1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-26 13:52:21 +00:00
Atmosphere/libraries/libmesosphere/source/kern_initial_process.cpp

344 lines
18 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
struct InitialProcessInfo {
KProcess *process;
size_t stack_size;
s32 priority;
};
constinit KPhysicalAddress g_initial_process_binary_phys_addr = Null<KPhysicalAddress>;
constinit KVirtualAddress g_initial_process_binary_address = Null<KVirtualAddress>;
constinit InitialProcessBinaryHeader g_initial_process_binary_header = {};
constinit size_t g_initial_process_secure_memory_size = 0;
constinit u64 g_initial_process_id_min = std::numeric_limits<u64>::max();
constinit u64 g_initial_process_id_max = std::numeric_limits<u64>::min();
void LoadInitialProcessBinaryHeader() {
if (g_initial_process_binary_header.magic != InitialProcessBinaryMagic) {
/* Get the virtual address. */
MESOSPHERE_INIT_ABORT_UNLESS(g_initial_process_binary_phys_addr != Null<KPhysicalAddress>);
const KVirtualAddress virt_addr = KMemoryLayout::GetLinearVirtualAddress(g_initial_process_binary_phys_addr);
/* Copy and validate the header. */
g_initial_process_binary_header = *GetPointer<InitialProcessBinaryHeader>(virt_addr);
MESOSPHERE_ABORT_UNLESS(g_initial_process_binary_header.magic == InitialProcessBinaryMagic);
MESOSPHERE_ABORT_UNLESS(g_initial_process_binary_header.num_processes <= init::GetSlabResourceCounts().num_KProcess);
/* Set the image address. */
g_initial_process_binary_address = virt_addr;
/* Process/calculate the secure memory size. */
KVirtualAddress current = g_initial_process_binary_address + sizeof(InitialProcessBinaryHeader);
const KVirtualAddress end = g_initial_process_binary_address + g_initial_process_binary_header.size;
const size_t num_processes = g_initial_process_binary_header.num_processes;
for (size_t i = 0; i < num_processes; ++i) {
/* Validate that we can read the current KIP. */
MESOSPHERE_ABORT_UNLESS(current <= end - sizeof(KInitialProcessHeader));
/* Attach to the current KIP. */
KInitialProcessReader reader;
KVirtualAddress data = reader.Attach(current);
MESOSPHERE_ABORT_UNLESS(data != Null<KVirtualAddress>);
/* If the process uses secure memory, account for that. */
if (reader.UsesSecureMemory()) {
g_initial_process_secure_memory_size += reader.GetSize() + util::AlignUp(reader.GetStackSize(), PageSize);
}
/* Advance to the next KIP. */
current = data + reader.GetBinarySize();
}
}
}
void CreateProcesses(InitialProcessInfo *infos) {
/* Determine process image extents. */
KVirtualAddress current = g_initial_process_binary_address + sizeof(InitialProcessBinaryHeader);
KVirtualAddress end = g_initial_process_binary_address + g_initial_process_binary_header.size;
/* Decide on pools to use. */
const auto unsafe_pool = static_cast<KMemoryManager::Pool>(KSystemControl::GetCreateProcessMemoryPool());
const auto secure_pool = (GetTargetFirmware() >= TargetFirmware_2_0_0) ? KMemoryManager::Pool_Secure : unsafe_pool;
const size_t num_processes = g_initial_process_binary_header.num_processes;
for (size_t i = 0; i < num_processes; ++i) {
/* Validate that we can read the current KIP header. */
MESOSPHERE_ABORT_UNLESS(current <= end - sizeof(KInitialProcessHeader));
/* Attach to the current kip. */
KInitialProcessReader reader;
KVirtualAddress data = reader.Attach(current);
MESOSPHERE_ABORT_UNLESS(data != Null<KVirtualAddress>);
/* Ensure that the remainder of our parse is page aligned. */
if (!util::IsAligned(GetInteger(data), PageSize)) {
const KVirtualAddress aligned_data = util::AlignDown(GetInteger(data), PageSize);
std::memmove(GetVoidPointer(aligned_data), GetVoidPointer(data), end - data);
data = aligned_data;
end -= (data - aligned_data);
}
/* If we crossed a page boundary, free the pages we're done using. */
if (KVirtualAddress aligned_current = util::AlignDown(GetInteger(current), PageSize); aligned_current != data) {
const size_t freed_size = data - aligned_current;
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(aligned_current), freed_size / PageSize);
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, freed_size);
}
/* Parse process parameters. */
ams::svc::CreateProcessParameter params;
MESOSPHERE_R_ABORT_UNLESS(reader.MakeCreateProcessParameter(std::addressof(params), true));
/* Get the binary size for the kip. */
const size_t binary_size = reader.GetBinarySize();
const size_t binary_pages = binary_size / PageSize;
/* Get the pool for both the current (compressed) image, and the decompressed process. */
