1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-08 21:21:48 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_debug_base.cpp
2020-12-18 13:31:01 -08:00

1120 lines
49 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
ALWAYS_INLINE KDebugBase *GetDebugObject(KProcess *process) {
return static_cast<KDebugBase *>(process->GetDebugObject());
}
}
void KDebugBase::Initialize() {
/* Clear the process and continue flags. */
m_process = nullptr;
m_continue_flags = 0;
}
bool KDebugBase::Is64Bit() const {
MESOSPHERE_ASSERT(m_lock.IsLockedByCurrentThread());
MESOSPHERE_ASSERT(m_process != nullptr);
return m_process->Is64Bit();
}
Result KDebugBase::QueryMemoryInfo(ams::svc::MemoryInfo *out_memory_info, ams::svc::PageInfo *out_page_info, KProcessAddress address) {
/* Lock ourselves. */
KScopedLightLock lk(m_lock);
/* Check that we have a valid process. */
R_UNLESS(m_process != nullptr, svc::ResultProcessTerminated());
R_UNLESS(!m_process->IsTerminated(), svc::ResultProcessTerminated());
/* Query the mapping's info. */
KMemoryInfo info;
R_TRY(m_process->GetPageTable().QueryInfo(std::addressof(info), out_page_info, address));
/* Write output. */
*out_memory_info = info.GetSvcMemoryInfo();
return ResultSuccess();
}
Result KDebugBase::ReadMemory(KProcessAddress buffer, KProcessAddress address, size_t size) {
/* Lock ourselves. */
KScopedLightLock lk(m_lock);
/* Check that we have a valid process. */
R_UNLESS(m_process != nullptr, svc::ResultProcessTerminated());
R_UNLESS(!m_process->IsTerminated(), svc::ResultProcessTerminated());
/* Get the page tables. */
KProcessPageTable &debugger_pt = GetCurrentProcess().GetPageTable();
KProcessPageTable &target_pt = m_process->GetPageTable();
/* Verify that the regions are in range. */
R_UNLESS(target_pt.Contains(address, size), svc::ResultInvalidCurrentMemory());
R_UNLESS(debugger_pt.Contains(buffer, size), svc::ResultInvalidCurrentMemory());
/* Iterate over the target process's memory blocks. */
KProcessAddress cur_address = address;
size_t remaining = size;
while (remaining > 0) {
/* Get the current memory info. */
KMemoryInfo info;
ams::svc::PageInfo pi;
R_TRY(target_pt.QueryInfo(std::addressof(info), std::addressof(pi), cur_address));
/* Check that the memory is accessible. */
R_UNLESS(info.GetState() != static_cast<KMemoryState>(ams::svc::MemoryState_Inaccessible), svc::ResultInvalidAddress());
/* Get the current size. */
const size_t cur_size = std::min(remaining, info.GetEndAddress() - GetInteger(cur_address));
/* Read the memory. */
if (info.GetState() != KMemoryState_Io) {
/* The memory is normal memory. */
R_TRY(target_pt.ReadDebugMemory(GetVoidPointer(buffer), cur_address, cur_size));
} else {
/* The memory is IO memory. */
/* Verify that the memory is readable. */
R_UNLESS((info.GetPermission() & KMemoryPermission_UserRead) == KMemoryPermission_UserRead, svc::ResultInvalidAddress());
/* Get the physical address of the memory. */
/* NOTE: Nintendo does not verify the result of this call. */
KPhysicalAddress phys_addr;
target_pt.GetPhysicalAddress(std::addressof(phys_addr), cur_address);
/* Map the address as IO in the current process. */
R_TRY(debugger_pt.MapIo(util::AlignDown(GetInteger(phys_addr), PageSize), PageSize, KMemoryPermission_UserRead));
/* Get the address of the newly mapped IO. */
KProcessAddress io_address;
Result query_result = debugger_pt.QueryIoMapping(std::addressof(io_address), util::AlignDown(GetInteger(phys_addr), PageSize), PageSize);
MESOSPHERE_R_ASSERT(query_result);
R_TRY(query_result);
/* Ensure we clean up the new mapping on scope exit. */
ON_SCOPE_EXIT { MESOSPHERE_R_ABORT_UNLESS(debugger_pt.UnmapPages(util::AlignDown(GetInteger(io_address), PageSize), 1, KMemoryState_Io)); };
/* Adjust the io address for alignment. */
io_address += (GetInteger(cur_address) & (PageSize - 1));
/* Get the readable size. */
const size_t readable_size = std::min(cur_size, util::AlignDown(GetInteger(cur_address) + PageSize, PageSize) - GetInteger(cur_address));
/* Read the memory. */
switch ((GetInteger(cur_address) | readable_size) & 3) {
case 0:
{
R_UNLESS(UserspaceAccess::ReadIoMemory32Bit(GetVoidPointer(buffer), GetVoidPointer(io_address), readable_size), svc::ResultInvalidPointer());
}
break;
case 2:
{
R_UNLESS(UserspaceAccess::ReadIoMemory16Bit(GetVoidPointer(buffer), GetVoidPointer(io_address), readable_size), svc::ResultInvalidPointer());
}
break;
default:
