_impl.hpp"
#include "spl_ctr_drbg.hpp"
#include "spl_key_slot_cache.hpp"
namespace ams::spl::impl {
namespace {
/* Convenient defines. */
constexpr size_t DeviceAddressSpaceAlign = 0x400000;
constexpr u32 WorkBufferMapBase = 0x80000000u;
constexpr u32 ComputeAesInMapBase = 0x90000000u;
constexpr u32 ComputeAesOutMapBase = 0xC0000000u;
constexpr size_t ComputeAesSizeMax = static_cast<size_t>(ComputeAesOutMapBase - ComputeAesInMapBase);
constexpr size_t RsaPrivateKeySize = 0x100;
constexpr size_t DeviceUniqueDataMetaSize = 0x30;
constexpr size_t LabelDigestSizeMax = 0x20;
constexpr size_t WorkBufferSizeMax = 0x800;
constexpr s32 MaxPhysicalAesKeySlots = 6;
constexpr s32 MaxPhysicalAesKeySlotsDeprecated = 4;
constexpr s32 MaxVirtualAesKeySlots = 9;
/* KeySlot management. */
KeySlotCache g_keyslot_cache;
std::optional<KeySlotCacheEntry> g_keyslot_cache_entry[MaxPhysicalAesKeySlots];
inline s32 GetMaxPhysicalKeySlots() {
return (hos::GetVersion() >= hos::Version_6_0_0) ? MaxPhysicalAesKeySlots : MaxPhysicalAesKeySlotsDeprecated;
}
constexpr s32 VirtualKeySlotMin = 16;
constexpr s32 VirtualKeySlotMax = VirtualKeySlotMin + MaxVirtualAesKeySlots - 1;
constexpr inline bool IsVirtualKeySlot(s32 keyslot) {
return VirtualKeySlotMin <= keyslot && keyslot <= VirtualKeySlotMax;
}
inline bool IsPhysicalKeySlot(s32 keyslot) {
return keyslot < GetMaxPhysicalKeySlots();
}
constexpr inline s32 GetVirtualKeySlotIndex(s32 keyslot) {
AMS_ASSERT(IsVirtualKeySlot(keyslot));
return keyslot - VirtualKeySlotMin;
}
constexpr inline s32 MakeVirtualKeySlot(s32 index) {
const s32 virt_slot = index + VirtualKeySlotMin;
AMS_ASSERT(IsVirtualKeySlot(virt_slot));
return virt_slot;
}
void InitializeKeySlotCache() {
for (s32 i = 0; i < MaxPhysicalAesKeySlots; i++) {
g_keyslot_cache_entry[i].emplace(i);
g_keyslot_cache.AddEntry(std::addressof(g_keyslot_cache_entry[i].value()));
}
}
enum class KeySlotContentType {
None = 0,
AesKey = 1,
PreparedKey = 2,
};
struct KeySlotContents {
KeySlotContentType type;
union {
struct {
AccessKey access_key;
KeySource key_source;
} aes_key;
struct {
AccessKey access_key;
} prepared_key;
};
};
const void *g_keyslot_owners[MaxVirtualAesKeySlots];
KeySlotContents g_keyslot_contents[MaxVirtualAesKeySlots];
KeySlotContents g_physical_keyslot_contents_for_backwards_compatibility[MaxPhysicalAesKeySlots];
void ClearPhysicalKeySlot(s32 keyslot) {
AMS_ASSERT(IsPhysicalKeySlot(keyslot));
AccessKey access_key = {};
KeySource key_source = {};
smc::LoadAesKey(keyslot, access_key, key_source);
}
s32 GetPhysicalKeySlot(s32 keyslot, bool load) {
s32 phys_slot = -1;
KeySlotContents *contents = nullptr;
if (hos::GetVersion() == hos::Version_1_0_0 && IsPhysicalKeySlot(keyslot)) {
/* On 1.0.0, we allow the use of physical keyslots. */
phys_slot = keyslot;
contents = std::addressof(g_physical_keyslot_contents_for_backwards_compatibility[phys_slot]);
/* If the physical slot is already loaded, we're good. */
if (g_keyslot_cache.FindPhysical(phys_slot)) {
return phys_slot;
}
} else {
/* This should be a virtual keyslot. */
AMS_ASSERT(IsVirtualKeySlot(keyslot));
/* Try to find a physical slot in the cache. */
if (g_keyslot_cache.Find(std::addressof(phys_slot), keyslot)) {
return phys_slot;
}
/* Allocate a physical slot. */
phys_slot = g_keyslot_cache.Allocate(keyslot);
contents = std::addressof(g_keyslot_contents[GetVirtualKeySlotIndex(keyslot)]);
}
/* Ensure the contents of the keyslot. */
if (load) {
switch (contents->type) {
case KeySlotContentType::None:
ClearPhysicalKeySlot(phys_slot);
break;
case KeySlotContentType::AesKey:
R_ABORT_UNLESS(smc::ConvertResult(smc::LoadAesKey(phys_slot, contents->aes_key.access_key, contents->aes_key.key_source)));
break;
case KeySlotContentType::PreparedKey:
