1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-10 11:26:15 +00:00
Atmosphere/libraries/libmesosphere/include/mesosphere/kern_k_thread.hpp
2023-02-23 22:00:00 -07:00

812 lines
43 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <mesosphere/kern_svc.hpp>
#include <mesosphere/kern_slab_helpers.hpp>
#include <mesosphere/kern_k_synchronization_object.hpp>
#include <mesosphere/kern_k_affinity_mask.hpp>
#include <mesosphere/kern_k_thread_context.hpp>
#include <mesosphere/kern_k_current_context.hpp>
#include <mesosphere/kern_k_timer_task.hpp>
#include <mesosphere/kern_k_worker_task.hpp>
namespace ams::kern {
class KThreadQueue;
class KProcess;
class KConditionVariable;
class KAddressArbiter;
using KThreadFunction = void (*)(uintptr_t);
class KThread final : public KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>, public util::IntrusiveListBaseNode<KThread>, public KTimerTask {
MESOSPHERE_AUTOOBJECT_TRAITS(KThread, KSynchronizationObject);
private:
friend class KProcess;
friend class KConditionVariable;
friend class KAddressArbiter;
friend class KThreadQueue;
public:
static constexpr s32 MainThreadPriority = 1;
static constexpr s32 IdleThreadPriority = 64;
enum ThreadType : u32 {
ThreadType_Main = 0,
ThreadType_Kernel = 1,
ThreadType_HighPriority = 2,
ThreadType_User = 3,
};
enum SuspendType : u32 {
SuspendType_Process = 0,
SuspendType_Thread = 1,
SuspendType_Debug = 2,
SuspendType_Backtrace = 3,
SuspendType_Init = 4,
SuspendType_Count,
};
enum ThreadState : u16 {
ThreadState_Initialized = 0,
ThreadState_Waiting = 1,
ThreadState_Runnable = 2,
ThreadState_Terminated = 3,
ThreadState_SuspendShift = 4,
ThreadState_Mask = (1 << ThreadState_SuspendShift) - 1,
ThreadState_ProcessSuspended = (1 << (SuspendType_Process + ThreadState_SuspendShift)),
ThreadState_ThreadSuspended = (1 << (SuspendType_Thread + ThreadState_SuspendShift)),
ThreadState_DebugSuspended = (1 << (SuspendType_Debug + ThreadState_SuspendShift)),
ThreadState_BacktraceSuspended = (1 << (SuspendType_Backtrace + ThreadState_SuspendShift)),
ThreadState_InitSuspended = (1 << (SuspendType_Init + ThreadState_SuspendShift)),
ThreadState_SuspendFlagMask = ((1 << SuspendType_Count) - 1) << ThreadState_SuspendShift,
};
enum DpcFlag : u32 {
DpcFlag_Terminating = (1 << 0),
DpcFlag_Terminated = (1 << 1),
DpcFlag_PerformDestruction = (1 << 2),
};
enum ExceptionFlag : u32 {
ExceptionFlag_IsCallingSvc = (1 << 0),
ExceptionFlag_IsInExceptionHandler = (1 << 1),
ExceptionFlag_IsFpuContextRestoreNeeded = (1 << 2),
ExceptionFlag_IsFpu64Bit = (1 << 3),
ExceptionFlag_IsInUsermodeExceptionHandler = (1 << 4),
ExceptionFlag_IsInCacheMaintenanceOperation = (1 << 5),
ExceptionFlag_IsInTlbMaintenanceOperation = (1 << 6),
#if defined(MESOSPHERE_ENABLE_HARDWARE_SINGLE_STEP)
ExceptionFlag_IsHardwareSingleStep = (1 << 7),
#endif
};
struct StackParameters {
svc::SvcAccessFlagSet svc_access_flags;
KThreadContext::CallerSaveFpuRegisters *caller_save_fpu_registers;
KThread *cur_thread;
s16 disable_count;
util::Atomic<u8> dpc_flags;
u8 current_svc_id;
u8 reserved_2c;
u8 exception_flags;
bool is_pinned;
u8 reserved_2f;
u8 reserved_30[0x10];
KThreadContext context;
};
static_assert(util::IsAligned(AMS_OFFSETOF(StackParameters, context), 0x10));
static_assert(sizeof(StackParameters) == THREAD_STACK_PARAMETERS_SIZE);
static_assert(AMS_OFFSETOF(StackParameters, svc_access_flags) == THREAD_STACK_PARAMETERS_SVC_PERMISSION);
static_assert(AMS_OFFSETOF(StackParameters, caller_save_fpu_registers) == THREAD_STACK_PARAMETERS_CALLER_SAVE_FPU_REGISTERS);
static_assert(AMS_OFFSETOF(StackParameters, cur_thread) == THREAD_STACK_PARAMETERS_CUR_THREAD);
static_assert(AMS_OFFSETOF(StackParameters, disable_count) == THREAD_STACK_PARAMETERS_DISABLE_COUNT);
static_assert(AMS_OFFSETOF(StackParameters, dpc_flags) == THREAD_STACK_PARAMETERS_DPC_FLAGS);
static_assert(AMS_OFFSETOF(StackParameters, current_svc_id) == THREAD_STACK_PARAMETERS_CURRENT_SVC_ID);
