1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2025-01-12 04:16:11 +00:00
Atmosphere/libraries/libmesosphere/source/kern_k_thread.cpp

1537 lines
58 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
namespace {
constexpr inline s32 TerminatingThreadPriority = ams::svc::SystemThreadPriorityHighest - 1;
constinit util::Atomic<u64> g_thread_id = 0;
constexpr ALWAYS_INLINE bool IsKernelAddressKey(KProcessAddress key) {
const uintptr_t key_uptr = GetInteger(key);
return KernelVirtualAddressSpaceBase <= key_uptr && key_uptr <= KernelVirtualAddressSpaceLast && (key_uptr & 1) == 0;
}
void InitializeKernelStack(uintptr_t stack_top) {
#if defined(MESOSPHERE_ENABLE_KERNEL_STACK_USAGE)
const uintptr_t stack_bottom = stack_top - PageSize;
std::memset(reinterpret_cast<void *>(stack_bottom), 0xCC, PageSize - sizeof(KThread::StackParameters));
#else
MESOSPHERE_UNUSED(stack_top);
#endif
}
void CleanupKernelStack(uintptr_t stack_top) {
const uintptr_t stack_bottom = stack_top - PageSize;
KPhysicalAddress stack_paddr = Null<KPhysicalAddress>;
MESOSPHERE_ABORT_UNLESS(Kernel::GetKernelPageTable().GetPhysicalAddress(std::addressof(stack_paddr), stack_bottom));
MESOSPHERE_R_ABORT_UNLESS(Kernel::GetKernelPageTable().UnmapPages(stack_bottom, 1, KMemoryState_Kernel));
/* Free the stack page. */
KPageBuffer::FreeChecked<PageSize>(KPageBuffer::FromPhysicalAddress(stack_paddr));
}
class ThreadQueueImplForKThreadSleep final : public KThreadQueueWithoutEndWait { /* ... */ };
class ThreadQueueImplForKThreadSetProperty final : public KThreadQueue {
private:
KThread::WaiterList *m_wait_list;
public:
constexpr ThreadQueueImplForKThreadSetProperty(KThread::WaiterList *wl) : m_wait_list(wl) { /* ... */ }
virtual void CancelWait(KThread *waiting_thread, Result wait_result, bool cancel_timer_task) override {
/* Remove the thread from the wait list. */
m_wait_list->erase(m_wait_list->iterator_to(*waiting_thread));
/* Invoke the base cancel wait handler. */
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
};
}
ALWAYS_INLINE void KThread::SetPinnedSvcPermissions() {
/* Get our stack parameters. */
auto &sp = this->GetStackParameters();
/* Get our parent's svc permissions. */
MESOSPHERE_ASSERT(m_parent != nullptr);
const auto &svc_permissions = m_parent->GetSvcPermissions();
/* Get whether we have access to return from exception. */
const bool return_from_exception = sp.svc_access_flags[svc::SvcId_ReturnFromException];
/* Clear all permissions. */
sp.svc_access_flags.Reset();
/* Set SynchronizePreemptionState if allowed. */
if (svc_permissions[svc::SvcId_SynchronizePreemptionState]) {
sp.svc_access_flags[svc::SvcId_SynchronizePreemptionState] = true;
}
/* If we previously had ReturnFromException, potentially grant it and GetInfo. */
if (return_from_exception) {
/* Set ReturnFromException (guaranteed allowed, if we're here). */
sp.svc_access_flags[svc::SvcId_ReturnFromException] = true;
/* Set GetInfo if allowed. */
if (svc_permissions[svc::SvcId_GetInfo]) {
sp.svc_access_flags[svc::SvcId_GetInfo] = true;
}
}
}
ALWAYS_INLINE void KThread::SetUnpinnedSvcPermissions() {
/* Get our stack parameters. */
auto &sp = this->GetStackParameters();
/* Get our parent's svc permissions. */
MESOSPHERE_ASSERT(m_parent != nullptr);
const auto &svc_permissions = m_parent->GetSvcPermissions();
/* Get whether we have access to return from exception. */
const bool return_from_exception = sp.svc_access_flags[svc::SvcId_ReturnFromException];
/* Copy permissions. */
sp.svc_access_flags = svc_permissions;
/* Clear specific SVCs based on our state. */