{
R_UNLESS(UserspaceAccess::ReadIoMemory8Bit(GetVoidPointer(buffer), GetVoidPointer(io_address), readable_size), svc::ResultInvalidPointer());
}
break;
}
}
/* Advance. */
buffer += cur_size;
cur_address += cur_size;
remaining -= cur_size;
}
return ResultSuccess();
}
Result KDebugBase::WriteMemory(KProcessAddress buffer, KProcessAddress address, size_t size) {
/* Lock ourselves. */
KScopedLightLock lk(m_lock);
/* Check that we have a valid process. */
R_UNLESS(m_process != nullptr, svc::ResultProcessTerminated());
R_UNLESS(!m_process->IsTerminated(), svc::ResultProcessTerminated());
/* Get the page tables. */
KProcessPageTable &debugger_pt = GetCurrentProcess().GetPageTable();
KProcessPageTable &target_pt = m_process->GetPageTable();
/* Verify that the regions are in range. */
R_UNLESS(target_pt.Contains(address, size), svc::ResultInvalidCurrentMemory());
R_UNLESS(debugger_pt.Contains(buffer, size), svc::ResultInvalidCurrentMemory());
/* Iterate over the target process's memory blocks. */
KProcessAddress cur_address = address;
size_t remaining = size;
while (remaining > 0) {
/* Get the current memory info. */
KMemoryInfo info;
ams::svc::PageInfo pi;
R_TRY(target_pt.QueryInfo(std::addressof(info), std::addressof(pi), cur_address));
/* Check that the memory is accessible. */
R_UNLESS(info.GetState() != static_cast<KMemoryState>(ams::svc::MemoryState_Inaccessible), svc::ResultInvalidAddress());
/* Get the current size. */
const size_t cur_size = std::min(remaining, info.GetEndAddress() - GetInteger(cur_address));
/* Read the memory. */
if (info.GetState() != KMemoryState_Io) {
/* The memory is normal memory. */
R_TRY(target_pt.WriteDebugMemory(cur_address, GetVoidPointer(buffer), cur_size));
} else {
/* The memory is IO memory. */
/* Verify that the memory is writable. */
R_UNLESS((info.GetPermission() & KMemoryPermission_UserReadWrite) == KMemoryPermission_UserReadWrite, svc::ResultInvalidAddress());
/* Get the physical address of the memory. */
/* NOTE: Nintendo does not verify the result of this call. */
KPhysicalAddress phys_addr;
target_pt.GetPhysicalAddress(std::addressof(phys_addr), cur_address);
/* Map the address as IO in the current process. */
R_TRY(debugger_pt.MapIo(util::AlignDown(GetInteger(phys_addr), PageSize), PageSize, KMemoryPermission_UserReadWrite));
/* Get the address of the newly mapped IO. */
KProcessAddress io_address;
Result query_result = debugger_pt.QueryIoMapping(std::addressof(io_address), util::AlignDown(GetInteger(phys_addr), PageSize), PageSize);
MESOSPHERE_R_ASSERT(query_result);
R_TRY(query_result);
/* Ensure we clean up the new mapping on scope exit. */
ON_SCOPE_EXIT { MESOSPHERE_R_ABORT_UNLESS(debugger_pt.UnmapPages(util::AlignDown(GetInteger(io_address), PageSize), 1, KMemoryState_Io)); };
/* Adjust the io address for alignment. */
io_address += (GetInteger(cur_address) & (PageSize - 1));
/* Get the readable size. */
const size_t readable_size = std::min(cur_size, util::AlignDown(GetInteger(cur_address) + PageSize, PageSize) - GetInteger(cur_address));
/* Read the memory. */
switch ((GetInteger(cur_address) | readable_size) & 3) {
case 0:
{
R_UNLESS(UserspaceAccess::WriteIoMemory32Bit(GetVoidPointer(io_address), GetVoidPointer(buffer), readable_size), svc::ResultInvalidPointer());
}
break;
case 2:
{
R_UNLESS(UserspaceAccess::WriteIoMemory16Bit(GetVoidPointer(io_address), GetVoidPointer(buffer), readable_size), svc::ResultInvalidPointer());
}
break;
default:
{
R_UNLESS(UserspaceAccess::WriteIoMemory8Bit(GetVoidPointer(io_address), GetVoidPointer(buffer), readable_size), svc::ResultInvalidPointer());
}
break;
}
}
/* Advance. */
buffer += cur_size;
cur_address += cur_size;
remaining -= cur_size;
}
return ResultSuccess();
}
Result KDebugBase::GetRunningThreadInfo(ams::svc::LastThreadContext *out_context, u64 *out_thread_id) {
/* Get the attached process. */
KScopedAutoObject process = this->GetProcess();
R_UNLESS(process.IsNotNull(), svc::ResultProcessTerminated());
/* Get the thread info. */
{
KScopedSchedulerLock sl;
/* Get the running thread. */
const s32 core_id = GetCurrentCoreId();
KThread *thread = process->GetRunningThread(core_id);
/* Check that the thread's idle count is correct. */
R_UNLESS(process->GetRunningThreadIdleCount(core_id) == Kernel::GetScheduler(core_id).GetIdleCount(), svc::ResultNoThread());
/* Check that the thread is running on the current core. */
