1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-10 03:16:29 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_initial_process_reader.cpp
2024-03-29 02:41:14 -07:00

325 lines
18 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
struct BlzSegmentFlags {
using Offset = util::BitPack16::Field<0, 12, u32>;
using Size = util::BitPack16::Field<Offset::Next, 4, u32>;
};
NOINLINE void BlzUncompress(void *_end) {
/* Parse the footer, endian agnostic. */
static_assert(sizeof(u32) == 4);
static_assert(sizeof(u16) == 2);
static_assert(sizeof(u8) == 1);
u8 *end = static_cast<u8 *>(_end);
const u32 total_size = (end[-12] << 0) | (end[-11] << 8) | (end[-10] << 16) | (end[- 9] << 24);
const u32 footer_size = (end[- 8] << 0) | (end[- 7] << 8) | (end[- 6] << 16) | (end[- 5] << 24);
const u32 additional_size = (end[- 4] << 0) | (end[- 3] << 8) | (end[- 2] << 16) | (end[- 1] << 24);
/* Prepare to decompress. */
u8 *cmp_start = end - total_size;
u32 cmp_ofs = total_size - footer_size;
u32 out_ofs = total_size + additional_size;
/* Decompress. */
while (out_ofs) {
u8 control = cmp_start[--cmp_ofs];
/* Each bit in the control byte is a flag indicating compressed or not compressed. */
for (size_t i = 0; i < 8 && out_ofs; ++i, control <<= 1) {
if (control & 0x80) {
/* NOTE: Nintendo does not check if it's possible to decompress. */
/* As such, we will leave the following as a debug assertion, and not a release assertion. */
MESOSPHERE_AUDIT(cmp_ofs >= sizeof(u16));
cmp_ofs -= sizeof(u16);
/* Extract segment bounds. */
const util::BitPack16 seg_flags{static_cast<u16>((cmp_start[cmp_ofs] << 0) | (cmp_start[cmp_ofs + 1] << 8))};
const u32 seg_ofs = seg_flags.Get<BlzSegmentFlags::Offset>() + 3;
const u32 seg_size = std::min(seg_flags.Get<BlzSegmentFlags::Size>() + 3, out_ofs);
MESOSPHERE_AUDIT(out_ofs + seg_ofs <= total_size + additional_size);
/* Copy the data. */
out_ofs -= seg_size;
for (size_t j = 0; j < seg_size; j++) {
cmp_start[out_ofs + j] = cmp_start[out_ofs + seg_ofs + j];
}
} else {
/* NOTE: Nintendo does not check if it's possible to copy. */
/* As such, we will leave the following as a debug assertion, and not a release assertion. */
MESOSPHERE_AUDIT(cmp_ofs >= sizeof(u8));
cmp_start[--out_ofs] = cmp_start[--cmp_ofs];
}
}
}
}
NOINLINE void LoadInitialProcessSegment(const KPageGroup &pg, size_t seg_offset, size_t seg_size, size_t binary_size, KVirtualAddress data, bool compressed) {
/* Save the original binary extents, for later use. */
const KPhysicalAddress binary_phys = KMemoryLayout::GetLinearPhysicalAddress(data);
/* Create a page group representing the segment. */
KPageGroup segment_pg(Kernel::GetSystemSystemResource().GetBlockInfoManagerPointer());
MESOSPHERE_R_ABORT_UNLESS(pg.CopyRangeTo(segment_pg, seg_offset, util::AlignUp(seg_size, PageSize)));
/* Setup the new page group's memory so that we can load the segment. */
{
KVirtualAddress last_block = Null<KVirtualAddress>;
KVirtualAddress last_data = Null<KVirtualAddress>;
size_t last_copy_size = 0;
size_t last_clear_size = 0;
size_t remaining_copy_size = binary_size;
for (const auto &block : segment_pg) {
/* Get the current block extents. */
const auto block_addr = block.GetAddress();
const size_t block_size = block.GetSize();
if (remaining_copy_size > 0) {
/* Determine if we need to copy anything. */
const size_t cur_size = std::min<size_t>(block_size, remaining_copy_size);
/* NOTE: The first block may potentially overlap the binary we want to copy to. */