sp.svc_access_flags[svc::SvcId_SynchronizePreemptionState] = false;
if (!return_from_exception) {
sp.svc_access_flags[svc::SvcId_ReturnFromException] = false;
}
}
ALWAYS_INLINE void KThread::SetUsermodeExceptionSvcPermissions() {
/* Get our stack parameters. */
auto &sp = this->GetStackParameters();
/* Get our parent's svc permissions. */
MESOSPHERE_ASSERT(m_parent != nullptr);
const auto &svc_permissions = m_parent->GetSvcPermissions();
/* Set ReturnFromException if allowed. */
if (svc_permissions[svc::SvcId_ReturnFromException]) {
sp.svc_access_flags[svc::SvcId_ReturnFromException] = true;
}
/* Set GetInfo if allowed. */
if (svc_permissions[svc::SvcId_GetInfo]) {
sp.svc_access_flags[svc::SvcId_GetInfo] = true;
}
}
ALWAYS_INLINE void KThread::ClearUsermodeExceptionSvcPermissions() {
/* Get our stack parameters. */
auto &sp = this->GetStackParameters();
/* Clear ReturnFromException. */
sp.svc_access_flags[svc::SvcId_ReturnFromException] = false;
/* If pinned, clear GetInfo. */
if (sp.is_pinned) {
sp.svc_access_flags[svc::SvcId_GetInfo] = false;
}
}
Result KThread::Initialize(KThreadFunction func, uintptr_t arg, void *kern_stack_top, KProcessAddress user_stack_top, s32 prio, s32 virt_core, KProcess *owner, ThreadType type) {
/* Assert parameters are valid. */
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(kern_stack_top != nullptr);
MESOSPHERE_ASSERT((type == ThreadType_Main) || (ams::svc::HighestThreadPriority <= prio && prio <= ams::svc::LowestThreadPriority));
MESOSPHERE_ASSERT((owner != nullptr) || (type != ThreadType_User));
MESOSPHERE_ASSERT(0 <= virt_core && virt_core < static_cast<s32>(BITSIZEOF(u64)));
/* Convert the virtual core to a physical core. */
const s32 phys_core = cpu::VirtualToPhysicalCoreMap[virt_core];
MESOSPHERE_ASSERT(0 <= phys_core && phys_core < static_cast<s32>(cpu::NumCores));
/* First, clear the TLS address. */
m_tls_address = Null<KProcessAddress>;
const uintptr_t kern_stack_top_address = reinterpret_cast<uintptr_t>(kern_stack_top);
MESOSPHERE_UNUSED(kern_stack_top_address);
/* Next, assert things based on the type. */
switch (type) {
case ThreadType_Main:
{
MESOSPHERE_ASSERT(arg == 0);
}
[[fallthrough]];
case ThreadType_HighPriority:
if (type != ThreadType_Main) {
MESOSPHERE_ASSERT(phys_core == GetCurrentCoreId());
}
[[fallthrough]];
case ThreadType_Kernel:
{
MESOSPHERE_ASSERT(user_stack_top == 0);
MESOSPHERE_ASSERT(util::IsAligned(kern_stack_top_address, PageSize));
}
[[fallthrough]];
case ThreadType_User:
{
MESOSPHERE_ASSERT(((owner == nullptr) || (owner->GetCoreMask() | (1ul << virt_core)) == owner->GetCoreMask()));
MESOSPHERE_ASSERT(((owner == nullptr) || (owner->GetPriorityMask() | (1ul << prio)) == owner->GetPriorityMask()));
}
break;
default:
MESOSPHERE_PANIC("KThread::Initialize: Unknown ThreadType %u", static_cast<u32>(type));
break;
}
/* Set the ideal core ID and affinity mask. */
m_virtual_ideal_core_id = virt_core;
m_physical_ideal_core_id = phys_core;
m_virtual_affinity_mask = (static_cast<u64>(1) << virt_core);
m_physical_affinity_mask.SetAffinity(phys_core, true);
/* Set the thread state. */
m_thread_state = (type == ThreadType_Main) ? ThreadState_Runnable : ThreadState_Initialized;
/* Set TLS address and TLS heap address. */
/* NOTE: Nintendo wrote TLS address above already, but official code really does write tls address twice. */
m_tls_address = 0;
m_tls_heap_address = 0;
/* Set parent and condvar tree. */
m_parent = nullptr;
m_condvar_tree = nullptr;
m_condvar_key = 0;
/* Set sync booleans. */
m_signaled = false;
m_termination_requested = false;