R_ABORT_UNLESS(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, contents->prepared_key.access_key)));
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
return phys_slot;
}
Result LoadVirtualAesKey(s32 keyslot, const AccessKey &access_key, const KeySource &key_source) {
/* Ensure we can load into the slot. */
const s32 phys_slot = GetPhysicalKeySlot(keyslot, false);
R_TRY(smc::ConvertResult(smc::LoadAesKey(phys_slot, access_key, key_source)));
/* Update our contents. */
const s32 index = GetVirtualKeySlotIndex(keyslot);
g_keyslot_contents[index].type = KeySlotContentType::AesKey;
g_keyslot_contents[index].aes_key.access_key = access_key;
g_keyslot_contents[index].aes_key.key_source = key_source;
return ResultSuccess();
}
Result LoadVirtualPreparedAesKey(s32 keyslot, const AccessKey &access_key) {
/* Ensure we can load into the slot. */
const s32 phys_slot = GetPhysicalKeySlot(keyslot, false);
R_TRY(smc::ConvertResult(smc::LoadPreparedAesKey(phys_slot, access_key)));
/* Update our contents. */
const s32 index = GetVirtualKeySlotIndex(keyslot);
g_keyslot_contents[index].type = KeySlotContentType::PreparedKey;
g_keyslot_contents[index].prepared_key.access_key = access_key;
return ResultSuccess();
}
/* Type definitions. */
class ScopedAesKeySlot {
private:
s32 slot;
bool has_slot;
public:
ScopedAesKeySlot() : slot(-1), has_slot(false) {
/* ... */
}
~ScopedAesKeySlot() {
if (this->has_slot) {
DeallocateAesKeySlot(slot, this);
}
}
u32 GetKeySlot() const {
return this->slot;
}
Result Allocate() {
R_TRY(AllocateAesKeySlot(&this->slot, this));
this->has_slot = true;
return ResultSuccess();
}
};
struct SeLinkedListEntry {
u32 num_entries;
u32 address;
u32 size;
};
struct SeCryptContext {
SeLinkedListEntry in;
SeLinkedListEntry out;
};
class DeviceAddressSpaceMapHelper {
private:
Handle das_hnd;
u64 dst_addr;
u64 src_addr;
size_t size;
u32 perm;
public:
DeviceAddressSpaceMapHelper(Handle h, u64 dst, u64 src, size_t sz, u32 p) : das_hnd(h), dst_addr(dst), src_addr(src), size(sz), perm(p) {
R_ABORT_UNLESS(svcMapDeviceAddressSpaceAligned(this->das_hnd, dd::GetCurrentProcessHandle(), this->src_addr, this->size, this->dst_addr, this->perm));
}
~DeviceAddressSpaceMapHelper() {
R_ABORT_UNLESS(svcUnmapDeviceAddressSpace(this->das_hnd, dd::GetCurrentProcessHandle(), this->src_addr, this->size, this->dst_addr));
}
};
/* Global variables. */
CtrDrbg g_drbg;
os::InterruptEventType g_se_event;
os::SystemEventType g_se_keyslot_available_event;
Handle g_se_das_hnd;
u32 g_se_mapped_work_buffer_addr;
alignas(os::MemoryPageSize) u8 g_work_buffer[2 * WorkBufferSizeMax];
os::Mutex g_async_op_lock(false);
BootReasonValue g_boot_reason;
bool g_boot_reason_set;
/* Boot Reason accessors. */
BootReasonValue GetBootReason() {
return g_boot_reason;
}
bool IsBootReasonSet() {
return g_boot_reason_set;
}
/* Initialization functionality. */
void InitializeCtrDrbg() {
u8 seed[CtrDrbg::SeedSize];
AMS_ABORT_UNLESS(smc::GenerateRandomBytes(seed, sizeof(seed)) == smc::Result::Success);
g_drbg.Initialize(seed);
}
void InitializeSeEvents() {
u64 irq_num;
AMS_ABORT_UNLESS(smc::GetConfig(&irq_num, 1, ConfigItem::SecurityEngineInterruptNumber) == smc::Result::Success);
os::InitializeInterruptEvent(std::addressof(g_se_event), irq_num, os::EventClearMode_AutoClear);
R_ABORT_UNLESS(os::CreateSystemEvent(std::addressof(g_se_keyslot_available_event), os::EventClearMode_AutoClear, true));
os::SignalSystemEvent(std::addressof(g_se_keyslot_available_event));
}
void InitializeDeviceAddressSpace() {
/* Create Address Space. */
R_ABORT_UNLESS(svcCreateDeviceAddressSpace(&g_se_das_hnd, 0, (1ul << 32)));
/* Attach it to the SE. */
R_ABORT_UNLESS(svcAttachDeviceAddressSpace(svc::DeviceName_Se, g_se_das_hnd));