R_UNLESS(thread != nullptr, svc::ResultUnknownThread());
R_UNLESS(thread->GetActiveCore() == core_id, svc::ResultUnknownThread());
/* Get the thread's exception context. */
GetExceptionContext(thread)->GetSvcThreadContext(out_context);
/* Get the thread's id. */
*out_thread_id = thread->GetId();
}
return ResultSuccess();
}
Result KDebugBase::Attach(KProcess *target) {
/* Check that the process isn't null. */
MESOSPHERE_ASSERT(target != nullptr);
/* Attach to the process. */
{
/* Lock both ourselves, the target process, and the scheduler. */
KScopedLightLock state_lk(target->GetStateLock());
KScopedLightLock list_lk(target->GetListLock());
KScopedLightLock this_lk(m_lock);
KScopedSchedulerLock sl;
/* Check that the process isn't already being debugged. */
R_UNLESS(!target->IsAttachedToDebugger(), svc::ResultBusy());
{
/* Ensure the process is in a state that allows for debugging. */
const KProcess::State state = target->GetState();
switch (state) {
case KProcess::State_Created:
case KProcess::State_Running:
case KProcess::State_Crashed:
break;
case KProcess::State_CreatedAttached:
case KProcess::State_RunningAttached:
case KProcess::State_DebugBreak:
return svc::ResultBusy();
case KProcess::State_Terminating:
case KProcess::State_Terminated:
return svc::ResultProcessTerminated();
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
}
/* Set our process member, and open a reference to the target. */
m_process = target;
m_process->Open();
/* Set ourselves as the process's attached object. */
m_old_process_state = m_process->SetDebugObject(this);
/* Send an event for our attaching to the process. */
this->PushDebugEvent(ams::svc::DebugEvent_CreateProcess);
/* Send events for attaching to each thread in the process. */
{
auto end = m_process->GetThreadList().end();
for (auto it = m_process->GetThreadList().begin(); it != end; ++it) {
/* Request that we suspend the thread. */
it->RequestSuspend(KThread::SuspendType_Debug);
/* If the thread is in a state for us to do so, generate the event. */
if (const auto thread_state = it->GetState(); thread_state == KThread::ThreadState_Runnable || thread_state == KThread::ThreadState_Waiting) {
/* Mark the thread as attached to. */
it->SetDebugAttached();
/* Send the event. */
this->PushDebugEvent(ams::svc::DebugEvent_CreateThread, it->GetId(), GetInteger(it->GetThreadLocalRegionAddress()));
}
}
}
/* Send the process's jit debug info, if relevant. */
if (KEventInfo *jit_info = m_process->GetJitDebugInfo(); jit_info != nullptr) {
this->EnqueueDebugEventInfo(jit_info);
}
/* Send an exception event to represent our attaching. */
this->PushDebugEvent(ams::svc::DebugEvent_Exception, ams::svc::DebugException_DebuggerAttached);
/* Signal. */
this->NotifyAvailable();
}
}
return ResultSuccess();
}
Result KDebugBase::BreakProcess() {
/* Get the attached process. */
KScopedAutoObject target = this->GetProcess();
R_UNLESS(target.IsNotNull(), svc::ResultProcessTerminated());
/* Lock both ourselves, the target process, and the scheduler. */
KScopedLightLock state_lk(target->GetStateLock());
KScopedLightLock list_lk(target->GetListLock());
KScopedLightLock this_lk(m_lock);
KScopedSchedulerLock sl;
/* Check that we're still attached to the process, and that it's not terminated. */
/* NOTE: Here Nintendo only checks that this->process is not nullptr. */
R_UNLESS(m_process == target.GetPointerUnsafe(), svc::ResultProcessTerminated());
R_UNLESS(!target->IsTerminated(), svc::ResultProcessTerminated());
/* Get the currently active threads. */
constexpr u64 ThreadIdNoThread = -1ll;
constexpr u64 ThreadIdUnknownThread = -2ll;
u64 thread_ids[cpu::NumCores];
for (size_t i = 0; i < util::size(thread_ids); ++i) {
/* Get the currently running thread. */
KThread *thread = target->GetRunningThread(i);
/* Check that the thread's idle count is correct. */
if (target->GetRunningThreadIdleCount(i) == Kernel::GetScheduler(i).GetIdleCount()) {
if (thread != nullptr && static_cast<size_t>(thread->GetActiveCore()) == i) {
thread_ids[i] = thread->GetId();
} else {
/* We found an unknown thread. */
thread_ids[i] = ThreadIdUnknownThread;
}
} else {
/* We didn't find a thread. */
thread_ids[i] = ThreadIdNoThread;
}
}
/* Suspend all the threads in the process. */
{
auto end = target->GetThreadList().end();
for (auto it = target->GetThreadList().begin(); it != end; ++it) {
/* Request that we suspend the thread. */
it->RequestSuspend(KThread::SuspendType_Debug);