m_wait_cancelled = false;
m_cancellable = false;
/* Set core ID and wait result. */
m_core_id = phys_core;
m_wait_result = svc::ResultNoSynchronizationObject();
/* Set the stack top. */
m_kernel_stack_top = kern_stack_top;
/* Set priorities. */
m_priority = prio;
m_base_priority = prio;
/* Initialize wait queue/sync index. */
m_synced_index = -1;
m_wait_queue = nullptr;
/* Set suspend flags. */
m_suspend_request_flags = 0;
m_suspend_allowed_flags = ThreadState_SuspendFlagMask;
/* We're neither debug attached, nor are we nesting our priority inheritance. */
m_debug_attached = false;
m_priority_inheritance_count = 0;
/* We haven't been scheduled, and we have done no light IPC. */
m_schedule_count = -1;
m_last_scheduled_tick = 0;
m_light_ipc_data = nullptr;
/* We're not waiting for a lock, and we haven't disabled migration. */
m_waiting_lock_info = nullptr;
m_num_core_migration_disables = 0;
/* We have no waiters, and no closed objects. */
m_num_kernel_waiters = 0;
m_closed_object = nullptr;
/* Set our current core id. */
m_current_core_id = phys_core;
/* We haven't released our resource limit hint, and we've spent no time on the cpu. */
m_resource_limit_release_hint = false;
m_cpu_time = 0;
/* Setup our kernel stack. */
if (type != ThreadType_Main) {
InitializeKernelStack(reinterpret_cast<uintptr_t>(kern_stack_top));
}
/* Clear our stack parameters. */
std::memset(static_cast<void *>(std::addressof(this->GetStackParameters())), 0, sizeof(StackParameters));
/* Setup the TLS, if needed. */
if (type == ThreadType_User) {
R_TRY(owner->CreateThreadLocalRegion(std::addressof(m_tls_address)));
m_tls_heap_address = owner->GetThreadLocalRegionPointer(m_tls_address);
std::memset(m_tls_heap_address, 0, ams::svc::ThreadLocalRegionSize);
}
/* Set parent, if relevant. */
if (owner != nullptr) {
m_parent = owner;
m_parent->Open();
}
/* Initialize thread context. */
constexpr bool IsDefault64Bit = sizeof(uintptr_t) == sizeof(u64);
const bool is_64_bit = m_parent ? m_parent->Is64Bit() : IsDefault64Bit;
const bool is_user = (type == ThreadType_User);
const bool is_main = (type == ThreadType_Main);
this->GetContext().Initialize(reinterpret_cast<uintptr_t>(func), reinterpret_cast<uintptr_t>(this->GetStackTop()), GetInteger(user_stack_top), arg, is_user, is_64_bit, is_main);
/* Setup the stack parameters. */
StackParameters &sp = this->GetStackParameters();
if (m_parent != nullptr) {
this->SetUnpinnedSvcPermissions();
this->ClearUsermodeExceptionSvcPermissions();
}
sp.caller_save_fpu_registers = std::addressof(m_caller_save_fpu_registers);
sp.cur_thread = this;
sp.disable_count = 1;
this->SetInExceptionHandler();
if (m_parent != nullptr && is_64_bit) {
this->SetFpu64Bit();
}
/* Set thread ID. */
m_thread_id = g_thread_id++;
/* We initialized! */
m_initialized = true;
/* Register ourselves with our parent process. */
if (m_parent != nullptr) {
m_parent->RegisterThread(this);
if (m_parent->IsSuspended()) {
this->RequestSuspend(SuspendType_Process);
}
}
R_SUCCEED();
}
Result KThread::InitializeThread(KThread *thread, KThreadFunction func, uintptr_t arg, KProcessAddress user_stack_top, s32 prio, s32 core, KProcess *owner, ThreadType type) {
/* Get stack region for the thread. */
const auto &stack_region = KMemoryLayout::GetKernelStackRegion();
MESOSPHERE_ABORT_UNLESS(stack_region.GetEndAddress() != 0);
/* Allocate a page to use as the thread. */
KPageBuffer *page = KPageBuffer::AllocateChecked<PageSize>();
R_UNLESS(page != nullptr, svc::ResultOutOfResource());
/* Map the stack page. */