static_assert(AMS_OFFSETOF(StackParameters, reserved_2c) == THREAD_STACK_PARAMETERS_RESERVED_2C);
static_assert(AMS_OFFSETOF(StackParameters, exception_flags) == THREAD_STACK_PARAMETERS_EXCEPTION_FLAGS);
static_assert(AMS_OFFSETOF(StackParameters, is_pinned) == THREAD_STACK_PARAMETERS_IS_PINNED);
static_assert(AMS_OFFSETOF(StackParameters, reserved_2f) == THREAD_STACK_PARAMETERS_RESERVED_2F);
static_assert(AMS_OFFSETOF(StackParameters, reserved_30) == THREAD_STACK_PARAMETERS_RESERVED_30);
static_assert(AMS_OFFSETOF(StackParameters, context) == THREAD_STACK_PARAMETERS_THREAD_CONTEXT);
static_assert(ExceptionFlag_IsCallingSvc == THREAD_EXCEPTION_FLAG_IS_CALLING_SVC);
static_assert(ExceptionFlag_IsInExceptionHandler == THREAD_EXCEPTION_FLAG_IS_IN_EXCEPTION_HANDLER);
static_assert(ExceptionFlag_IsFpuContextRestoreNeeded == THREAD_EXCEPTION_FLAG_IS_FPU_CONTEXT_RESTORE_NEEDED);
static_assert(ExceptionFlag_IsFpu64Bit == THREAD_EXCEPTION_FLAG_IS_FPU_64_BIT);
static_assert(ExceptionFlag_IsInUsermodeExceptionHandler == THREAD_EXCEPTION_FLAG_IS_IN_USERMODE_EXCEPTION_HANDLER);
static_assert(ExceptionFlag_IsInCacheMaintenanceOperation == THREAD_EXCEPTION_FLAG_IS_IN_CACHE_MAINTENANCE_OPERATION);
static_assert(ExceptionFlag_IsInTlbMaintenanceOperation == THREAD_EXCEPTION_FLAG_IS_IN_TLB_MAINTENANCE_OPERATION);
#if defined(MESOSPHERE_ENABLE_HARDWARE_SINGLE_STEP)
static_assert(ExceptionFlag_IsHardwareSingleStep == THREAD_EXCEPTION_FLAG_IS_HARDWARE_SINGLE_STEP);
#endif
struct QueueEntry {
private:
KThread *m_prev;
KThread *m_next;
public:
constexpr void Initialize() {
m_prev = nullptr;
m_next = nullptr;
}
constexpr KThread *GetPrev() const { return m_prev; }
constexpr KThread *GetNext() const { return m_next; }
constexpr void SetPrev(KThread *t) { m_prev = t; }
constexpr void SetNext(KThread *t) { m_next = t; }
};
using WaiterList = util::IntrusiveListBaseTraits<KThread>::ListType;
private:
static constexpr size_t PriorityInheritanceCountMax = 10;
union SyncObjectBuffer {
KSynchronizationObject *m_sync_objects[ams::svc::ArgumentHandleCountMax];
ams::svc::Handle m_handles[ams::svc::ArgumentHandleCountMax * (sizeof(KSynchronizationObject *) / sizeof(ams::svc::Handle))];
constexpr explicit SyncObjectBuffer(util::ConstantInitializeTag) : m_sync_objects() { /* ... */ }
explicit SyncObjectBuffer() { /* ... */ }
};
static_assert(sizeof(SyncObjectBuffer::m_sync_objects) == sizeof(SyncObjectBuffer::m_handles));
struct ConditionVariableComparator {
struct RedBlackKeyType {
uintptr_t m_cv_key;
s32 m_priority;
constexpr ALWAYS_INLINE uintptr_t GetConditionVariableKey() const {
return m_cv_key;
}
constexpr ALWAYS_INLINE s32 GetPriority() const {
return m_priority;
}
};
template<typename T> requires (std::same_as<T, KThread> || std::same_as<T, RedBlackKeyType>)
static constexpr ALWAYS_INLINE int Compare(const T &lhs, const KThread &rhs) {
const uintptr_t l_key = lhs.GetConditionVariableKey();
const uintptr_t r_key = rhs.GetConditionVariableKey();
if (l_key < r_key) {
/* Sort first by key */
return -1;
} else if (l_key == r_key && lhs.GetPriority() < rhs.GetPriority()) {
/* And then by priority. */
return -1;
} else {
return 1;
}
}
};
static_assert(ams::util::HasRedBlackKeyType<ConditionVariableComparator>);
static_assert(std::same_as<ams::util::RedBlackKeyType<ConditionVariableComparator, void>, ConditionVariableComparator::RedBlackKeyType>);
struct LockWithPriorityInheritanceComparator {
struct RedBlackKeyType {
s32 m_priority;
constexpr ALWAYS_INLINE s32 GetPriority() const {
return m_priority;
}
};
template<typename T> requires (std::same_as<T, KThread> || std::same_as<T, RedBlackKeyType>)
static constexpr ALWAYS_INLINE int Compare(const T &lhs, const KThread &rhs) {
if (lhs.GetPriority() < rhs.GetPriority()) {
/* Sort by priority. */
return -1;
} else {
return 1;
}
}
};
static_assert(ams::util::HasRedBlackKeyType<LockWithPriorityInheritanceComparator>);
static_assert(std::same_as<ams::util::RedBlackKeyType<LockWithPriorityInheritanceComparator, void>, LockWithPriorityInheritanceComparator::RedBlackKeyType>);