const u64 work_buffer_addr = reinterpret_cast<u64>(g_work_buffer);
g_se_mapped_work_buffer_addr = WorkBufferMapBase + (work_buffer_addr % DeviceAddressSpaceAlign);
/* Map the work buffer for the SE. */
R_ABORT_UNLESS(svcMapDeviceAddressSpaceAligned(g_se_das_hnd, dd::GetCurrentProcessHandle(), work_buffer_addr, sizeof(g_work_buffer), g_se_mapped_work_buffer_addr, 3));
}
/* Internal RNG functionality. */
Result GenerateRandomBytesInternal(void *out, size_t size) {
if (!g_drbg.GenerateRandomBytes(out, size)) {
/* We need to reseed. */
{
u8 seed[CtrDrbg::SeedSize];
smc::Result res = smc::GenerateRandomBytes(seed, sizeof(seed));
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
g_drbg.Reseed(seed);
g_drbg.GenerateRandomBytes(out, size);
}
}
return ResultSuccess();
}
/* Internal async implementation functionality. */
void WaitSeOperationComplete() {
os::WaitInterruptEvent(std::addressof(g_se_event));
}
smc::Result WaitCheckStatus(smc::AsyncOperationKey op_key) {
WaitSeOperationComplete();
smc::Result op_res;
smc::Result res = smc::GetResult(&op_res, op_key);
if (res != smc::Result::Success) {
return res;
}
return op_res;
}
smc::Result WaitGetResult(void *out_buf, size_t out_buf_size, smc::AsyncOperationKey op_key) {
WaitSeOperationComplete();
smc::Result op_res;
smc::Result res = smc::GetResultData(&op_res, out_buf, out_buf_size, op_key);
if (res != smc::Result::Success) {
return res;
}
return op_res;
}
/* Internal KeySlot utility. */
Result ValidateAesKeySlot(s32 keyslot, const void *owner) {
/* Allow the use of physical keyslots on 1.0.0. */
if (hos::GetVersion() == hos::Version_1_0_0) {
R_SUCCEED_IF(IsPhysicalKeySlot(keyslot));
}
R_UNLESS(IsVirtualKeySlot(keyslot), spl::ResultInvalidKeySlot());
const s32 index = GetVirtualKeySlotIndex(keyslot);
R_UNLESS(g_keyslot_owners[index] == owner, spl::ResultInvalidKeySlot());
return ResultSuccess();
}
/* Helper to do a single AES block decryption. */
smc::Result DecryptAesBlock(s32 keyslot, void *dst, const void *src) {
struct DecryptAesBlockLayout {
SeCryptContext crypt_ctx;
u8 in_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE)));
u8 out_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE)));
};
DecryptAesBlockLayout *layout = reinterpret_cast<DecryptAesBlockLayout *>(g_work_buffer);
layout->crypt_ctx.in.num_entries = 0;
layout->crypt_ctx.in.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, in_block);
layout->crypt_ctx.in.size = sizeof(layout->in_block);
layout->crypt_ctx.out.num_entries = 0;
layout->crypt_ctx.out.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, out_block);
layout->crypt_ctx.out.size = sizeof(layout->out_block);
std::memcpy(layout->in_block, src, sizeof(layout->in_block));
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock lk(g_async_op_lock);
smc::AsyncOperationKey op_key;
const IvCtr iv_ctr = {};
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::CbcDecrypt, GetPhysicalKeySlot(keyslot, true));
const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.out);
const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.in);
smc::Result res = smc::ComputeAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, sizeof(layout->in_block));
if (res != smc::Result::Success) {
return res;
}
if ((res = WaitCheckStatus(op_key)) != smc::Result::Success) {
return res;
}
}
armDCacheFlush(layout, sizeof(*layout));
std::memcpy(dst, layout->out_block, sizeof(layout->out_block));
return smc::Result::Success;
}
/* Implementation wrappers for API commands. */
Result DecryptAndStoreDeviceUniqueKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
struct DecryptAndStoreDeviceUniqueKeyLayout {
u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10];
};