/* Consider e.g. the case where the overall compressed image has size 0x40000, seg_offset is 0x30000, and binary_size is > 0x20000. */
/* Suppose too that data points, say, 0x18000 into the compressed image. */
/* Suppose finally that we simply naively copy in order. */
/* The first iteration of this loop will perform an 0x10000 copy from image+0x18000 to image + 0x30000 (as there is no overlap). */
/* The second iteration will perform a copy from image+0x28000 to <allocated pages>. */
/* However, the first copy will have trashed the data in the second copy. */
/* Thus, we must copy the first block after-the-fact to avoid potentially trashing data in the overlap case. */
/* It is guaranteed by pre-condition that only the very first block can overlap with the physical binary, so we can simply memmove it at the end. */
if (last_block != Null<KVirtualAddress>) {
/* This is guaranteed by pre-condition, but for ease of debugging, check for no overlap. */
MESOSPHERE_ASSERT(!util::HasOverlap(GetInteger(binary_phys), binary_size, GetInteger(block_addr), cur_size));
MESOSPHERE_UNUSED(binary_phys);
/* We need to copy. */
std::memcpy(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block_addr)), GetVoidPointer(data), cur_size);
/* If we need to, clear past where we're copying. */
if (cur_size != block_size) {
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block_addr + cur_size)), 0, block_size - cur_size);
}
/* Advance. */
remaining_copy_size -= cur_size;
data += cur_size;
} else {
/* Save the first block, which may potentially overlap, so that we can copy it later. */
last_block = KMemoryLayout::GetLinearVirtualAddress(block_addr);
last_data = data;
last_copy_size = cur_size;
last_clear_size = block_size - cur_size;
/* Advance. */
remaining_copy_size -= cur_size;
data += cur_size;
}
} else {
/* We don't have data to copy, so we should just clear the pages. */
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(block_addr)), 0, block_size);
}
}
/* Handle a last block. */
if (last_copy_size != 0) {
if (last_block != last_data) {
std::memmove(GetVoidPointer(last_block), GetVoidPointer(last_data), last_copy_size);
}
if (last_clear_size != 0) {
std::memset(GetVoidPointer(last_block + last_copy_size), 0, last_clear_size);
}
}
}
/* If compressed, uncompress the data. */
if (compressed) {
/* Get the temporary region. */
const auto &temp_region = KMemoryLayout::GetTempRegion();
MESOSPHERE_ABORT_UNLESS(temp_region.GetEndAddress() != 0);
/* Map the process's memory into the temporary region. */
KProcessAddress temp_address = Null<KProcessAddress>;
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetKernelPageTable().MapPageGroup(std::addressof(temp_address), segment_pg, temp_region.GetAddress(), temp_region.GetSize() / PageSize, KMemoryState_Kernel, KMemoryPermission_KernelReadWrite));
ON_SCOPE_EXIT { MESOSPHERE_R_ABORT_UNLESS(Kernel::GetKernelPageTable().UnmapPageGroup(temp_address, segment_pg, KMemoryState_Kernel)); };
/* Uncompress the data. */
BlzUncompress(GetVoidPointer(temp_address + binary_size));
}
}
}
Result KInitialProcessReader::MakeCreateProcessParameter(ams::svc::CreateProcessParameter *out, bool enable_aslr) const {
/* Get and validate addresses/sizes. */
const uintptr_t rx_address = m_kip_header.GetRxAddress();
const size_t rx_size = m_kip_header.GetRxSize();
const uintptr_t ro_address = m_kip_header.GetRoAddress();
const size_t ro_size = m_kip_header.GetRoSize();
const uintptr_t rw_address = m_kip_header.GetRwAddress();