private:
util::IntrusiveListNode m_process_list_node;
util::IntrusiveRedBlackTreeNode m_condvar_arbiter_tree_node;
s32 m_priority;
using ConditionVariableThreadTreeTraits = util::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&KThread::m_condvar_arbiter_tree_node>;
using ConditionVariableThreadTree = ConditionVariableThreadTreeTraits::TreeType<ConditionVariableComparator>;
using LockWithPriorityInheritanceThreadTreeTraits = util::IntrusiveRedBlackTreeMemberTraitsDeferredAssert<&KThread::m_condvar_arbiter_tree_node>;
using LockWithPriorityInheritanceThreadTree = ConditionVariableThreadTreeTraits::TreeType<LockWithPriorityInheritanceComparator>;
public:
class LockWithPriorityInheritanceInfo : public KSlabAllocated<LockWithPriorityInheritanceInfo>, public util::IntrusiveListBaseNode<LockWithPriorityInheritanceInfo> {
private:
LockWithPriorityInheritanceThreadTree m_tree;
KProcessAddress m_address_key;
KThread *m_owner;
u32 m_waiter_count;
public:
constexpr LockWithPriorityInheritanceInfo() : m_tree(), m_address_key(Null<KProcessAddress>), m_owner(nullptr), m_waiter_count() {
/* ... */
}
static LockWithPriorityInheritanceInfo *Create(KProcessAddress address_key) {
/* Create a new lock info. */
auto *new_lock = LockWithPriorityInheritanceInfo::Allocate();
MESOSPHERE_ABORT_UNLESS(new_lock != nullptr);
/* Set the new lock's address key. */
new_lock->m_address_key = address_key;
return new_lock;
}
void SetOwner(KThread *new_owner) {
/* Set new owner. */
m_owner = new_owner;
}
void AddWaiter(KThread *waiter) {
/* Insert the waiter. */
m_tree.insert(*waiter);
m_waiter_count++;
waiter->SetWaitingLockInfo(this);
}
[[nodiscard]] bool RemoveWaiter(KThread *waiter) {
m_tree.erase(m_tree.iterator_to(*waiter));
waiter->SetWaitingLockInfo(nullptr);
return (--m_waiter_count) == 0;
}
KThread *GetHighestPriorityWaiter() { return std::addressof(m_tree.front()); }
const KThread *GetHighestPriorityWaiter() const { return std::addressof(m_tree.front()); }
LockWithPriorityInheritanceThreadTree &GetThreadTree() { return m_tree; }
const LockWithPriorityInheritanceThreadTree &GetThreadTree() const { return m_tree; }
constexpr KProcessAddress GetAddressKey() const { return m_address_key; }
constexpr KThread *GetOwner() const { return m_owner; }
constexpr u32 GetWaiterCount() const { return m_waiter_count; }
};
private:
using LockWithPriorityInheritanceInfoList = util::IntrusiveListBaseTraits<LockWithPriorityInheritanceInfo>::ListType;
ConditionVariableThreadTree *m_condvar_tree;
uintptr_t m_condvar_key;
alignas(16) KThreadContext::CallerSaveFpuRegisters m_caller_save_fpu_registers;
u64 m_virtual_affinity_mask;
KAffinityMask m_physical_affinity_mask;
u64 m_thread_id;
util::Atomic<s64> m_cpu_time;
KProcessAddress m_address_key;
KProcess *m_parent;
void *m_kernel_stack_top;
u32 *m_light_ipc_data;
KProcessAddress m_tls_address;
void *m_tls_heap_address;
KLightLock m_activity_pause_lock;
SyncObjectBuffer m_sync_object_buffer;
s64 m_schedule_count;
s64 m_last_scheduled_tick;
QueueEntry m_per_core_priority_queue_entry[cpu::NumCores];
KThreadQueue *m_wait_queue;
LockWithPriorityInheritanceInfoList m_held_lock_info_list;
LockWithPriorityInheritanceInfo *m_waiting_lock_info;
WaiterList m_pinned_waiter_list;
uintptr_t m_debug_params[3];
KAutoObject *m_closed_object;
u32 m_address_key_value;
u32 m_suspend_request_flags;
u32 m_suspend_allowed_flags;
s32 m_synced_index;
Result m_wait_result;
Result m_debug_exception_result;
s32 m_base_priority;
s32 m_base_priority_on_unpin;
s32 m_physical_ideal_core_id;
s32 m_virtual_ideal_core_id;
s32 m_num_kernel_waiters;
s32 m_current_core_id;
s32 m_core_id;
KAffinityMask m_original_physical_affinity_mask;
s32 m_original_physical_ideal_core_id;
s32 m_num_core_migration_disables;
ThreadState m_thread_state;
util::Atomic<bool> m_termination_requested;
bool m_wait_cancelled;
bool m_cancellable;
bool m_signaled;
bool m_initialized;
bool m_debug_attached;