}
}
/* Send an exception event to represent our breaking the process. */
static_assert(util::size(thread_ids) >= 4);
this->PushDebugEvent(ams::svc::DebugEvent_Exception, ams::svc::DebugException_DebuggerBreak, thread_ids[0], thread_ids[1], thread_ids[2], thread_ids[3]);
/* Signal. */
this->NotifyAvailable();
/* Set the process as breaked. */
target->SetDebugBreak();
return ResultSuccess();
}
Result KDebugBase::TerminateProcess() {
/* Get the attached process. If we don't have one, we have nothing to do. */
KScopedAutoObject target = this->GetProcess();
R_SUCCEED_IF(target.IsNull());
/* Detach from the process. */
{
/* Lock both ourselves and the target process. */
KScopedLightLock state_lk(target->GetStateLock());
KScopedLightLock list_lk(target->GetListLock());
KScopedLightLock this_lk(m_lock);
/* Check that we still have our process. */
if (m_process != nullptr) {
/* Check that our process is the one we got earlier. */
MESOSPHERE_ASSERT(m_process == target.GetPointerUnsafe());
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Get the process's state. */
const KProcess::State state = target->GetState();
/* Check that the process is in a state where we can terminate it. */
R_UNLESS(state != KProcess::State_Created, svc::ResultInvalidState());
R_UNLESS(state != KProcess::State_CreatedAttached, svc::ResultInvalidState());
/* Decide on a new state for the process. */
KProcess::State new_state;
if (state == KProcess::State_RunningAttached) {
/* If the process is running, transition it accordingly. */
new_state = KProcess::State_Running;
} else if (state == KProcess::State_DebugBreak) {
/* If the process is debug breaked, transition it accordingly. */
new_state = KProcess::State_Crashed;
} else {
/* Otherwise, don't transition. */
new_state = state;
}
/* Detach from the process. */
target->ClearDebugObject(new_state);
m_process = nullptr;
/* Clear our continue flags. */
m_continue_flags = 0;
}
}
/* Close the reference we held to the process while we were attached to it. */
target->Close();
/* Terminate the process. */
target->Terminate();
return ResultSuccess();
}
Result KDebugBase::GetThreadContext(ams::svc::ThreadContext *out, u64 thread_id, u32 context_flags) {
/* Lock ourselves. */
KScopedLightLock lk(m_lock);
/* Get the thread from its id. */
KThread *thread = KThread::GetThreadFromId(thread_id);
R_UNLESS(thread != nullptr, svc::ResultInvalidId());
ON_SCOPE_EXIT { thread->Close(); };
/* Verify that the thread is owned by our process. */
R_UNLESS(m_process == thread->GetOwnerProcess(), svc::ResultInvalidId());
/* Verify that the thread isn't terminated. */
R_UNLESS(thread->GetState() != KThread::ThreadState_Terminated, svc::ResultTerminationRequested());
/* Check that the thread is not the current one. */
/* NOTE: Nintendo does not check this, and thus the following loop will deadlock. */
R_UNLESS(thread != GetCurrentThreadPointer(), svc::ResultInvalidId());
/* Try to get the thread context until the thread isn't current on any core. */
while (true) {
KScopedSchedulerLock sl;
/* The thread needs to be requested for debug suspension. */
R_UNLESS(thread->IsSuspendRequested(KThread::SuspendType_Debug), svc::ResultInvalidState());
/* If the thread's raw state isn't runnable, check if it's current on some core. */
if (thread->GetRawState() != KThread::ThreadState_Runnable) {
bool current = false;
for (auto i = 0; i < static_cast<s32>(cpu::NumCores); ++i) {
if (thread == Kernel::GetScheduler(i).GetSchedulerCurrentThread()) {
current = true;
}
break;
}
/* If the thread is current, retry until it isn't. */
if (current) {
continue;
}
}
/* Get the thread context. */
return this->GetThreadContextImpl(out, thread, context_flags);
}
}
Result KDebugBase::SetThreadContext(const ams::svc::ThreadContext &ctx, u64 thread_id, u32 context_flags) {
/* Lock ourselves. */
KScopedLightLock lk(m_lock);
/* Get the thread from its id. */
KThread *thread = KThread::GetThreadFromId(thread_id);
R_UNLESS(thread != nullptr, svc::ResultInvalidId());
ON_SCOPE_EXIT { thread->Close(); };
/* Verify that the thread is owned by our process. */
R_UNLESS(m_process == thread->GetOwnerProcess(), svc::ResultInvalidId());
/* Verify that the thread isn't terminated. */
R_UNLESS(thread->GetState() != KThread::ThreadState_Terminated, svc::ResultTerminationRequested());
/* Check that the thread is not the current one. */
