1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-05 19:51:45 +00:00
Atmosphere/stratosphere/dmnt/source/dmnt_cheat_vm.cpp
2019-03-03 06:44:21 -08:00

402 lines
No EOL
17 KiB
C++

/*
* Copyright (c) 2018 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <switch.h>
#include "dmnt_cheat_types.hpp"
#include "dmnt_cheat_vm.hpp"
#include "dmnt_cheat_manager.hpp"
bool DmntCheatVm::DecodeNextOpcode(CheatVmOpcode *out) {
/* If we've ever seen a decode failure, return true. */
bool valid = this->decode_success;
CheatVmOpcode opcode = {};
ON_SCOPE_EXIT {
this->decode_success &= valid;
if (valid) {
*out = opcode;
}
};
/* If we have ever seen a decode failure, don't decode any more. */
if (!valid) {
return valid;
}
/* Validate instruction pointer. */
if (this->instruction_ptr >= this->num_opcodes) {
valid = false;
return valid;
}
/* Read opcode. */
const u32 first_dword = this->program[this->instruction_ptr++];
opcode.opcode = (CheatVmOpcodeType)(((first_dword >> 28) & 0xF));
switch (opcode.opcode) {
case CheatVmOpcodeType_StoreStatic:
{
/* TODO */
}
break;
case CheatVmOpcodeType_BeginConditionalBlock:
{
/* TODO */
}
break;
case CheatVmOpcodeType_EndConditionalBlock:
{
/* There's actually nothing left to process here! */
}
break;
case CheatVmOpcodeType_ControlLoop:
{
/* TODO */
}
break;
case CheatVmOpcodeType_LoadRegisterStatic:
{
/* TODO */
}
break;
case CheatVmOpcodeType_LoadRegisterMemory:
{
/* TODO */
}
break;
case CheatVmOpcodeType_StoreToRegisterAddress:
{
/* TODO */
}
break;
case CheatVmOpcodeType_PerformArithmeticStatic:
{
/* TODO */
}
break;
case CheatVmOpcodeType_BeginKeypressConditionalBlock:
{
/* TODO */
}
break;
case CheatVmOpcodeType_PerformArithmeticRegister:
{
/* TODO */
}
break;
default:
/* Unrecognized instruction cannot be decoded. */
valid = false;
break;
}
/* End decoding. */
return valid;
}
void DmntCheatVm::SkipConditionalBlock() {
CheatVmOpcode skip_opcode;
while (this->DecodeNextOpcode(&skip_opcode)) {
/* Decode instructions until we see end of conditional block. */
/* NOTE: This is broken in gateway's implementation. */
/* Gateway currently checks for "0x2" instead of "0x20000000" */
/* In addition, they do a linear scan instead of correctly decoding opcodes. */
/* This causes issues if "0x2" appears as an immediate in the conditional block... */
if (skip_opcode.opcode == CheatVmOpcodeType_EndConditionalBlock) {
break;
}
}
}
u64 DmntCheatVm::GetVmInt(VmInt value, u32 bit_width) {
switch (bit_width) {
case 1:
return value.bit8;
case 2:
return value.bit16;
case 4:
return value.bit32;
case 8:
return value.bit64;
default:
/* Invalid bit width -> return 0. */
return 0;
}
}
u64 DmntCheatVm::GetCheatProcessAddress(const CheatProcessMetadata* metadata, MemoryAccessType mem_type, u64 rel_address) {
switch (mem_type) {
case MemoryAccessType_MainNso:
default:
return metadata->main_nso_extents.base + rel_address;
case MemoryAccessType_Heap:
return metadata->heap_extents.base + rel_address;
}
}
void DmntCheatVm::ResetState() {
for (size_t i = 0; i < DmntCheatVm::NumRegisters; i++) {
this->registers[i] = 0;
this->loop_tops[i] = 0;
}
this->instruction_ptr = 0;
this->decode_success = true;
}
void DmntCheatVm::Execute(const CheatProcessMetadata *metadata) {
CheatVmOpcode cur_opcode;
u64 kDown = 0;
/* TODO: Get Keys down. */
/* Clear VM state. */
this->ResetState();
/* Loop until program finishes. */
while (this->DecodeNextOpcode(&cur_opcode)) {
switch (cur_opcode.opcode) {
case CheatVmOpcodeType_StoreStatic:
{
/* Calculate address, write value to memory. */
u64 dst_address = GetCheatProcessAddress(metadata, cur_opcode.store_static.mem_type, cur_opcode.store_static.rel_address + this->registers[cur_opcode.store_static.offset_register]);