const auto src_pool = Kernel::GetMemoryManager().GetPool(KMemoryLayout::GetLinearPhysicalAddress(data));
const auto dst_pool = reader.UsesSecureMemory() ? secure_pool : unsafe_pool;
/* Determine the process size, and how much memory isn't already reserved. */
const size_t process_size = params.code_num_pages * PageSize;
const size_t unreserved_size = process_size - (src_pool == dst_pool ? util::AlignDown(binary_size, PageSize) : 0);
/* Reserve however much memory we need to reserve. */
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, unreserved_size));
/* Create the process. */
KProcess *new_process = nullptr;
{
/* Make page groups to represent the data. */
KPageGroup pg(std::addressof(Kernel::GetSystemBlockInfoManager()));
KPageGroup workaround_pg(std::addressof(Kernel::GetSystemBlockInfoManager()));
/* Populate the page group to represent the data. */
{
/* Allocate the previously unreserved pages. */
KPageGroup unreserve_pg(std::addressof(Kernel::GetSystemBlockInfoManager()));
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetMemoryManager().AllocateAndOpen(std::addressof(unreserve_pg), unreserved_size / PageSize, KMemoryManager::EncodeOption(dst_pool, KMemoryManager::Direction_FromFront)));
/* Add the previously reserved pages. */
if (src_pool == dst_pool && binary_pages != 0) {
/* NOTE: Nintendo does not check the result of this operation. */
pg.AddBlock(KMemoryLayout::GetLinearPhysicalAddress(data), binary_pages);
}
/* Add the previously unreserved pages. */
for (const auto &block : unreserve_pg) {
/* NOTE: Nintendo does not check the result of this operation. */
pg.AddBlock(block.GetAddress(), block.GetNumPages());
}
}
MESOSPHERE_ABORT_UNLESS(pg.GetNumPages() == static_cast<size_t>(params.code_num_pages));
/* Ensure that we do not leak pages. */
KPageGroup *process_pg = std::addressof(pg);
ON_SCOPE_EXIT { process_pg->Close(); };
/* Get the temporary region. */
const auto &temp_region = KMemoryLayout::GetTempRegion();
MESOSPHERE_ABORT_UNLESS(temp_region.GetEndAddress() != 0);
/* Map the process's memory into the temporary region. */
KProcessAddress temp_address = Null<KProcessAddress>;
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetKernelPageTable().MapPageGroup(std::addressof(temp_address), pg, temp_region.GetAddress(), temp_region.GetSize() / PageSize, KMemoryState_Kernel, KMemoryPermission_KernelReadWrite));
/* Setup the new page group's memory, so that we can load the process. */
{
/* Copy the unaligned ending of the compressed binary. */
if (const size_t unaligned_size = binary_size - util::AlignDown(binary_size, PageSize); unaligned_size != 0) {
std::memcpy(GetVoidPointer(temp_address + process_size - unaligned_size), GetVoidPointer(data + binary_size - unaligned_size), unaligned_size);
}
/* Copy the aligned part of the compressed binary. */
if (const size_t aligned_size = util::AlignDown(binary_size, PageSize); aligned_size != 0 && src_pool == dst_pool) {
std::memmove(GetVoidPointer(temp_address + process_size - binary_size), GetVoidPointer(temp_address), aligned_size);
} else {
if (src_pool != dst_pool) {
std::memcpy(GetVoidPointer(temp_address + process_size - binary_size), GetVoidPointer(data), aligned_size);
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(data), aligned_size / PageSize);
}
}
/* Clear the first part of the memory. */
std::memset(GetVoidPointer(temp_address), 0, process_size - binary_size);
}
/* Load the process. */
MESOSPHERE_R_ABORT_UNLESS(reader.Load(temp_address, params, temp_address + process_size - binary_size));
/* Unmap the temporary mapping. */
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetKernelPageTable().UnmapPageGroup(temp_address, pg, KMemoryState_Kernel));
/* Create a KProcess object. */
new_process = KProcess::Create();
MESOSPHERE_ABORT_UNLESS(new_process != nullptr);
/* Ensure the page group is usable for the process. */
/* If the pool is the same, we need to use the workaround page group. */
if (src_pool == dst_pool) {
/* Allocate a new, usable group for the process. */
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetMemoryManager().AllocateAndOpen(std::addressof(workaround_pg), static_cast<size_t>(params.code_num_pages), KMemoryManager::EncodeOption(dst_pool, KMemoryManager::Direction_FromFront)));
/* Copy data from the working page group to the usable one. */
auto work_it = pg.begin();
MESOSPHERE_ABORT_UNLESS(work_it != pg.end());
{
auto work_address = work_it->GetAddress();
auto work_remaining = work_it->GetNumPages();
for (const auto &block : workaround_pg) {
auto block_address = block.GetAddress();