/* NOTE: Nintendo does not check this, and thus the following loop will deadlock. */
R_UNLESS(thread != GetCurrentThreadPointer(), svc::ResultInvalidId());
/* Try to get the thread context until the thread isn't current on any core. */
while (true) {
KScopedSchedulerLock sl;
/* The thread needs to be requested for debug suspension. */
R_UNLESS(thread->IsSuspendRequested(KThread::SuspendType_Debug), svc::ResultInvalidState());
/* If the thread's raw state isn't runnable, check if it's current on some core. */
if (thread->GetRawState() != KThread::ThreadState_Runnable) {
bool current = false;
for (auto i = 0; i < static_cast<s32>(cpu::NumCores); ++i) {
if (thread == Kernel::GetScheduler(i).GetSchedulerCurrentThread()) {
current = true;
}
break;
}
/* If the thread is current, retry until it isn't. */
if (current) {
continue;
}
}
/* Verify that the thread's svc state is valid. */
if (thread->IsCallingSvc()) {
R_UNLESS(thread->GetSvcId() != svc::SvcId_Break, svc::ResultInvalidState());
R_UNLESS(thread->GetSvcId() != svc::SvcId_ReturnFromException, svc::ResultInvalidState());
}
/* Set the thread context. */
return this->SetThreadContextImpl(ctx, thread, context_flags);
}
}
Result KDebugBase::ContinueDebug(const u32 flags, const u64 *thread_ids, size_t num_thread_ids) {
/* Get the attached process. */
KScopedAutoObject target = this->GetProcess();
R_UNLESS(target.IsNotNull(), svc::ResultProcessTerminated());
/* Lock both ourselves, the target process, and the scheduler. */
KScopedLightLock state_lk(target->GetStateLock());
KScopedLightLock list_lk(target->GetListLock());
KScopedLightLock this_lk(m_lock);
KScopedSchedulerLock sl;
/* Check that we're still attached to the process, and that it's not terminated. */
R_UNLESS(m_process == target.GetPointerUnsafe(), svc::ResultProcessTerminated());
R_UNLESS(!target->IsTerminated(), svc::ResultProcessTerminated());
/* Check that we have no pending events. */
R_UNLESS(m_event_info_list.empty(), svc::ResultBusy());
/* Clear the target's JIT debug info. */
target->ClearJitDebugInfo();
/* Set our continue flags. */
m_continue_flags = flags;
/* Iterate over threads, continuing them as we should. */
bool has_debug_break_thread = false;
{
/* Parse our flags. */
const bool exception_handled = (m_continue_flags & ams::svc::ContinueFlag_ExceptionHandled) != 0;
const bool continue_all = (m_continue_flags & ams::svc::ContinueFlag_ContinueAll) != 0;
const bool continue_others = (m_continue_flags & ams::svc::ContinueFlag_ContinueOthers) != 0;
/* Update each thread. */
auto end = target->GetThreadList().end();
for (auto it = target->GetThreadList().begin(); it != end; ++it) {
/* Determine if we should continue the thread. */
bool should_continue;
{
if (continue_all) {
/* Continue all threads. */
should_continue = true;
} else if (continue_others) {
/* Continue the thread if it doesn't match one of our target ids. */
const u64 thread_id = it->GetId();
should_continue = true;
for (size_t i = 0; i < num_thread_ids; ++i) {
if (thread_ids[i] == thread_id) {
should_continue = false;
break;
}
}
} else {
/* Continue the thread if it matches one of our target ids. */
const u64 thread_id = it->GetId();
should_continue = false;
for (size_t i = 0; i < num_thread_ids; ++i) {
if (thread_ids[i] == thread_id) {
should_continue = true;
break;
}
}
}
}
/* Continue the thread if we should. */
if (should_continue) {
if (exception_handled) {
it->SetDebugExceptionResult(svc::ResultStopProcessingException());
}
it->Resume(KThread::SuspendType_Debug);
}
/* If the thread has debug suspend requested, note so. */
if (it->IsSuspendRequested(KThread::SuspendType_Debug)) {
has_debug_break_thread = true;
}
}
}
/* Set the process's state. */
if (has_debug_break_thread) {
target->SetDebugBreak();
} else {
target->SetAttached();
}
return ResultSuccess();
}
KEventInfo *KDebugBase::CreateDebugEvent(ams::svc::DebugEvent event, uintptr_t param0, uintptr_t param1, uintptr_t param2, uintptr_t param3, uintptr_t param4, u64 cur_thread_id) {
/* Allocate a new event. */
KEventInfo *info = KEventInfo::Allocate();
/* Populate the event info. */
if (info != nullptr) {
/* Set common fields. */
info->event = event;
info->thread_id = 0;
info->flags = ams::svc::DebugEventFlag_Stopped;
/* Set event specific fields. */
switch (event) {
case ams::svc::DebugEvent_CreateProcess:
{
/* ... */
}
break;
case ams::svc::DebugEvent_CreateThread:
{
/* Set the thread id. */
info->thread_id = param0;