DecryptAndStoreDeviceUniqueKeyLayout *layout = reinterpret_cast<DecryptAndStoreDeviceUniqueKeyLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size <= sizeof(DecryptAndStoreDeviceUniqueKeyLayout), spl::ResultInvalidSize());
std::memcpy(layout, src, src_size);
armDCacheFlush(layout, sizeof(*layout));
smc::Result smc_res;
if (hos::GetVersion() >= hos::Version_5_0_0) {
smc_res = smc::DecryptDeviceUniqueData(layout->data, src_size, access_key, key_source, static_cast<smc::DeviceUniqueDataMode>(option));
} else {
smc_res = smc::DecryptAndStoreGcKey(layout->data, src_size, access_key, key_source, option);
}
return smc::ConvertResult(smc_res);
}
Result ModularExponentiateWithStorageKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size, smc::ModularExponentiateWithStorageKeyMode mode) {
struct ModularExponentiateWithStorageKeyLayout {
u8 base[0x100];
u8 mod[0x100];
};
ModularExponentiateWithStorageKeyLayout *layout = reinterpret_cast<ModularExponentiateWithStorageKeyLayout *>(g_work_buffer);
/* Validate sizes. */
R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize());
R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize());
R_UNLESS(out_size <= WorkBufferSizeMax, spl::ResultInvalidSize());
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout->base) - base_size;
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
std::memset(layout, 0, sizeof(*layout));
std::memcpy(layout->base + base_ofs, base, base_size);
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock lk(g_async_op_lock);
smc::AsyncOperationKey op_key;
smc::Result res = smc::ModularExponentiateWithStorageKey(&op_key, layout->base, layout->mod, mode);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
armDCacheFlush(g_work_buffer, sizeof(out_size));
std::memcpy(out, g_work_buffer, out_size);
return ResultSuccess();
}
Result PrepareEsDeviceUniqueKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation, smc::EsCommonKeyType type) {
struct PrepareEsDeviceUniqueKeyLayout {
u8 base[0x100];
u8 mod[0x100];
};
PrepareEsDeviceUniqueKeyLayout *layout = reinterpret_cast<PrepareEsDeviceUniqueKeyLayout *>(g_work_buffer);
/* Validate sizes. */
R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize());
R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize());
R_UNLESS(label_digest_size <= LabelDigestSizeMax, spl::ResultInvalidSize());
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout->base) - base_size;
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
std::memset(layout, 0, sizeof(*layout));
std::memcpy(layout->base + base_ofs, base, base_size);
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock lk(g_async_op_lock);
smc::AsyncOperationKey op_key;
smc::Result res = smc::PrepareEsDeviceUniqueKey(&op_key, layout->base, layout->mod, label_digest, label_digest_size, smc::GetPrepareEsDeviceUniqueKeyOption(type, generation));
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
if ((res = WaitGetResult(g_work_buffer, sizeof(*out_access_key), op_key)) != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
armDCacheFlush(g_work_buffer, sizeof(*out_access_key));
std::memcpy(out_access_key, g_work_buffer, sizeof(*out_access_key));
return ResultSuccess();
}
}
/* Initialization. */
void Initialize() {
/* Initialize the Drbg. */
InitializeCtrDrbg();
/* Initialize SE interrupt + keyslot events. */
InitializeSeEvents();
/* Initialize DAS for the SE. */
InitializeDeviceAddressSpace();
/* Initialize the keyslot cache. */
InitializeKeySlotCache();
}
/* General. */
Result GetConfig(u64 *out, ConfigItem which) {
/* Nintendo explicitly blacklists package2 hash here, amusingly. */
/* This is not blacklisted in safemode, but we're never in safe mode... */
R_UNLESS(which != ConfigItem::Package2Hash, spl::ResultInvalidArgument());