KProcessAddress stack_top = Null<KProcessAddress>;
{
/* If we fail to map, avoid leaking the page. */
ON_RESULT_FAILURE { KPageBuffer::Free(page); };
/* Perform the mapping. */
KProcessAddress stack_bottom = Null<KProcessAddress>;
R_TRY(Kernel::GetKernelPageTable().MapPages(std::addressof(stack_bottom), 1, PageSize, page->GetPhysicalAddress(), stack_region.GetAddress(),
stack_region.GetSize() / PageSize, KMemoryState_Kernel, KMemoryPermission_KernelReadWrite));
/* Calculate top of the stack. */
stack_top = stack_bottom + PageSize;
}
/* If we fail, cleanup the stack we mapped. */
ON_RESULT_FAILURE { CleanupKernelStack(GetInteger(stack_top)); };
/* Initialize the thread. */
R_RETURN(thread->Initialize(func, arg, GetVoidPointer(stack_top), user_stack_top, prio, core, owner, type));
}
void KThread::PostDestroy(uintptr_t arg) {
KProcess *owner = reinterpret_cast<KProcess *>(arg & ~1ul);
const bool resource_limit_release_hint = (arg & 1);
const s64 hint_value = (resource_limit_release_hint ? 0 : 1);
if (owner != nullptr) {
owner->ReleaseResource(ams::svc::LimitableResource_ThreadCountMax, 1, hint_value);
owner->Close();
} else {
Kernel::GetSystemResourceLimit().Release(ams::svc::LimitableResource_ThreadCountMax, 1, hint_value);
}
}
void KThread::ResumeThreadsSuspendedForInit() {
KThread::ListAccessor list_accessor;
{
KScopedSchedulerLock sl;
for (auto &thread : list_accessor) {
static_cast<KThread &>(thread).Resume(SuspendType_Init);
}
}
}
void KThread::Finalize() {
MESOSPHERE_ASSERT_THIS();
/* If the thread has an owner process, unregister it. */
if (m_parent != nullptr) {
m_parent->UnregisterThread(this);
}
/* If the thread has a local region, delete it. */
if (m_tls_address != Null<KProcessAddress>) {
MESOSPHERE_R_ABORT_UNLESS(m_parent->DeleteThreadLocalRegion(m_tls_address));
}
/* Release any waiters. */
{
MESOSPHERE_ASSERT(m_waiting_lock_info == nullptr);
KScopedSchedulerLock sl;
/* Check that we have no kernel waiters. */
MESOSPHERE_ABORT_UNLESS(m_num_kernel_waiters == 0);
auto it = m_held_lock_info_list.begin();
while (it != m_held_lock_info_list.end()) {
/* Get the lock info. */
auto * const lock_info = std::addressof(*it);
/* The lock shouldn't have a kernel waiter. */
MESOSPHERE_ASSERT(!IsKernelAddressKey(lock_info->GetAddressKey()));
/* Remove all waiters. */
while (lock_info->GetWaiterCount() != 0) {
/* Get the front waiter. */
KThread * const waiter = lock_info->GetHighestPriorityWaiter();
/* Remove it from the lock. */
if (lock_info->RemoveWaiter(waiter)) {
MESOSPHERE_ASSERT(lock_info->GetWaiterCount() == 0);
}
/* Cancel the thread's wait. */
waiter->CancelWait(svc::ResultInvalidState(), true);
}
/* Remove the held lock from our list. */
it = m_held_lock_info_list.erase(it);
/* Free the lock info. */
LockWithPriorityInheritanceInfo::Free(lock_info);
}
}
/* Cleanup the kernel stack. */
if (m_kernel_stack_top != nullptr) {
CleanupKernelStack(reinterpret_cast<uintptr_t>(m_kernel_stack_top));
}
/* Perform inherited finalization. */
KSynchronizationObject::Finalize();
}
bool KThread::IsSignaled() const {
return m_signaled;
}
void KThread::OnTimer() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* If we're waiting, cancel the wait. */
if (this->GetState() == ThreadState_Waiting) {
m_wait_queue->CancelWait(this, svc::ResultTimedOut(), false);
}
}
void KThread::StartTermination() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Release user exception and unpin, if relevant. */
if (m_parent != nullptr) {
m_parent->ReleaseUserException(this);
if (m_parent->GetPinnedThread(GetCurrentCoreId()) == this) {