/* Set the thread creation info. */
info->info.create_thread.thread_id = param0;
info->info.create_thread.tls_address = param1;
}
break;
case ams::svc::DebugEvent_ExitProcess:
{
/* Set the exit reason. */
info->info.exit_process.reason = static_cast<ams::svc::ProcessExitReason>(param0);
/* Clear the thread id and flags. */
info->thread_id = 0;
info->flags = 0;
}
break;
case ams::svc::DebugEvent_ExitThread:
{
/* Set the thread id. */
info->thread_id = param0;
/* Set the exit reason. */
info->info.exit_thread.reason = static_cast<ams::svc::ThreadExitReason>(param1);
}
break;
case ams::svc::DebugEvent_Exception:
{
/* Set the thread id. */
info->thread_id = cur_thread_id;
/* Set the exception type, and clear the count. */
info->info.exception.exception_type = static_cast<ams::svc::DebugException>(param0);
info->info.exception.exception_data_count = 0;
switch (static_cast<ams::svc::DebugException>(param0)) {
case ams::svc::DebugException_UndefinedInstruction:
case ams::svc::DebugException_BreakPoint:
case ams::svc::DebugException_UndefinedSystemCall:
{
info->info.exception.exception_address = param1;
info->info.exception.exception_data_count = 1;
info->info.exception.exception_data[0] = param2;
}
break;
case ams::svc::DebugException_DebuggerAttached:
{
info->thread_id = 0;
info->info.exception.exception_address = 0;
}
break;
case ams::svc::DebugException_UserBreak:
{
info->info.exception.exception_address = param1;
info->info.exception.exception_data_count = 3;
info->info.exception.exception_data[0] = param2;
info->info.exception.exception_data[1] = param3;
info->info.exception.exception_data[2] = param4;
}
break;
case ams::svc::DebugException_DebuggerBreak:
{
info->thread_id = 0;
info->info.exception.exception_address = 0;
info->info.exception.exception_data_count = 4;
info->info.exception.exception_data[0] = param1;
info->info.exception.exception_data[1] = param2;
info->info.exception.exception_data[2] = param3;
info->info.exception.exception_data[3] = param4;
}
break;
case ams::svc::DebugException_MemorySystemError:
{
info->info.exception.exception_address = 0;
}
break;
case ams::svc::DebugException_InstructionAbort:
case ams::svc::DebugException_DataAbort:
case ams::svc::DebugException_AlignmentFault:
default:
{
info->info.exception.exception_address = param1;
}
break;
}
}
break;
}
}
return info;
}
void KDebugBase::PushDebugEvent(ams::svc::DebugEvent event, uintptr_t param0, uintptr_t param1, uintptr_t param2, uintptr_t param3, uintptr_t param4) {
/* Create and enqueue and event. */
if (KEventInfo *new_info = CreateDebugEvent(event, param0, param1, param2, param3, param4, GetCurrentThread().GetId()); new_info != nullptr) {
this->EnqueueDebugEventInfo(new_info);
}
}
void KDebugBase::EnqueueDebugEventInfo(KEventInfo *info) {
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Push the event to the back of the list. */
m_event_info_list.push_back(*info);
}
KScopedAutoObject<KProcess> KDebugBase::GetProcess() {
/* Lock ourselves. */
KScopedLightLock lk(m_lock);
return m_process;
}
template<typename T> requires (std::same_as<T, ams::svc::lp64::DebugEventInfo> || std::same_as<T, ams::svc::ilp32::DebugEventInfo>)
Result KDebugBase::GetDebugEventInfoImpl(T *out) {
/* Get the attached process. */
KScopedAutoObject process = this->GetProcess();
R_UNLESS(process.IsNotNull(), svc::ResultProcessTerminated());
/* Pop an event info from our queue. */
KEventInfo *info = nullptr;
{
KScopedSchedulerLock sl;
/* Check that we have an event to dequeue. */
R_UNLESS(!m_event_info_list.empty(), svc::ResultNoEvent());
/* Pop the event from the front of the queue. */
info = std::addressof(m_event_info_list.front());
m_event_info_list.pop_front();
}
MESOSPHERE_ASSERT(info != nullptr);
/* Free the event info once we're done with it. */
ON_SCOPE_EXIT { KEventInfo::Free(info); };
/* Set common fields. */
out->type = info->event;
out->thread_id = info->thread_id;
out->flags = info->flags;
/* Set event specific fields. */
switch (info->event) {
case ams::svc::DebugEvent_CreateProcess:
{
out->info.create_process.program_id = process->GetProgramId();
out->info.create_process.process_id = process->GetId();
out->info.create_process.flags = process->GetCreateProcessFlags();
out->info.create_process.user_exception_context_address = GetInteger(process->GetProcessLocalRegionAddress());
std::memcpy(out->info.create_process.name, process->GetName(), sizeof(out->info.create_process.name));