smc::Result res = smc::GetConfig(out, 1, which);
/* Nintendo has some special handling here for hardware type/is_retail. */
if (res == smc::Result::InvalidArgument) {
switch (which) {
case ConfigItem::HardwareType:
*out = static_cast<u64>(HardwareType::Icosa);
res = smc::Result::Success;
break;
case ConfigItem::HardwareState:
*out = HardwareState_Development;
res = smc::Result::Success;
break;
default:
break;
}
}
return smc::ConvertResult(res);
}
Result ModularExponentiate(void *out, size_t out_size, const void *base, size_t base_size, const void *exp, size_t exp_size, const void *mod, size_t mod_size) {
struct ModularExponentiateLayout {
u8 base[0x100];
u8 exp[0x100];
u8 mod[0x100];
};
ModularExponentiateLayout *layout = reinterpret_cast<ModularExponentiateLayout *>(g_work_buffer);
/* Validate sizes. */
R_UNLESS(base_size <= sizeof(layout->base), spl::ResultInvalidSize());
R_UNLESS(exp_size <= sizeof(layout->exp), spl::ResultInvalidSize());
R_UNLESS(mod_size <= sizeof(layout->mod), spl::ResultInvalidSize());
R_UNLESS(out_size <= WorkBufferSizeMax, spl::ResultInvalidSize());
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout->base) - base_size;
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
std::memset(layout, 0, sizeof(*layout));
std::memcpy(layout->base + base_ofs, base, base_size);
std::memcpy(layout->exp, exp, exp_size);
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock lk(g_async_op_lock);
smc::AsyncOperationKey op_key;
smc::Result res = smc::ModularExponentiate(&op_key, layout->base, layout->exp, exp_size, layout->mod);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
armDCacheFlush(g_work_buffer, sizeof(out_size));
std::memcpy(out, g_work_buffer, out_size);
return ResultSuccess();
}
Result SetConfig(ConfigItem which, u64 value) {
return smc::ConvertResult(smc::SetConfig(which, &value, 1));
}
Result GenerateRandomBytes(void *out, size_t size) {
u8 *cur_dst = reinterpret_cast<u8 *>(out);
for (size_t ofs = 0; ofs < size; ofs += CtrDrbg::MaxRequestSize) {
const size_t cur_size = std::min(size - ofs, CtrDrbg::MaxRequestSize);
R_TRY(GenerateRandomBytesInternal(cur_dst, size));
cur_dst += cur_size;
}
return ResultSuccess();
}
Result IsDevelopment(bool *out) {
u64 hardware_state;
R_TRY(impl::GetConfig(&hardware_state, ConfigItem::HardwareState));
*out = (hardware_state == HardwareState_Development);
return ResultSuccess();
}
Result SetBootReason(BootReasonValue boot_reason) {
R_UNLESS(!IsBootReasonSet(), spl::ResultBootReasonAlreadySet());
g_boot_reason = boot_reason;
g_boot_reason_set = true;
return ResultSuccess();
}
Result GetBootReason(BootReasonValue *out) {
R_UNLESS(IsBootReasonSet(), spl::ResultBootReasonNotSet());
*out = GetBootReason();
return ResultSuccess();
}
/* Crypto. */
Result GenerateAesKek(AccessKey *out_access_key, const KeySource &key_source, u32 generation, u32 option) {
return smc::ConvertResult(smc::GenerateAesKek(out_access_key, key_source, generation, option));
}
Result LoadAesKey(s32 keyslot, const void *owner, const AccessKey &access_key, const KeySource &key_source) {
R_TRY(ValidateAesKeySlot(keyslot, owner));
return LoadVirtualAesKey(keyslot, access_key, key_source);
}
Result GenerateAesKey(AesKey *out_key, const AccessKey &access_key, const KeySource &key_source) {
static constexpr KeySource s_generate_aes_key_source = {
.data = {0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8}
};
ScopedAesKeySlot keyslot_holder;
R_TRY(keyslot_holder.Allocate());
R_TRY(LoadVirtualAesKey(keyslot_holder.GetKeySlot(), access_key, s_generate_aes_key_source));
return smc::ConvertResult(DecryptAesBlock(keyslot_holder.GetKeySlot(), out_key, &key_source));
}
Result DecryptAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 option) {