const size_t rw_size = m_kip_header.GetRwSize();
const uintptr_t bss_address = m_kip_header.GetBssAddress();
const size_t bss_size = m_kip_header.GetBssSize();
R_UNLESS(util::IsAligned(rx_address, PageSize), svc::ResultInvalidAddress());
R_UNLESS(util::IsAligned(ro_address, PageSize), svc::ResultInvalidAddress());
R_UNLESS(util::IsAligned(rw_address, PageSize), svc::ResultInvalidAddress());
R_UNLESS(rx_address <= rx_address + util::AlignUp(rx_size, PageSize), svc::ResultInvalidAddress());
R_UNLESS(ro_address <= ro_address + util::AlignUp(ro_size, PageSize), svc::ResultInvalidAddress());
R_UNLESS(rw_address <= rw_address + util::AlignUp(rw_size, PageSize), svc::ResultInvalidAddress());
R_UNLESS(bss_address <= bss_address + util::AlignUp(bss_size, PageSize), svc::ResultInvalidAddress());
R_UNLESS(rx_address + util::AlignUp(rx_size, PageSize) <= ro_address, svc::ResultInvalidAddress());
R_UNLESS(ro_address + util::AlignUp(ro_size, PageSize) <= rw_address, svc::ResultInvalidAddress());
R_UNLESS(rw_address + rw_size <= bss_address, svc::ResultInvalidAddress());
/* Validate the address space. */
if (this->Is64BitAddressSpace()) {
R_UNLESS(this->Is64Bit(), svc::ResultInvalidCombination());
}
using ASType = KAddressSpaceInfo::Type;
const uintptr_t start_address = rx_address;
const uintptr_t end_address = bss_size > 0 ? bss_address + bss_size : rw_address + rw_size;
const size_t as_width = this->Is64BitAddressSpace() ? ((GetTargetFirmware() >= TargetFirmware_2_0_0) ? 39 : 36) : 32;
const ASType as_type = this->Is64BitAddressSpace() ? ((GetTargetFirmware() >= TargetFirmware_2_0_0) ? KAddressSpaceInfo::Type_Map39Bit : KAddressSpaceInfo::Type_MapSmall) : KAddressSpaceInfo::Type_MapSmall;
const uintptr_t map_start = KAddressSpaceInfo::GetAddressSpaceStart(as_width, as_type);
const size_t map_size = KAddressSpaceInfo::GetAddressSpaceSize(as_width, as_type);
const uintptr_t map_end = map_start + map_size;
MESOSPHERE_ABORT_UNLESS(start_address == 0);
/* Default fields in parameter to zero. */
*out = {};
/* Set fields in parameter. */
out->code_address = map_start + start_address;
out->code_num_pages = util::AlignUp(end_address - start_address, PageSize) / PageSize;
out->program_id = m_kip_header.GetProgramId();
out->version = m_kip_header.GetVersion();
out->flags = 0;
out->reslimit = ams::svc::InvalidHandle;
out->system_resource_num_pages = 0;
MESOSPHERE_ABORT_UNLESS((out->code_address / PageSize) + out->code_num_pages <= (map_end / PageSize));
/* Copy name field. */
m_kip_header.GetName(out->name, sizeof(out->name));
/* Apply ASLR, if needed. */
if (enable_aslr) {
const size_t choices = (map_end / KernelAslrAlignment) - (util::AlignUp(out->code_address + out->code_num_pages * PageSize, KernelAslrAlignment) / KernelAslrAlignment);
out->code_address += KSystemControl::GenerateRandomRange(0, choices) * KernelAslrAlignment;
out->flags |= ams::svc::CreateProcessFlag_EnableAslr;
}
/* Apply other flags. */
if (this->Is64Bit()) {
out->flags |= ams::svc::CreateProcessFlag_Is64Bit;
}
if (this->Is64BitAddressSpace()) {
out->flags |= (GetTargetFirmware() >= TargetFirmware_2_0_0) ? ams::svc::CreateProcessFlag_AddressSpace64Bit : ams::svc::CreateProcessFlag_AddressSpace64BitDeprecated;
} else {
out->flags |= ams::svc::CreateProcessFlag_AddressSpace32Bit;
}
/* All initial processes should disable device address space merge. */
out->flags |= ams::svc::CreateProcessFlag_DisableDeviceAddressSpaceMerge;
R_SUCCEED();
}
void KInitialProcessReader::Load(const KPageGroup &pg, KVirtualAddress data) const {