m_parent->UnpinCurrentThread();
}
}
/* Set state to terminated. */
this->SetState(KThread::ThreadState_Terminated);
/* Clear the thread's status as running in parent. */
if (m_parent != nullptr) {
m_parent->ClearRunningThread(this);
}
/* Call the on thread termination handler. */
KThreadContext::OnThreadTerminating(this);
/* Clear previous thread in KScheduler. */
KScheduler::ClearPreviousThread(this);
/* Register terminated dpc flag. */
this->RegisterDpc(DpcFlag_Terminated);
}
void KThread::FinishTermination() {
MESOSPHERE_ASSERT_THIS();
/* Ensure that the thread is not executing on any core. */
if (m_parent != nullptr) {
/* Wait for the thread to not be current on any core. */
for (size_t i = 0; i < cpu::NumCores; ++i) {
KThread *core_thread;
do {
core_thread = Kernel::GetScheduler(i).GetSchedulerCurrentThread();
} while (core_thread == this);
}
/* Ensure that all cores are synchronized at this point. */
cpu::SynchronizeCores(m_parent->GetPhysicalCoreMask());
}
/* Acquire the scheduler lock. */
KScopedSchedulerLock sl;
/* Signal. */
m_signaled = true;
KSynchronizationObject::NotifyAvailable();
/* Close the thread. */
this->Close();
}
void KThread::DoWorkerTaskImpl() {
/* Finish the termination that was begun by Exit(). */
this->FinishTermination();
}
void KThread::OnEnterUsermodeException() {
this->SetUsermodeExceptionSvcPermissions();
this->SetInUsermodeExceptionHandler();
}
void KThread::OnLeaveUsermodeException() {
this->ClearUsermodeExceptionSvcPermissions();
/* NOTE: InUsermodeExceptionHandler will be cleared by RestoreContext. */
}
void KThread::Pin() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Set ourselves as pinned. */
this->GetStackParameters().is_pinned = true;
/* Disable core migration. */
MESOSPHERE_ASSERT(m_num_core_migration_disables == 0);
{
++m_num_core_migration_disables;
/* Save our ideal state to restore when we're unpinned. */
m_original_physical_ideal_core_id = m_physical_ideal_core_id;
m_original_physical_affinity_mask = m_physical_affinity_mask;
/* Bind ourselves to this core. */
const s32 active_core = this->GetActiveCore();
const s32 current_core = GetCurrentCoreId();
this->SetActiveCore(current_core);
m_physical_ideal_core_id = current_core;
m_physical_affinity_mask.SetAffinityMask(1ul << current_core);
if (active_core != current_core || m_physical_affinity_mask.GetAffinityMask() != m_original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, m_original_physical_affinity_mask, active_core);
}
/* Set base priority-on-unpin. */
const s32 old_base_priority = m_base_priority;
m_base_priority_on_unpin = old_base_priority;
/* Set base priority to higher than any possible process priority. */
m_base_priority = std::min<s32>(old_base_priority, __builtin_ctzll(this->GetOwnerProcess()->GetPriorityMask()) - 1);
RestorePriority(this);
}
/* Disallow performing thread suspension. */
{
/* Update our allow flags. */
m_suspend_allowed_flags &= ~(1 << (util::ToUnderlying(SuspendType_Thread) + util::ToUnderlying(ThreadState_SuspendShift)));
/* Update our state. */
this->UpdateState();
}
/* Update our SVC access permissions. */
this->SetPinnedSvcPermissions();
}
void KThread::Unpin() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Set ourselves as unpinned. */
this->GetStackParameters().is_pinned = false;
/* Enable core migration. */
MESOSPHERE_ASSERT(m_num_core_migration_disables == 1);
{
--m_num_core_migration_disables;
/* Restore our original state. */
const KAffinityMask old_mask = m_physical_affinity_mask;
m_physical_ideal_core_id = m_original_physical_ideal_core_id;