static constexpr KeySource s_decrypt_aes_key_source = {
.data = {0x11, 0x70, 0x24, 0x2B, 0x48, 0x69, 0x11, 0xF1, 0x11, 0xB0, 0x0C, 0x47, 0x7C, 0xC3, 0xEF, 0x7E}
};
AccessKey access_key;
R_TRY(GenerateAesKek(&access_key, s_decrypt_aes_key_source, generation, option));
return GenerateAesKey(out_key, access_key, key_source);
}
Result ComputeCtr(void *dst, size_t dst_size, s32 keyslot, const void *owner, const void *src, size_t src_size, const IvCtr &iv_ctr) {
R_TRY(ValidateAesKeySlot(keyslot, owner));
/* Succeed immediately if there's nothing to crypt. */
if (src_size == 0) {
return ResultSuccess();
}
/* Validate sizes. */
R_UNLESS(src_size <= dst_size, spl::ResultInvalidSize());
R_UNLESS(util::IsAligned(src_size, AES_BLOCK_SIZE), spl::ResultInvalidSize());
/* We can only map 0x400000 aligned buffers for the SE. With that in mind, we have some math to do. */
const uintptr_t src_addr = reinterpret_cast<uintptr_t>(src);
const uintptr_t dst_addr = reinterpret_cast<uintptr_t>(dst);
const uintptr_t src_addr_page_aligned = util::AlignDown(src_addr, os::MemoryPageSize);
const uintptr_t dst_addr_page_aligned = util::AlignDown(dst_addr, os::MemoryPageSize);
const size_t src_size_page_aligned = util::AlignUp(src_addr + src_size, os::MemoryPageSize) - src_addr_page_aligned;
const size_t dst_size_page_aligned = util::AlignUp(dst_addr + dst_size, os::MemoryPageSize) - dst_addr_page_aligned;
const u32 src_se_map_addr = ComputeAesInMapBase + (src_addr_page_aligned % DeviceAddressSpaceAlign);
const u32 dst_se_map_addr = ComputeAesOutMapBase + (dst_addr_page_aligned % DeviceAddressSpaceAlign);
const u32 src_se_addr = ComputeAesInMapBase + (src_addr % DeviceAddressSpaceAlign);
const u32 dst_se_addr = ComputeAesOutMapBase + (dst_addr % DeviceAddressSpaceAlign);
/* Validate aligned sizes. */
R_UNLESS(src_size_page_aligned <= ComputeAesSizeMax, spl::ResultInvalidSize());
R_UNLESS(dst_size_page_aligned <= ComputeAesSizeMax, spl::ResultInvalidSize());
/* Helpers for mapping/unmapping. */
DeviceAddressSpaceMapHelper in_mapper(g_se_das_hnd, src_se_map_addr, src_addr_page_aligned, src_size_page_aligned, 1);
DeviceAddressSpaceMapHelper out_mapper(g_se_das_hnd, dst_se_map_addr, dst_addr_page_aligned, dst_size_page_aligned, 2);
/* Setup SE linked list entries. */
SeCryptContext *crypt_ctx = reinterpret_cast<SeCryptContext *>(g_work_buffer);
crypt_ctx->in.num_entries = 0;
crypt_ctx->in.address = src_se_addr;
crypt_ctx->in.size = src_size;
crypt_ctx->out.num_entries = 0;
crypt_ctx->out.address = dst_se_addr;
crypt_ctx->out.size = dst_size;
armDCacheFlush(crypt_ctx, sizeof(*crypt_ctx));
armDCacheFlush(const_cast<void *>(src), src_size);
armDCacheFlush(dst, dst_size);
{
std::scoped_lock lk(g_async_op_lock);
smc::AsyncOperationKey op_key;
const u32 mode = smc::GetComputeAesMode(smc::CipherMode::Ctr, GetPhysicalKeySlot(keyslot, true));
const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, out);
const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, in);
smc::Result res = smc::ComputeAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, src_size);
if (res != smc::Result::Success) {
return smc::ConvertResult(res);
}
if ((res = WaitCheckStatus(op_key)) != smc::Result::Success) {
return smc::ConvertResult(res);
}
}
armDCacheFlush(dst, dst_size);
return ResultSuccess();
}
Result ComputeCmac(Cmac *out_cmac, s32 keyslot, const void *owner, const void *data, size_t size) {
R_TRY(ValidateAesKeySlot(keyslot, owner));
R_UNLESS(size <= WorkBufferSizeMax, spl::ResultInvalidSize());
std::memcpy(g_work_buffer, data, size);
return smc::ConvertResult(smc::ComputeCmac(out_cmac, GetPhysicalKeySlot(keyslot, true), g_work_buffer, size));
}
Result AllocateAesKeySlot(s32 *out_keyslot, const void *owner) {