}
break;
case ams::svc::DebugEvent_CreateThread:
{
out->info.create_thread.thread_id = info->info.create_thread.thread_id;
out->info.create_thread.tls_address = info->info.create_thread.tls_address;
}
break;
case ams::svc::DebugEvent_ExitProcess:
{
out->info.exit_process.reason = info->info.exit_process.reason;
}
break;
case ams::svc::DebugEvent_ExitThread:
{
out->info.exit_thread.reason = info->info.exit_thread.reason;
}
break;
case ams::svc::DebugEvent_Exception:
{
out->info.exception.type = info->info.exception.exception_type;
out->info.exception.address = info->info.exception.exception_address;
switch (info->info.exception.exception_type) {
case ams::svc::DebugException_UndefinedInstruction:
{
MESOSPHERE_ASSERT(info->info.exception.exception_data_count == 1);
out->info.exception.specific.undefined_instruction.insn = info->info.exception.exception_data[0];
}
break;
case ams::svc::DebugException_BreakPoint:
{
MESOSPHERE_ASSERT(info->info.exception.exception_data_count == 1);
out->info.exception.specific.break_point.type = static_cast<ams::svc::BreakPointType>(info->info.exception.exception_data[0]);
out->info.exception.specific.break_point.address = 0;
}
break;
case ams::svc::DebugException_UserBreak:
{
MESOSPHERE_ASSERT(info->info.exception.exception_data_count == 3);
out->info.exception.specific.user_break.break_reason = static_cast<ams::svc::BreakReason>(info->info.exception.exception_data[0]);
out->info.exception.specific.user_break.address = info->info.exception.exception_data[1];
out->info.exception.specific.user_break.size = info->info.exception.exception_data[2];
}
break;
case ams::svc::DebugException_DebuggerBreak:
{
MESOSPHERE_ASSERT(info->info.exception.exception_data_count == 4);
out->info.exception.specific.debugger_break.active_thread_ids[0] = info->info.exception.exception_data[0];
out->info.exception.specific.debugger_break.active_thread_ids[1] = info->info.exception.exception_data[1];
out->info.exception.specific.debugger_break.active_thread_ids[2] = info->info.exception.exception_data[2];
out->info.exception.specific.debugger_break.active_thread_ids[3] = info->info.exception.exception_data[3];
}
break;
case ams::svc::DebugException_UndefinedSystemCall:
{
MESOSPHERE_ASSERT(info->info.exception.exception_data_count == 1);
out->info.exception.specific.undefined_system_call.id = info->info.exception.exception_data[0];
}
break;
default:
{
/* ... */
}
break;
}
}
break;
}
return ResultSuccess();
}
Result KDebugBase::GetDebugEventInfo(ams::svc::lp64::DebugEventInfo *out) {
return this->GetDebugEventInfoImpl(out);
}
Result KDebugBase::GetDebugEventInfo(ams::svc::ilp32::DebugEventInfo *out) {
return this->GetDebugEventInfoImpl(out);
}
void KDebugBase::OnFinalizeSynchronizationObject() {
/* Detach from our process, if we have one. */
{
/* Get the attached process. */
KScopedAutoObject process = this->GetProcess();
/* If the process isn't null, detach. */
if (process.IsNotNull()) {
/* When we're done detaching, clear the reference we opened when we attached. */
ON_SCOPE_EXIT { process->Close(); };
/* Detach. */
{
/* Lock both ourselves and the target process. */
KScopedLightLock state_lk(process->GetStateLock());
KScopedLightLock list_lk(process->GetListLock());
KScopedLightLock this_lk(m_lock);
/* Ensure we finalize exactly once. */
if (m_process != nullptr) {
MESOSPHERE_ASSERT(m_process == process.GetPointerUnsafe());
{
KScopedSchedulerLock sl;
/* Detach ourselves from the process. */
process->ClearDebugObject(m_old_process_state);
/* Release all threads. */
const bool resume = (process->GetState() != KProcess::State_Crashed);
{
auto end = process->GetThreadList().end();
for (auto it = process->GetThreadList().begin(); it != end; ++it) {
if (resume) {
/* If the process isn't crashed, resume threads. */
it->Resume(KThread::SuspendType_Debug);
} else {
/* Otherwise, suspend them. */
it->RequestSuspend(KThread::SuspendType_Debug);
}
}
}
/* Clear our process. */
m_process = nullptr;
}
}
}
}
}
/* Free any pending events. */
{
KScopedSchedulerLock sl;
while (!m_event_info_list.empty()) {
KEventInfo *info = std::addressof(m_event_info_list.front());
m_event_info_list.pop_front();
KEventInfo::Free(info);
}
}
}
bool KDebugBase::IsSignaled() const {
KScopedSchedulerLock sl;
return (!m_event_info_list.empty()) || m_process == nullptr || m_process->IsTerminated();
}