m_physical_affinity_mask = m_original_physical_affinity_mask;
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore();
if (!m_physical_affinity_mask.GetAffinity(active_core)) {
if (m_physical_ideal_core_id >= 0) {
this->SetActiveCore(m_physical_ideal_core_id);
} else {
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(m_physical_affinity_mask.GetAffinityMask()));
}
}
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
}
m_base_priority = m_base_priority_on_unpin;
RestorePriority(this);
}
/* Allow performing thread suspension (if termination hasn't been requested). */
if (!this->IsTerminationRequested()) {
/* Update our allow flags. */
m_suspend_allowed_flags |= (1 << (util::ToUnderlying(SuspendType_Thread) + util::ToUnderlying(ThreadState_SuspendShift)));
/* Update our state. */
this->UpdateState();
/* Update our SVC access permissions. */
MESOSPHERE_ASSERT(m_parent != nullptr);
this->SetUnpinnedSvcPermissions();
}
/* Resume any threads that began waiting on us while we were pinned. */
for (auto it = m_pinned_waiter_list.begin(); it != m_pinned_waiter_list.end(); it = m_pinned_waiter_list.erase(it)) {
it->EndWait(ResultSuccess());
}
}
void KThread::DisableCoreMigration() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this == GetCurrentThreadPointer());
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(m_num_core_migration_disables >= 0);
if ((m_num_core_migration_disables++) == 0) {
/* Save our ideal state to restore when we can migrate again. */
m_original_physical_ideal_core_id = m_physical_ideal_core_id;
m_original_physical_affinity_mask = m_physical_affinity_mask;
/* Bind ourselves to this core. */
const s32 active_core = this->GetActiveCore();
m_physical_ideal_core_id = active_core;
m_physical_affinity_mask.SetAffinityMask(1ul << active_core);
if (m_physical_affinity_mask.GetAffinityMask() != m_original_physical_affinity_mask.GetAffinityMask()) {
KScheduler::OnThreadAffinityMaskChanged(this, m_original_physical_affinity_mask, active_core);
}
}
}
void KThread::EnableCoreMigration() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this == GetCurrentThreadPointer());
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(m_num_core_migration_disables > 0);
if ((--m_num_core_migration_disables) == 0) {
const KAffinityMask old_mask = m_physical_affinity_mask;
/* Restore our ideals. */
m_physical_ideal_core_id = m_original_physical_ideal_core_id;
m_physical_affinity_mask = m_original_physical_affinity_mask;
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore();
if (!m_physical_affinity_mask.GetAffinity(active_core)) {
if (m_physical_ideal_core_id >= 0) {
this->SetActiveCore(m_physical_ideal_core_id);
} else {
this->SetActiveCore(BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(m_physical_affinity_mask.GetAffinityMask()));
}
}
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
}
}
}
Result KThread::GetCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask) {
MESOSPHERE_ASSERT_THIS();
{
KScopedSchedulerLock sl;
/* Get the virtual mask. */
*out_ideal_core = m_virtual_ideal_core_id;
*out_affinity_mask = m_virtual_affinity_mask;
}
R_SUCCEED();
}
Result KThread::GetPhysicalCoreMask(int32_t *out_ideal_core, u64 *out_affinity_mask) {
MESOSPHERE_ASSERT_THIS();
{
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(m_num_core_migration_disables >= 0);
/* Select between core mask and original core mask. */
if (m_num_core_migration_disables == 0) {
*out_ideal_core = m_physical_ideal_core_id;
*out_affinity_mask = m_physical_affinity_mask.GetAffinityMask();
} else {