s8 m_priority_inheritance_count;
bool m_resource_limit_release_hint;
public:
constexpr explicit KThread(util::ConstantInitializeTag)
: KAutoObjectWithSlabHeapAndContainer<KThread, KWorkerTask>(util::ConstantInitialize), KTimerTask(util::ConstantInitialize),
m_process_list_node{}, m_condvar_arbiter_tree_node{util::ConstantInitialize}, m_priority{-1}, m_condvar_tree{}, m_condvar_key{},
m_caller_save_fpu_registers{}, m_virtual_affinity_mask{}, m_physical_affinity_mask{}, m_thread_id{}, m_cpu_time{0}, m_address_key{Null<KProcessAddress>}, m_parent{},
m_kernel_stack_top{}, m_light_ipc_data{}, m_tls_address{Null<KProcessAddress>}, m_tls_heap_address{}, m_activity_pause_lock{}, m_sync_object_buffer{util::ConstantInitialize},
m_schedule_count{}, m_last_scheduled_tick{}, m_per_core_priority_queue_entry{}, m_wait_queue{}, m_held_lock_info_list{}, m_waiting_lock_info{},
m_pinned_waiter_list{}, m_debug_params{}, m_closed_object{}, m_address_key_value{}, m_suspend_request_flags{}, m_suspend_allowed_flags{}, m_synced_index{},
m_wait_result{svc::ResultNoSynchronizationObject()}, m_debug_exception_result{ResultSuccess()}, m_base_priority{}, m_base_priority_on_unpin{},
m_physical_ideal_core_id{}, m_virtual_ideal_core_id{}, m_num_kernel_waiters{}, m_current_core_id{}, m_core_id{}, m_original_physical_affinity_mask{},
m_original_physical_ideal_core_id{}, m_num_core_migration_disables{}, m_thread_state{}, m_termination_requested{false}, m_wait_cancelled{},
m_cancellable{}, m_signaled{}, m_initialized{}, m_debug_attached{}, m_priority_inheritance_count{}, m_resource_limit_release_hint{}
{
/* ... */
}
explicit KThread() : m_priority(-1), m_condvar_tree(nullptr), m_condvar_key(0), m_parent(nullptr), m_initialized(false) { /* ... */ }
Result Initialize(KThreadFunction func, uintptr_t arg, void *kern_stack_top, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type);
private:
static Result InitializeThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type);
public:
static Result InitializeKernelThread(KThread *thread, KThreadFunction func, uintptr_t arg, s32 prio, s32 virt_core) {
R_RETURN(InitializeThread(thread, func, arg, Null<KProcessAddress>, prio, virt_core, nullptr, ThreadType_Kernel));
}
static Result InitializeHighPriorityThread(KThread *thread, KThreadFunction func, uintptr_t arg) {
R_RETURN(InitializeThread(thread, func, arg, Null<KProcessAddress>, 0, GetCurrentCoreId(), nullptr, ThreadType_HighPriority));
}
static Result InitializeUserThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner) {
R_RETURN(InitializeThread(thread, func, arg, user_stack_top, prio, virt_core, owner, ThreadType_User));
}
static void ResumeThreadsSuspendedForInit();
private:
ALWAYS_INLINE StackParameters &GetStackParameters() { return *(reinterpret_cast< StackParameters *>(m_kernel_stack_top) - 1); }
ALWAYS_INLINE const StackParameters &GetStackParameters() const { return *(reinterpret_cast<const StackParameters *>(m_kernel_stack_top) - 1); }
public:
ALWAYS_INLINE s16 GetDisableDispatchCount() const {
MESOSPHERE_ASSERT_THIS();
return this->GetStackParameters().disable_count;
}
ALWAYS_INLINE void DisableDispatch() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() >= 0);
this->GetStackParameters().disable_count++;
}
ALWAYS_INLINE void EnableDispatch() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(GetCurrentThread().GetDisableDispatchCount() > 0);
this->GetStackParameters().disable_count--;
}
void Pin();
void Unpin();
ALWAYS_INLINE void SaveDebugParams(uintptr_t param1, uintptr_t param2, uintptr_t param3) {
m_debug_params[0] = param1;
m_debug_params[1] = param2;
m_debug_params[2] = param3;
}
ALWAYS_INLINE void RestoreDebugParams(uintptr_t *param1, uintptr_t *param2, uintptr_t *param3) {
*param1 = m_debug_params[0];
*param2 = m_debug_params[1];
*param3 = m_debug_params[2];
}
NOINLINE void DisableCoreMigration();
NOINLINE void EnableCoreMigration();
private:
ALWAYS_INLINE void SetExceptionFlag(ExceptionFlag flag) {