Result KDebugBase::ProcessDebugEvent(ams::svc::DebugEvent event, uintptr_t param0, uintptr_t param1, uintptr_t param2, uintptr_t param3, uintptr_t param4) {
/* Get the current process. */
KProcess *process = GetCurrentProcessPointer();
/* If the event is CreateThread and we've already attached, there's nothing to do. */
if (event == ams::svc::DebugEvent_CreateThread) {
R_SUCCEED_IF(GetCurrentThread().IsAttachedToDebugger());
}
while (true) {
/* Lock the process and the scheduler. */
KScopedLightLock state_lk(process->GetStateLock());
KScopedLightLock list_lk(process->GetListLock());
KScopedSchedulerLock sl;
/* If the current thread is terminating, we can't process an event. */
R_SUCCEED_IF(GetCurrentThread().IsTerminationRequested());
/* Get the debug object. If we have none, there's nothing to process. */
KDebugBase *debug = GetDebugObject(process);
R_SUCCEED_IF(debug == nullptr);
/* If the event is an exception and we don't have exception events enabled, we can't handle the event. */
if (event == ams::svc::DebugEvent_Exception && (debug->m_continue_flags & ams::svc::ContinueFlag_EnableExceptionEvent) == 0) {
GetCurrentThread().SetDebugExceptionResult(ResultSuccess());
return svc::ResultNotHandled();
}
/* If the current thread is suspended, retry. */
if (GetCurrentThread().IsSuspended()) {
continue;
}
/* Suspend all the process's threads. */
{
auto end = process->GetThreadList().end();
for (auto it = process->GetThreadList().begin(); it != end; ++it) {
it->RequestSuspend(KThread::SuspendType_Debug);
}
}
/* Push the event. */
debug->PushDebugEvent(event, param0, param1, param2, param3, param4);
debug->NotifyAvailable();
/* Set the process as breaked. */
process->SetDebugBreak();
/* If the event is an exception, set the result. */
if (event == ams::svc::DebugEvent_Exception) {
GetCurrentThread().SetDebugExceptionResult(ResultSuccess());
}
/* Exit our retry loop. */
break;
}
/* If the event is an exception, get the exception result. */
if (event == ams::svc::DebugEvent_Exception) {
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* If the thread is terminating, we can't process the exception. */
R_UNLESS(!GetCurrentThread().IsTerminationRequested(), svc::ResultStopProcessingException());
/* Get the debug object. */
if (KDebugBase *debug = GetDebugObject(process); debug != nullptr) {
/* If we have one, check the debug exception. */
return GetCurrentThread().GetDebugExceptionResult();
} else {
/* We don't have a debug object, so stop processing the exception. */
return svc::ResultStopProcessingException();
}
}
return ResultSuccess();
}
Result KDebugBase::OnDebugEvent(ams::svc::DebugEvent event, uintptr_t param0, uintptr_t param1, uintptr_t param2, uintptr_t param3, uintptr_t param4) {
if (KProcess *process = GetCurrentProcessPointer(); process != nullptr && process->IsAttachedToDebugger()) {
return ProcessDebugEvent(event, param0, param1, param2, param3, param4);
}
return ResultSuccess();
}
Result KDebugBase::OnExitProcess(KProcess *process) {
MESOSPHERE_ASSERT(process != nullptr);
/* Check if we're attached to a debugger. */
if (process->IsAttachedToDebugger()) {
/* If we are, lock the scheduler. */
KScopedSchedulerLock sl;
/* Push the event. */
if (KDebugBase *debug = GetDebugObject(process); debug != nullptr) {
debug->PushDebugEvent(ams::svc::DebugEvent_ExitProcess, ams::svc::ProcessExitReason_ExitProcess);
debug->NotifyAvailable();
}
}
return ResultSuccess();
}
Result KDebugBase::OnTerminateProcess(KProcess *process) {
MESOSPHERE_ASSERT(process != nullptr);
/* Check if we're attached to a debugger. */
if (process->IsAttachedToDebugger()) {
/* If we are, lock the scheduler. */
KScopedSchedulerLock sl;
/* Push the event. */
if (KDebugBase *debug = GetDebugObject(process); debug != nullptr) {
debug->PushDebugEvent(ams::svc::DebugEvent_ExitProcess, ams::svc::ProcessExitReason_TerminateProcess);
debug->NotifyAvailable();
}
}
return ResultSuccess();
}
Result KDebugBase::OnExitThread(KThread *thread) {
MESOSPHERE_ASSERT(thread != nullptr);
/* Check if we're attached to a debugger. */
if (KProcess *process = thread->GetOwnerProcess(); process != nullptr && process->IsAttachedToDebugger()) {
/* If we are, submit the event. */
R_TRY(OnDebugEvent(ams::svc::DebugEvent_ExitThread, thread->GetId(), thread->IsTerminationRequested() ? ams::svc::ThreadExitReason_TerminateThread : ams::svc::ThreadExitReason_ExitThread));
}
return ResultSuccess();
}
}