*out_ideal_core = m_original_physical_ideal_core_id;
*out_affinity_mask = m_original_physical_affinity_mask.GetAffinityMask();
}
}
R_SUCCEED();
}
Result KThread::SetCoreMask(int32_t core_id, u64 v_affinity_mask) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(m_parent != nullptr);
MESOSPHERE_ASSERT(v_affinity_mask != 0);
KScopedLightLock lk(m_activity_pause_lock);
/* Set the core mask. */
u64 p_affinity_mask = 0;
{
KScopedSchedulerLock sl;
MESOSPHERE_ASSERT(m_num_core_migration_disables >= 0);
/* If we're updating, set our ideal virtual core. */
if (core_id != ams::svc::IdealCoreNoUpdate) {
m_virtual_ideal_core_id = core_id;
} else {
/* Preserve our ideal core id. */
core_id = m_virtual_ideal_core_id;
R_UNLESS(((1ul << core_id) & v_affinity_mask) != 0, svc::ResultInvalidCombination());
}
/* Set our affinity mask. */
m_virtual_affinity_mask = v_affinity_mask;
/* Translate the virtual core to a physical core. */
if (core_id >= 0) {
core_id = cpu::VirtualToPhysicalCoreMap[core_id];
}
/* Translate the virtual affinity mask to a physical one. */
p_affinity_mask = cpu::ConvertVirtualCoreMaskToPhysical(v_affinity_mask);
/* If we haven't disabled migration, perform an affinity change. */
if (m_num_core_migration_disables == 0) {
const KAffinityMask old_mask = m_physical_affinity_mask;
/* Set our new ideals. */
m_physical_ideal_core_id = core_id;
m_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
if (m_physical_affinity_mask.GetAffinityMask() != old_mask.GetAffinityMask()) {
const s32 active_core = this->GetActiveCore();
if (active_core >= 0 && !m_physical_affinity_mask.GetAffinity(active_core)) {
const s32 new_core = m_physical_ideal_core_id >= 0 ? m_physical_ideal_core_id : BITSIZEOF(unsigned long long) - 1 - __builtin_clzll(m_physical_affinity_mask.GetAffinityMask());
this->SetActiveCore(new_core);
}
KScheduler::OnThreadAffinityMaskChanged(this, old_mask, active_core);
}
} else {
/* Otherwise, we edit the original affinity for restoration later. */
m_original_physical_ideal_core_id = core_id;
m_original_physical_affinity_mask.SetAffinityMask(p_affinity_mask);
}
}
/* Update the pinned waiter list. */
ThreadQueueImplForKThreadSetProperty wait_queue(std::addressof(m_pinned_waiter_list));
{
bool retry_update;
do {
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Don't do any further management if our termination has been requested. */
R_SUCCEED_IF(this->IsTerminationRequested());
/* By default, we won't need to retry. */
retry_update = false;
/* Check if the thread is currently running. */
bool thread_is_current = false;
s32 thread_core;
for (thread_core = 0; thread_core < static_cast<s32>(cpu::NumCores); ++thread_core) {
if (Kernel::GetScheduler(thread_core).GetSchedulerCurrentThread() == this) {
thread_is_current = true;
break;
}
}
/* If the thread is currently running, check whether it's no longer allowed under the new mask. */
if (thread_is_current && ((1ul << thread_core) & p_affinity_mask) == 0) {
/* If the thread is pinned, we want to wait until it's not pinned. */
if (this->GetStackParameters().is_pinned) {
/* Verify that the current thread isn't terminating. */
R_UNLESS(!GetCurrentThread().IsTerminationRequested(), svc::ResultTerminationRequested());
/* Wait until the thread isn't pinned any more. */
m_pinned_waiter_list.push_back(GetCurrentThread());
GetCurrentThread().BeginWait(std::addressof(wait_queue));
} else {
/* If the thread isn't pinned, release the scheduler lock and retry until it's not current. */
retry_update = true;
}
}
} while (retry_update);
}
R_SUCCEED();
}