MESOSPHERE_ASSERT_THIS();
this->GetStackParameters().exception_flags |= flag;
}
ALWAYS_INLINE void ClearExceptionFlag(ExceptionFlag flag) {
MESOSPHERE_ASSERT_THIS();
this->GetStackParameters().exception_flags &= ~flag;
}
ALWAYS_INLINE bool IsExceptionFlagSet(ExceptionFlag flag) const {
MESOSPHERE_ASSERT_THIS();
return this->GetStackParameters().exception_flags & flag;
}
public:
/* ALWAYS_INLINE void SetCallingSvc() { return this->SetExceptionFlag(ExceptionFlag_IsCallingSvc); } */
/* ALWAYS_INLINE void ClearCallingSvc() { return this->ClearExceptionFlag(ExceptionFlag_IsCallingSvc); } */
ALWAYS_INLINE bool IsCallingSvc() const { return this->IsExceptionFlagSet(ExceptionFlag_IsCallingSvc); }
ALWAYS_INLINE void SetInExceptionHandler() { return this->SetExceptionFlag(ExceptionFlag_IsInExceptionHandler); }
ALWAYS_INLINE void ClearInExceptionHandler() { return this->ClearExceptionFlag(ExceptionFlag_IsInExceptionHandler); }
ALWAYS_INLINE bool IsInExceptionHandler() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInExceptionHandler); }
/* ALWAYS_INLINE void SetFpuContextRestoreNeeded() { return this->SetExceptionFlag(ExceptionFlag_IsFpuContextRestoreNeeded); } */
/* ALWAYS_INLINE void ClearFpuContextRestoreNeeded() { return this->ClearExceptionFlag(ExceptionFlag_IsFpuContextRestoreNeeded); } */
/* ALWAYS_INLINE bool IsFpuContextRestoreNeeded() const { return this->IsExceptionFlagSet(ExceptionFlag_IsFpuContextRestoreNeeded); } */
ALWAYS_INLINE void SetFpu64Bit() { return this->SetExceptionFlag(ExceptionFlag_IsFpu64Bit); }
/* ALWAYS_INLINE void ClearFpu64Bit() { return this->ClearExceptionFlag(ExceptionFlag_IsFpu64Bit); } */
/* ALWAYS_INLINE bool IsFpu64Bit() const { return this->IsExceptionFlagSet(ExceptionFlag_IsFpu64Bit); } */
ALWAYS_INLINE void SetInUsermodeExceptionHandler() { return this->SetExceptionFlag(ExceptionFlag_IsInUsermodeExceptionHandler); }
ALWAYS_INLINE void ClearInUsermodeExceptionHandler() { return this->ClearExceptionFlag(ExceptionFlag_IsInUsermodeExceptionHandler); }
ALWAYS_INLINE bool IsInUsermodeExceptionHandler() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInUsermodeExceptionHandler); }
ALWAYS_INLINE void SetInCacheMaintenanceOperation() { return this->SetExceptionFlag(ExceptionFlag_IsInCacheMaintenanceOperation); }
ALWAYS_INLINE void ClearInCacheMaintenanceOperation() { return this->ClearExceptionFlag(ExceptionFlag_IsInCacheMaintenanceOperation); }
ALWAYS_INLINE bool IsInCacheMaintenanceOperation() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInCacheMaintenanceOperation); }
ALWAYS_INLINE void SetInTlbMaintenanceOperation() { return this->SetExceptionFlag(ExceptionFlag_IsInTlbMaintenanceOperation); }
ALWAYS_INLINE void ClearInTlbMaintenanceOperation() { return this->ClearExceptionFlag(ExceptionFlag_IsInTlbMaintenanceOperation); }
ALWAYS_INLINE bool IsInTlbMaintenanceOperation() const { return this->IsExceptionFlagSet(ExceptionFlag_IsInTlbMaintenanceOperation); }
#if defined(MESOSPHERE_ENABLE_HARDWARE_SINGLE_STEP)
ALWAYS_INLINE void SetHardwareSingleStep() { return this->SetExceptionFlag(ExceptionFlag_IsHardwareSingleStep); }
ALWAYS_INLINE void ClearHardwareSingleStep() { return this->ClearExceptionFlag(ExceptionFlag_IsHardwareSingleStep); }
ALWAYS_INLINE bool IsHardwareSingleStep() const { return this->IsExceptionFlagSet(ExceptionFlag_IsHardwareSingleStep); }
#endif
ALWAYS_INLINE u8 GetSvcId() const {
MESOSPHERE_ASSERT_THIS();
return this->GetStackParameters().current_svc_id;
}
ALWAYS_INLINE void RegisterDpc(DpcFlag flag) {
this->GetStackParameters().dpc_flags |= flag;
}
ALWAYS_INLINE void ClearDpc(DpcFlag flag) {
this->GetStackParameters().dpc_flags &= ~flag;
}
ALWAYS_INLINE u8 GetDpc() const {
return this->GetStackParameters().dpc_flags.Load();
}
ALWAYS_INLINE bool HasDpc() const {
MESOSPHERE_ASSERT_THIS();
return this->GetDpc() != 0;
}
private:
void SetPinnedSvcPermissions();
void SetUnpinnedSvcPermissions();
void SetUsermodeExceptionSvcPermissions();