/* Find a virtual keyslot. */
for (s32 i = 0; i < MaxVirtualAesKeySlots; i++) {
if (g_keyslot_owners[i] == nullptr) {
g_keyslot_owners[i] = owner;
g_keyslot_contents[i] = { .type = KeySlotContentType::None };
*out_keyslot = MakeVirtualKeySlot(i);
return ResultSuccess();
}
}
os::ClearSystemEvent(std::addressof(g_se_keyslot_available_event));
return spl::ResultOutOfKeySlots();
}
Result DeallocateAesKeySlot(s32 keyslot, const void *owner) {
/* Only virtual keyslots can be freed. */
R_UNLESS(IsVirtualKeySlot(keyslot), spl::ResultInvalidKeySlot());
/* Ensure the keyslot is owned. */
R_TRY(ValidateAesKeySlot(keyslot, owner));
/* Clear the physical keyslot, if we're cached. */
s32 phys_slot;
if (g_keyslot_cache.Release(std::addressof(phys_slot), keyslot)) {
ClearPhysicalKeySlot(phys_slot);
}
/* Clear the virtual keyslot. */
const auto index = GetVirtualKeySlotIndex(keyslot);
g_keyslot_owners[index] = nullptr;
g_keyslot_contents[index].type = KeySlotContentType::None;
os::SignalSystemEvent(std::addressof(g_se_keyslot_available_event));
return ResultSuccess();
}
/* RSA. */
Result DecryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
struct DecryptDeviceUniqueDataLayout {
u8 data[RsaPrivateKeySize + DeviceUniqueDataMetaSize];
};
DecryptDeviceUniqueDataLayout *layout = reinterpret_cast<DecryptDeviceUniqueDataLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size >= DeviceUniqueDataMetaSize, spl::ResultInvalidSize());
R_UNLESS(src_size <= sizeof(DecryptDeviceUniqueDataLayout), spl::ResultInvalidSize());
std::memcpy(layout->data, src, src_size);
armDCacheFlush(layout, sizeof(*layout));
smc::Result smc_res;
size_t copy_size = 0;
if (hos::GetVersion() >= hos::Version_5_0_0) {
copy_size = std::min(dst_size, src_size - DeviceUniqueDataMetaSize);
smc_res = smc::DecryptDeviceUniqueData(layout->data, src_size, access_key, key_source, static_cast<smc::DeviceUniqueDataMode>(option));
} else {
smc_res = smc::DecryptDeviceUniqueData(&copy_size, layout->data, src_size, access_key, key_source, option);
copy_size = std::min(dst_size, copy_size);
}
armDCacheFlush(layout, sizeof(*layout));
if (smc_res == smc::Result::Success) {
std::memcpy(dst, layout->data, copy_size);
}
return smc::ConvertResult(smc_res);
}
/* SSL */
Result DecryptAndStoreSslClientCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast<u32>(smc::DeviceUniqueDataMode::DecryptAndStoreSslKey));
}
Result ModularExponentiateWithSslClientCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Ssl);
}
/* ES */
Result LoadEsDeviceKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
if (hos::GetVersion() >= hos::Version_5_0_0) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option);
} else {
struct LoadEsDeviceKeyLayout {
u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10];
};
LoadEsDeviceKeyLayout *layout = reinterpret_cast<LoadEsDeviceKeyLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size <= sizeof(LoadEsDeviceKeyLayout), spl::ResultInvalidSize());
std::memcpy(layout, src, src_size);
armDCacheFlush(layout, sizeof(*layout));
return smc::ConvertResult(smc::LoadEsDeviceKey(layout->data, src_size, access_key, key_source, option));
}
}
Result PrepareEsTitleKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, smc::EsCommonKeyType::TitleKey);
}
Result PrepareCommonEsTitleKey(AccessKey *out_access_key, const KeySource &key_source, u32 generation) {
return smc::ConvertResult(smc::PrepareCommonEsTitleKey(out_access_key, key_source, generation));
}
Result DecryptAndStoreDrmDeviceCertKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, static_cast<u32>(smc::DeviceUniqueDataMode::DecryptAndStoreDrmDeviceCertKey));
}
Result ModularExponentiateWithDrmDeviceCertKey(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