u64 dst_value = GetVmInt(cur_opcode.store_static.value, cur_opcode.store_static.bit_width);
switch (cur_opcode.store_static.bit_width) {
case 1:
case 2:
case 4:
case 8:
DmntCheatManager::WriteCheatProcessMemoryForVm(dst_address, &dst_value, cur_opcode.store_static.bit_width);
break;
}
}
break;
case CheatVmOpcodeType_BeginConditionalBlock:
{
/* Read value from memory. */
u64 src_address = GetCheatProcessAddress(metadata, cur_opcode.begin_cond.mem_type, cur_opcode.begin_cond.rel_address);
u64 src_value = 0;
switch (cur_opcode.store_static.bit_width) {
case 1:
case 2:
case 4:
case 8:
DmntCheatManager::ReadCheatProcessMemoryForVm(src_address, &src_value, cur_opcode.begin_cond.bit_width);
break;
}
/* Check against condition. */
u64 cond_value = GetVmInt(cur_opcode.begin_cond.value, cur_opcode.begin_cond.bit_width);
bool cond_met = false;
switch (cur_opcode.begin_cond.cond_type) {
case ConditionalComparisonType_GT:
cond_met = src_value > cond_value;
break;
case ConditionalComparisonType_GE:
cond_met = src_value >= cond_value;
break;
case ConditionalComparisonType_LT:
cond_met = src_value < cond_value;
break;
case ConditionalComparisonType_LE:
cond_met = src_value <= cond_value;
break;
case ConditionalComparisonType_EQ:
cond_met = src_value == cond_value;
break;
case ConditionalComparisonType_NE:
cond_met = src_value != cond_value;
break;
}
/* Skip conditional block if condition not met. */
if (!cond_met) {
this->SkipConditionalBlock();
}
}
break;
case CheatVmOpcodeType_EndConditionalBlock:
/* There is nothing to do here. Just move on to the next instruction. */
break;
case CheatVmOpcodeType_ControlLoop:
if (cur_opcode.ctrl_loop.start_loop) {
/* Start a loop. */
this->registers[cur_opcode.ctrl_loop.reg_index] = cur_opcode.ctrl_loop.num_iters;
this->loop_tops[cur_opcode.ctrl_loop.reg_index] = this->instruction_ptr;
} else {
/* End a loop. */
this->registers[cur_opcode.ctrl_loop.reg_index]--;
if (this->registers[cur_opcode.ctrl_loop.reg_index] != 0) {
this->instruction_ptr = this->loop_tops[cur_opcode.ctrl_loop.reg_index];
}
}
break;
case CheatVmOpcodeType_LoadRegisterStatic:
/* Set a register to a static value. */
this->registers[cur_opcode.ldr_static.reg_index] = cur_opcode.ldr_static.value;
break;
case CheatVmOpcodeType_LoadRegisterMemory:
{
/* Choose source address. */
u64 src_address;
if (cur_opcode.ldr_memory.load_from_reg) {
src_address = this->registers[cur_opcode.ldr_memory.reg_index] + cur_opcode.ldr_memory.rel_address;
} else {
src_address = GetCheatProcessAddress(metadata, cur_opcode.ldr_memory.mem_type, cur_opcode.ldr_memory.rel_address);
}
/* Read into register. Gateway only reads on valid bitwidth. */
switch (cur_opcode.ldr_memory.bit_width) {
case 1:
case 2:
case 4:
case 8:
DmntCheatManager::ReadCheatProcessMemoryForVm(src_address, &this->registers[cur_opcode.ldr_memory.reg_index], cur_opcode.ldr_memory.bit_width);
break;
}
}
break;
case CheatVmOpcodeType_StoreToRegisterAddress:
{
/* Calculate address. */
u64 dst_address = this->registers[cur_opcode.str_regaddr.reg_index];
u64 dst_value = cur_opcode.str_regaddr.value;
if (cur_opcode.str_regaddr.add_offset_reg) {
dst_address += this->registers[cur_opcode.str_regaddr.offset_reg_index];
}
/* Write value to memory. Gateway only writes on valid bitwidth. */
switch (cur_opcode.str_regaddr.bit_width) {
case 1:
case 2:
case 4:
case 8:
DmntCheatManager::WriteCheatProcessMemoryForVm(dst_address, &dst_value, cur_opcode.str_regaddr.bit_width);
break;
}
/* Increment register if relevant. */
if (cur_opcode.str_regaddr.increment_reg) {