void ClearUsermodeExceptionSvcPermissions();
private:
void UpdateState();
ALWAYS_INLINE void AddHeldLock(LockWithPriorityInheritanceInfo *lock_info);
ALWAYS_INLINE LockWithPriorityInheritanceInfo *FindHeldLock(KProcessAddress address_key);
ALWAYS_INLINE void AddWaiterImpl(KThread *thread);
ALWAYS_INLINE void RemoveWaiterImpl(KThread *thread);
ALWAYS_INLINE static void RestorePriority(KThread *thread);
void StartTermination();
void FinishTermination();
void IncreaseBasePriority(s32 priority);
NOINLINE void SetState(ThreadState state);
public:
constexpr u64 GetThreadId() const { return m_thread_id; }
const KThreadContext &GetContext() const { return this->GetStackParameters().context; }
KThreadContext &GetContext() { return this->GetStackParameters().context; }
const auto &GetCallerSaveFpuRegisters() const { return m_caller_save_fpu_registers; }
auto &GetCallerSaveFpuRegisters() { return m_caller_save_fpu_registers; }
constexpr u64 GetVirtualAffinityMask() const { return m_virtual_affinity_mask; }
constexpr const KAffinityMask &GetAffinityMask() const { return m_physical_affinity_mask; }
Result GetCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask);
Result SetCoreMask(int32_t ideal_core, u64 affinity_mask);
Result GetPhysicalCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask);
constexpr ThreadState GetState() const { return static_cast<ThreadState>(m_thread_state & ThreadState_Mask); }
constexpr ThreadState GetRawState() const { return m_thread_state; }
constexpr uintptr_t GetConditionVariableKey() const { return m_condvar_key; }
constexpr uintptr_t GetAddressArbiterKey() const { return m_condvar_key; }
constexpr void SetConditionVariable(ConditionVariableThreadTree *tree, KProcessAddress address, uintptr_t cv_key, u32 value) {
MESOSPHERE_ASSERT(m_waiting_lock_info == nullptr);
m_condvar_tree = tree;
m_condvar_key = cv_key;
m_address_key = address;
m_address_key_value = value;
}
constexpr void ClearConditionVariable() {
m_condvar_tree = nullptr;
}
constexpr bool IsWaitingForConditionVariable() const {
return m_condvar_tree != nullptr;
}
constexpr void SetAddressArbiter(ConditionVariableThreadTree *tree, uintptr_t address) {
MESOSPHERE_ASSERT(m_waiting_lock_info == nullptr);
m_condvar_tree = tree;
m_condvar_key = address;
}
constexpr void ClearAddressArbiter() {
m_condvar_tree = nullptr;
}
constexpr bool IsWaitingForAddressArbiter() const {
return m_condvar_tree != nullptr;
}
constexpr s32 GetIdealVirtualCore() const { return m_virtual_ideal_core_id; }
constexpr s32 GetIdealPhysicalCore() const { return m_physical_ideal_core_id; }
constexpr s32 GetActiveCore() const { return m_core_id; }
constexpr void SetActiveCore(s32 core) { m_core_id = core; }
constexpr ALWAYS_INLINE s32 GetCurrentCore() const { return m_current_core_id; }
constexpr void SetCurrentCore(s32 core) { m_current_core_id = core; }
constexpr s32 GetPriority() const { return m_priority; }
constexpr void SetPriority(s32 prio) { m_priority = prio; }
constexpr s32 GetBasePriority() const { return m_base_priority; }
constexpr QueueEntry &GetPriorityQueueEntry(s32 core) { return m_per_core_priority_queue_entry[core]; }
constexpr const QueueEntry &GetPriorityQueueEntry(s32 core) const { return m_per_core_priority_queue_entry[core]; }
constexpr ConditionVariableThreadTree *GetConditionVariableTree() const { return m_condvar_tree; }
constexpr s32 GetNumKernelWaiters() const { return m_num_kernel_waiters; }
void AddWaiter(KThread *thread);
void RemoveWaiter(KThread *thread);
KThread *RemoveWaiterByKey(bool *out_has_waiters, KProcessAddress key);
constexpr KProcessAddress GetAddressKey() const { return m_address_key; }
constexpr u32 GetAddressKeyValue() const { return m_address_key_value; }
constexpr void SetAddressKey(KProcessAddress key) { MESOSPHERE_ASSERT(m_waiting_lock_info == nullptr); m_address_key = key; }
constexpr void SetAddressKey(KProcessAddress key, u32 val) { MESOSPHERE_ASSERT(m_waiting_lock_info == nullptr); m_address_key = key; m_address_key_value = val; }