return ModularExponentiateWithStorageKey(out, out_size, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::DrmDeviceCert);
}
Result PrepareEsArchiveKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
return PrepareEsDeviceUniqueKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, smc::EsCommonKeyType::ArchiveKey);
}
/* FS */
Result DecryptAndStoreGcKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
return DecryptAndStoreDeviceUniqueKey(src, src_size, access_key, key_source, option);
}
Result DecryptGcMessage(u32 *out_size, void *dst, size_t dst_size, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size) {
/* Validate sizes. */
R_UNLESS(dst_size <= WorkBufferSizeMax, spl::ResultInvalidSize());
R_UNLESS(label_digest_size == LabelDigestSizeMax, spl::ResultInvalidSize());
/* Nintendo doesn't check this result code, but we will. */
R_TRY(ModularExponentiateWithStorageKey(g_work_buffer, 0x100, base, base_size, mod, mod_size, smc::ModularExponentiateWithStorageKeyMode::Gc));
size_t data_size = crypto::DecodeRsa2048OaepSha256(dst, dst_size, label_digest, label_digest_size, g_work_buffer, 0x100);
R_UNLESS(data_size > 0, spl::ResultDecryptionFailed());
*out_size = static_cast<u32>(data_size);
return ResultSuccess();
}
Result GenerateSpecificAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 which) {
return smc::ConvertResult(smc::GenerateSpecificAesKey(out_key, key_source, generation, which));
}
Result LoadPreparedAesKey(s32 keyslot, const void *owner, const AccessKey &access_key) {
R_TRY(ValidateAesKeySlot(keyslot, owner));
return LoadVirtualPreparedAesKey(keyslot, access_key);
}
Result GetPackage2Hash(void *dst, const size_t size) {
u64 hash[4];
R_UNLESS(size >= sizeof(hash), spl::ResultInvalidSize());
smc::Result smc_res;
if ((smc_res = smc::GetConfig(hash, 4, ConfigItem::Package2Hash)) != smc::Result::Success) {
return smc::ConvertResult(smc_res);
}
std::memcpy(dst, hash, sizeof(hash));
return ResultSuccess();
}
/* Manu. */
Result ReencryptDeviceUniqueData(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key_dec, const KeySource &source_dec, const AccessKey &access_key_enc, const KeySource &source_enc, u32 option) {
struct ReencryptDeviceUniqueDataLayout {
u8 data[DeviceUniqueDataMetaSize + 2 * RsaPrivateKeySize + 0x10];
AccessKey access_key_dec;
KeySource source_dec;
AccessKey access_key_enc;
KeySource source_enc;
};
ReencryptDeviceUniqueDataLayout *layout = reinterpret_cast<ReencryptDeviceUniqueDataLayout *>(g_work_buffer);
/* Validate size. */
R_UNLESS(src_size >= DeviceUniqueDataMetaSize, spl::ResultInvalidSize());
R_UNLESS(src_size <= sizeof(ReencryptDeviceUniqueDataLayout), spl::ResultInvalidSize());
std::memcpy(layout, src, src_size);
layout->access_key_dec = access_key_dec;
layout->source_dec = source_dec;
layout->access_key_enc = access_key_enc;
layout->source_enc = source_enc;
armDCacheFlush(layout, sizeof(*layout));
smc::Result smc_res = smc::ReencryptDeviceUniqueData(layout->data, src_size, layout->access_key_dec, layout->source_dec, layout->access_key_enc, layout->source_enc, option);
if (smc_res == smc::Result::Success) {
size_t copy_size = std::min(dst_size, src_size);
armDCacheFlush(layout, copy_size);
std::memcpy(dst, layout->data, copy_size);
}
return smc::ConvertResult(smc_res);
}
/* Helper. */
Result DeallocateAllAesKeySlots(const void *owner) {
for (s32 slot = VirtualKeySlotMin; slot <= VirtualKeySlotMax; ++slot) {
if (g_keyslot_owners[GetVirtualKeySlotIndex(slot)] == owner) {
DeallocateAesKeySlot(slot, owner);
}
}
return ResultSuccess();
}
Handle GetAesKeySlotAvailableEventHandle() {
return os::GetReadableHandleOfSystemEvent(std::addressof(g_se_keyslot_available_event));
}
}