this->registers[cur_opcode.str_regaddr.reg_index] += cur_opcode.str_regaddr.bit_width;
}
}
break;
case CheatVmOpcodeType_PerformArithmeticStatic:
{
/* Do requested math. */
switch (cur_opcode.perform_math_static.math_type) {
case RegisterArithmeticType_Addition:
this->registers[cur_opcode.perform_math_static.reg_index] += (u64)cur_opcode.perform_math_static.value;
break;
case RegisterArithmeticType_Subtraction:
this->registers[cur_opcode.perform_math_static.reg_index] -= (u64)cur_opcode.perform_math_static.value;
break;
case RegisterArithmeticType_Multiplication:
this->registers[cur_opcode.perform_math_static.reg_index] *= (u64)cur_opcode.perform_math_static.value;
break;
case RegisterArithmeticType_LeftShift:
this->registers[cur_opcode.perform_math_static.reg_index] <<= (u64)cur_opcode.perform_math_static.value;
break;
case RegisterArithmeticType_RightShift:
this->registers[cur_opcode.perform_math_static.reg_index] >>= (u64)cur_opcode.perform_math_static.value;
break;
default:
/* Do not handle extensions here. */
break;
}
/* Apply bit width. */
switch (cur_opcode.perform_math_static.bit_width) {
case 1:
this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u8>(this->registers[cur_opcode.perform_math_static.reg_index]);
break;
case 2:
this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u16>(this->registers[cur_opcode.perform_math_static.reg_index]);
break;
case 4:
this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u32>(this->registers[cur_opcode.perform_math_static.reg_index]);
break;
case 8:
this->registers[cur_opcode.perform_math_static.reg_index] = static_cast<u64>(this->registers[cur_opcode.perform_math_static.reg_index]);
break;
}
}
break;
case CheatVmOpcodeType_BeginKeypressConditionalBlock:
/* Check for keypress. */
if ((cur_opcode.begin_keypress_cond.key_mask & kDown) != cur_opcode.begin_keypress_cond.key_mask) {
/* Keys not pressed. Skip conditional block. */
this->SkipConditionalBlock();
}
break;
case CheatVmOpcodeType_PerformArithmeticRegister:
{
const u64 operand_1_value = this->registers[cur_opcode.perform_math_reg.src_reg_1_index];
const u64 operand_2_value = cur_opcode.perform_math_reg.has_immediate ?
GetVmInt(cur_opcode.perform_math_reg.value, cur_opcode.perform_math_reg.bit_width) :
this->registers[cur_opcode.perform_math_reg.src_reg_2_index];
u64 res_val = 0;
/* Do requested math. */
switch (cur_opcode.perform_math_reg.math_type) {
case RegisterArithmeticType_Addition:
res_val = operand_1_value + operand_2_value;
break;
case RegisterArithmeticType_Subtraction:
res_val = operand_1_value - operand_2_value;
break;
case RegisterArithmeticType_Multiplication:
res_val = operand_1_value * operand_2_value;
break;
case RegisterArithmeticType_LeftShift:
res_val = operand_1_value << operand_2_value;
break;
case RegisterArithmeticType_RightShift:
res_val = operand_1_value >> operand_2_value;
break;
case RegisterArithmeticType_LogicalAnd:
res_val = operand_1_value & operand_2_value;
break;
case RegisterArithmeticType_LogicalOr:
res_val = operand_1_value | operand_2_value;
break;
case RegisterArithmeticType_LogicalNot:
res_val = ~operand_1_value;
break;
case RegisterArithmeticType_LogicalXor:
res_val = operand_1_value ^ operand_2_value;
break;
case RegisterArithmeticType_None:
res_val = operand_1_value;
break;
}
/* Apply bit width. */
switch (cur_opcode.perform_math_reg.bit_width) {
case 1:
res_val = static_cast<u8>(res_val);
break;
case 2:
res_val = static_cast<u16>(res_val);
break;
case 4:
res_val = static_cast<u32>(res_val);
break;
case 8:
res_val = static_cast<u64>(res_val);
break;
}
/* Save to register. */
this->registers[cur_opcode.perform_math_reg.dst_reg_index] = res_val;
}
break;
}
}
}