constexpr void SetWaitingLockInfo(LockWithPriorityInheritanceInfo *lock) { m_waiting_lock_info = lock; }
constexpr LockWithPriorityInheritanceInfo *GetWaitingLockInfo() { return m_waiting_lock_info; }
constexpr KThread *GetLockOwner() const { return m_waiting_lock_info != nullptr ? m_waiting_lock_info->GetOwner() : nullptr; }
constexpr void ClearWaitQueue() { m_wait_queue = nullptr; }
void BeginWait(KThreadQueue *queue);
void NotifyAvailable(KSynchronizationObject *signaled_object, Result wait_result);
void EndWait(Result wait_result);
void CancelWait(Result wait_result, bool cancel_timer_task);
constexpr void SetSyncedIndex(s32 index) { m_synced_index = index; }
constexpr s32 GetSyncedIndex() const { return m_synced_index; }
constexpr void SetWaitResult(Result wait_res) { m_wait_result = wait_res; }
constexpr Result GetWaitResult() const { return m_wait_result; }
constexpr void SetDebugExceptionResult(Result result) { m_debug_exception_result = result; }
constexpr Result GetDebugExceptionResult() const { return m_debug_exception_result; }
void WaitCancel();
bool IsWaitCancelled() const { return m_wait_cancelled; }
void ClearWaitCancelled() { m_wait_cancelled = false; }
void ClearCancellable() { m_cancellable = false; }
void SetCancellable() { m_cancellable = true; }
constexpr u32 *GetLightSessionData() const { return m_light_ipc_data; }
constexpr void SetLightSessionData(u32 *data) { m_light_ipc_data = data; }
constexpr s64 GetLastScheduledTick() const { return m_last_scheduled_tick; }
constexpr void SetLastScheduledTick(s64 tick) { m_last_scheduled_tick = tick; }
constexpr s64 GetYieldScheduleCount() const { return m_schedule_count; }
constexpr void SetYieldScheduleCount(s64 count) { m_schedule_count = count; }
constexpr KProcess *GetOwnerProcess() const { return m_parent; }
constexpr bool IsUserThread() const { return m_parent != nullptr; }
constexpr KProcessAddress GetThreadLocalRegionAddress() const { return m_tls_address; }
constexpr void *GetThreadLocalRegionHeapAddress() const { return m_tls_heap_address; }
constexpr KSynchronizationObject **GetSynchronizationObjectBuffer() { return std::addressof(m_sync_object_buffer.m_sync_objects[0]); }
constexpr ams::svc::Handle *GetHandleBuffer() { return std::addressof(m_sync_object_buffer.m_handles[sizeof(m_sync_object_buffer.m_sync_objects) / (sizeof(ams::svc::Handle)) - ams::svc::ArgumentHandleCountMax]); }
u16 GetUserDisableCount() const { return static_cast<ams::svc::ThreadLocalRegion *>(m_tls_heap_address)->disable_count; }
void SetInterruptFlag() const { static_cast<ams::svc::ThreadLocalRegion *>(m_tls_heap_address)->interrupt_flag = 1; }
void ClearInterruptFlag() const { static_cast<ams::svc::ThreadLocalRegion *>(m_tls_heap_address)->interrupt_flag = 0; }
bool IsInUserCacheMaintenanceOperation() const { return static_cast<ams::svc::ThreadLocalRegion *>(m_tls_heap_address)->cache_maintenance_flag != 0; }
ALWAYS_INLINE KAutoObject *GetClosedObject() { return m_closed_object; }
ALWAYS_INLINE void SetClosedObject(KAutoObject *object) {
MESOSPHERE_ASSERT(object != nullptr);
/* Set the object to destroy. */
m_closed_object = object;
/* Schedule destruction DPC. */
if ((this->GetStackParameters().dpc_flags.Load<std::memory_order_relaxed>() & DpcFlag_PerformDestruction) == 0) {
this->RegisterDpc(DpcFlag_PerformDestruction);
}
}
ALWAYS_INLINE void DestroyClosedObjects() {
/* Destroy all objects that have been closed. */
if (KAutoObject *cur = m_closed_object; cur != nullptr) {
do {
/* Set our closed object as the next to close. */
m_closed_object = cur->GetNextClosedObject();
/* Destroy the current object. */
cur->Destroy();
/* Advance. */
cur = m_closed_object;
} while (cur != nullptr);
/* Clear the pending DPC. */
this->ClearDpc(DpcFlag_PerformDestruction);
}
}
constexpr void SetDebugAttached() { m_debug_attached = true; }
constexpr bool IsAttachedToDebugger() const { return m_debug_attached; }
void AddCpuTime(s32 core_id, s64 amount) {