/* Prepare to layout the data. */
const KVirtualAddress rx_data = data;
const KVirtualAddress ro_data = rx_data + m_kip_header.GetRxCompressedSize();
const KVirtualAddress rw_data = ro_data + m_kip_header.GetRoCompressedSize();
const size_t rx_size = m_kip_header.GetRxSize();
const size_t ro_size = m_kip_header.GetRoSize();
const size_t rw_size = m_kip_header.GetRwSize();
/* If necessary, setup bss. */
if (const size_t bss_size = m_kip_header.GetBssSize(); bss_size > 0) {
/* Determine how many additional pages are needed for bss. */
const u64 rw_end = util::AlignUp<u64>(m_kip_header.GetRwAddress() + m_kip_header.GetRwSize(), PageSize);
const u64 bss_end = util::AlignUp<u64>(m_kip_header.GetBssAddress() + m_kip_header.GetBssSize(), PageSize);
if (rw_end != bss_end) {
/* Find the pages corresponding to bss. */
size_t cur_offset = 0;
size_t remaining_size = bss_end - rw_end;
size_t bss_offset = rw_end - m_kip_header.GetRxAddress();
for (auto it = pg.begin(); it != pg.end() && remaining_size > 0; ++it) {
/* Get the current size. */
const size_t cur_size = it->GetSize();
/* Determine if the offset is in range. */
const size_t rel_diff = bss_offset - cur_offset;
const bool is_before = cur_offset <= bss_offset;
cur_offset += cur_size;
if (is_before && bss_offset < cur_offset) {
/* It is, so clear the bss range. */
const size_t block_size = std::min<size_t>(cur_size - rel_diff, remaining_size);
std::memset(GetVoidPointer(KMemoryLayout::GetLinearVirtualAddress(it->GetAddress() + rel_diff)), 0, block_size);
/* Advance. */
cur_offset = bss_offset + block_size;
remaining_size -= block_size;
bss_offset += block_size;
}
}
}
}
/* Load .rwdata. */
LoadInitialProcessSegment(pg, m_kip_header.GetRwAddress() - m_kip_header.GetRxAddress(), rw_size, m_kip_header.GetRwCompressedSize(), rw_data, m_kip_header.IsRwCompressed());
/* Load .rodata. */
LoadInitialProcessSegment(pg, m_kip_header.GetRoAddress() - m_kip_header.GetRxAddress(), ro_size, m_kip_header.GetRoCompressedSize(), ro_data, m_kip_header.IsRoCompressed());
/* Load .text. */
LoadInitialProcessSegment(pg, m_kip_header.GetRxAddress() - m_kip_header.GetRxAddress(), rx_size, m_kip_header.GetRxCompressedSize(), rx_data, m_kip_header.IsRxCompressed());
}
Result KInitialProcessReader::SetMemoryPermissions(KProcessPageTable &page_table, const ams::svc::CreateProcessParameter &params) const {
const size_t rx_size = m_kip_header.GetRxSize();
const size_t ro_size = m_kip_header.GetRoSize();
const size_t rw_size = m_kip_header.GetRwSize();
const size_t bss_size = m_kip_header.GetBssSize();
/* Set R-X pages. */
if (rx_size) {
const uintptr_t start = m_kip_header.GetRxAddress() + params.code_address;
R_TRY(page_table.SetProcessMemoryPermission(start, util::AlignUp(rx_size, PageSize), ams::svc::MemoryPermission_ReadExecute));
}
/* Set R-- pages. */
if (ro_size) {
const uintptr_t start = m_kip_header.GetRoAddress() + params.code_address;
R_TRY(page_table.SetProcessMemoryPermission(start, util::AlignUp(ro_size, PageSize), ams::svc::MemoryPermission_Read));
}
/* Set RW- pages. */
if (rw_size || bss_size) {
const uintptr_t start = (rw_size ? m_kip_header.GetRwAddress() : m_kip_header.GetBssAddress()) + params.code_address;
const uintptr_t end = (bss_size ? m_kip_header.GetBssAddress() + bss_size : m_kip_header.GetRwAddress() + rw_size) + params.code_address;
R_TRY(page_table.SetProcessMemoryPermission(start, util::AlignUp(end - start, PageSize), ams::svc::MemoryPermission_ReadWrite));
}
R_SUCCEED();
}
}