auto block_remaining = block.GetNumPages();
while (block_remaining > 0) {
if (work_remaining == 0) {
++work_it;
work_address = work_it->GetAddress();
work_remaining = work_it->GetNumPages();
}
const size_t cur_pages = std::min(block_remaining, work_remaining);
const size_t cur_size = cur_pages * PageSize;
std::memcpy(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block_address)), GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(work_address)), cur_size);
block_address += cur_size;
work_address += cur_size;
block_remaining -= cur_pages;
work_remaining -= cur_pages;
}
}
++work_it;
}
MESOSPHERE_ABORT_UNLESS(work_it == pg.end());
/* We want to use the new page group. */
process_pg = std::addressof(workaround_pg);
pg.Close();
}
/* Initialize the process. */
MESOSPHERE_R_ABORT_UNLESS(new_process->Initialize(params, *process_pg, reader.GetCapabilities(), reader.GetNumCapabilities(), std::addressof(Kernel::GetSystemResourceLimit()), dst_pool, reader.IsImmortal()));
}
/* Release the memory that was previously reserved. */
if (const size_t aligned_bin_size = util::AlignDown(binary_size, PageSize); aligned_bin_size != 0 && src_pool != dst_pool) {
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, aligned_bin_size);
}
/* Set the process's memory permissions. */
MESOSPHERE_R_ABORT_UNLESS(reader.SetMemoryPermissions(new_process->GetPageTable(), params));
/* Register the process. */
KProcess::Register(new_process);
/* Set the ideal core id. */
new_process->SetIdealCoreId(reader.GetIdealCoreId());
/* Save the process info. */
infos[i].process = new_process;
infos[i].stack_size = reader.GetStackSize();
infos[i].priority = reader.GetPriority();
/* Advance the reader. */
current = data + binary_size;
}
/* Release remaining memory used by the image. */
{
const size_t remaining_size = util::AlignUp(GetInteger(g_initial_process_binary_address) + g_initial_process_binary_header.size, PageSize) - util::AlignDown(GetInteger(current), PageSize);
const size_t remaining_pages = remaining_size / PageSize;
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(util::AlignDown(GetInteger(current), PageSize)), remaining_pages);
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_PhysicalMemoryMax, remaining_size);
}
}
}
void SetInitialProcessBinaryPhysicalAddress(KPhysicalAddress phys_addr) {
MESOSPHERE_INIT_ABORT_UNLESS(g_initial_process_binary_phys_addr == Null<KPhysicalAddress>);
g_initial_process_binary_phys_addr = phys_addr;
}
KPhysicalAddress GetInitialProcessBinaryPhysicalAddress() {
MESOSPHERE_INIT_ABORT_UNLESS(g_initial_process_binary_phys_addr != Null<KPhysicalAddress>);
return g_initial_process_binary_phys_addr;
}
u64 GetInitialProcessIdMin() {
return g_initial_process_id_min;
}
u64 GetInitialProcessIdMax() {
return g_initial_process_id_max;
}
size_t GetInitialProcessesSecureMemorySize() {
LoadInitialProcessBinaryHeader();
return g_initial_process_secure_memory_size;
}
size_t CopyInitialProcessBinaryToKernelMemory() {
LoadInitialProcessBinaryHeader();
if (g_initial_process_binary_header.num_processes > 0) {
/* Reserve pages for the initial process binary from the system resource limit. */
const size_t total_size = util::AlignUp(g_initial_process_binary_header.size, PageSize);
MESOSPHERE_ABORT_UNLESS(Kernel::GetSystemResourceLimit().Reserve(ams::svc::LimitableResource_PhysicalMemoryMax, total_size));
/* The initial process binary is potentially over-allocated, so free any extra pages. */
if (total_size < InitialProcessBinarySizeMax) {
Kernel::GetMemoryManager().Close(KMemoryLayout::GetLinearPhysicalAddress(g_initial_process_binary_address + total_size), (InitialProcessBinarySizeMax - total_size) / PageSize);
}
return total_size;
} else {
return 0;
}
}
void CreateAndRunInitialProcesses() {
/* Allocate space for the processes. */
InitialProcessInfo *infos = static_cast<InitialProcessInfo *>(__builtin_alloca(sizeof(InitialProcessInfo) * g_initial_process_binary_header.num_processes));
/* Create the processes. */
CreateProcesses(infos);
/* Determine the initial process id range. */
for (size_t i = 0; i < g_initial_process_binary_header.num_processes; i++) {
const auto pid = infos[i].process->GetId();
g_initial_process_id_min = std::min(g_initial_process_id_min, pid);
g_initial_process_id_max = std::max(g_initial_process_id_max, pid);
}
/* Run the processes. */
for (size_t i = 0; i < g_initial_process_binary_header.num_processes; i++) {
MESOSPHERE_R_ABORT_UNLESS(infos[i].process->Run(infos[i].priority, infos[i].stack_size));
infos[i].process->Close();
}
}
}