m_cpu_time += amount;
/* TODO: Debug kernels track per-core tick counts. Should we? */
MESOSPHERE_UNUSED(core_id);
}
s64 GetCpuTime() const { return m_cpu_time.Load(); }
s64 GetCpuTime(s32 core_id) const {
MESOSPHERE_ABORT_UNLESS(0 <= core_id && core_id < static_cast<s32>(cpu::NumCores));
/* TODO: Debug kernels track per-core tick counts. Should we? */
return 0;
}
constexpr u32 GetSuspendFlags() const { return m_suspend_allowed_flags & m_suspend_request_flags; }
constexpr bool IsSuspended() const { return this->GetSuspendFlags() != 0; }
constexpr bool IsSuspendRequested(SuspendType type) const { return (m_suspend_request_flags & (1u << (util::ToUnderlying(ThreadState_SuspendShift) + util::ToUnderlying(type)))) != 0; }
constexpr bool IsSuspendRequested() const { return m_suspend_request_flags != 0; }
void RequestSuspend(SuspendType type);
void Resume(SuspendType type);
void TrySuspend();
void Continue();
Result SetActivity(ams::svc::ThreadActivity activity);
Result GetThreadContext3(ams::svc::ThreadContext *out);
void ContinueIfHasKernelWaiters() {
if (this->GetNumKernelWaiters() > 0) {
this->Continue();
}
}
void SetBasePriority(s32 priority);
Result SetPriorityToIdle();
Result Run();
void Exit();
Result Terminate();
ThreadState RequestTerminate();
Result Sleep(s64 timeout);
ALWAYS_INLINE void *GetStackTop() const { return reinterpret_cast<StackParameters *>(m_kernel_stack_top) - 1; }
ALWAYS_INLINE void *GetKernelStackTop() const { return m_kernel_stack_top; }
ALWAYS_INLINE bool IsTerminationRequested() const {
return m_termination_requested.Load() || this->GetRawState() == ThreadState_Terminated;
}
size_t GetKernelStackUsage() const;
void OnEnterUsermodeException();
void OnLeaveUsermodeException();
public:
/* Overridden parent functions. */
ALWAYS_INLINE u64 GetIdImpl() const { return this->GetThreadId(); }
ALWAYS_INLINE u64 GetId() const { return this->GetIdImpl(); }
bool IsInitialized() const { return m_initialized; }
uintptr_t GetPostDestroyArgument() const { return reinterpret_cast<uintptr_t>(m_parent) | (m_resource_limit_release_hint ? 1 : 0); }
static void PostDestroy(uintptr_t arg);
void Finalize();
virtual bool IsSignaled() const override;
void OnTimer();
void DoWorkerTaskImpl();
public:
static consteval bool IsKThreadStructurallyValid();
static KThread *GetThreadFromId(u64 thread_id);
static Result GetThreadList(s32 *out_num_threads, ams::kern::svc::KUserPointer<u64 *> out_thread_ids, s32 max_out_count);
using ConditionVariableThreadTreeType = ConditionVariableThreadTree;
};
static_assert(alignof(KThread) == 0x10);
consteval bool KThread::IsKThreadStructurallyValid() {
/* Check that the condition variable tree is valid. */
static_assert(ConditionVariableThreadTreeTraits::IsValid());
/* Check that the assembly offsets are valid. */
static_assert(AMS_OFFSETOF(KThread, m_kernel_stack_top) == THREAD_KERNEL_STACK_TOP);
return true;
}
static_assert(KThread::IsKThreadStructurallyValid());
class KScopedDisableDispatch {
public:
explicit ALWAYS_INLINE KScopedDisableDispatch() {
GetCurrentThread().DisableDispatch();
}
NOINLINE ~KScopedDisableDispatch();
};
ALWAYS_INLINE KExceptionContext *GetExceptionContext(KThread *thread) {
return reinterpret_cast<KExceptionContext *>(reinterpret_cast<uintptr_t>(thread->GetKernelStackTop()) - sizeof(KThread::StackParameters) - sizeof(KExceptionContext));
}
ALWAYS_INLINE const KExceptionContext *GetExceptionContext(const KThread *thread) {
return reinterpret_cast<const KExceptionContext *>(reinterpret_cast<uintptr_t>(thread->GetKernelStackTop()) - sizeof(KThread::StackParameters) - sizeof(KExceptionContext));
}
ALWAYS_INLINE KProcess *GetCurrentProcessPointer() {
return GetCurrentThread().GetOwnerProcess();
}
ALWAYS_INLINE KProcess &GetCurrentProcess() {
return *GetCurrentProcessPointer();
}
ALWAYS_INLINE s32 GetCurrentCoreId() {
return GetCurrentThread().GetCurrentCore();
}
ALWAYS_INLINE void KTimerTask::OnTimer() {
static_cast<KThread *>(this)->OnTimer();
}
}