void KThread::SetBasePriority(s32 priority) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(ams::svc::HighestThreadPriority <= priority && priority <= ams::svc::LowestThreadPriority);
KScopedSchedulerLock sl;
/* Determine the priority value to use. */
const s32 target_priority = m_termination_requested.Load() && priority >= TerminatingThreadPriority ? TerminatingThreadPriority : priority;
/* Change our base priority. */
if (this->GetStackParameters().is_pinned) {
m_base_priority_on_unpin = target_priority;
} else {
m_base_priority = target_priority;
}
/* Perform a priority restoration. */
RestorePriority(this);
}
void KThread::IncreaseBasePriority(s32 priority) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(ams::svc::HighestThreadPriority <= priority && priority <= ams::svc::LowestThreadPriority);
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(!this->GetStackParameters().is_pinned);
/* Set our base priority. */
if (m_base_priority > priority) {
m_base_priority = priority;
/* Perform a priority restoration. */
RestorePriority(this);
}
}
Result KThread::SetPriorityToIdle() {
MESOSPHERE_ASSERT_THIS();
KScopedSchedulerLock sl;
/* Change both our priorities to the idle thread priority. */
const s32 old_priority = m_priority;
m_priority = IdleThreadPriority;
m_base_priority = IdleThreadPriority;
KScheduler::OnThreadPriorityChanged(this, old_priority);
R_SUCCEED();
}
void KThread::RequestSuspend(SuspendType type) {
MESOSPHERE_ASSERT_THIS();
KScopedSchedulerLock lk;
/* Note the request in our flags. */
m_suspend_request_flags |= (1u << (util::ToUnderlying(ThreadState_SuspendShift) + util::ToUnderlying(type)));
/* Try to perform the suspend. */
this->TrySuspend();
}
void KThread::Resume(SuspendType type) {
MESOSPHERE_ASSERT_THIS();
KScopedSchedulerLock sl;
/* Clear the request in our flags. */
m_suspend_request_flags &= ~(1u << (util::ToUnderlying(ThreadState_SuspendShift) + util::ToUnderlying(type)));
/* Update our state. */
this->UpdateState();
}
void KThread::WaitCancel() {
MESOSPHERE_ASSERT_THIS();
KScopedSchedulerLock sl;
/* Check if we're waiting and cancellable. */
if (this->GetState() == ThreadState_Waiting && m_cancellable) {
m_wait_cancelled = false;
m_wait_queue->CancelWait(this, svc::ResultCancelled(), true);
} else {
/* Otherwise, note that we cancelled a wait. */
m_wait_cancelled = true;
}
}
void KThread::TrySuspend() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(this->IsSuspendRequested());
/* Ensure that we have no waiters. */
if (this->GetNumKernelWaiters() > 0) {
return;
}
MESOSPHERE_ABORT_UNLESS(this->GetNumKernelWaiters() == 0);
/* Perform the suspend. */
this->UpdateState();
}
void KThread::UpdateState() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Set our suspend flags in state. */
const auto old_state = m_thread_state;
const auto new_state = static_cast<ThreadState>(this->GetSuspendFlags() | (old_state & ThreadState_Mask));
m_thread_state = new_state;
/* Note the state change in scheduler. */
if (new_state != old_state) {
KScheduler::OnThreadStateChanged(this, old_state);
}
}
void KThread::Continue() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Clear our suspend flags in state. */
const auto old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>(old_state & ThreadState_Mask);
/* Note the state change in scheduler. */
KScheduler::OnThreadStateChanged(this, old_state);
}
size_t KThread::GetKernelStackUsage() const {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(m_kernel_stack_top != nullptr);
#if defined(MESOSPHERE_ENABLE_KERNEL_STACK_USAGE)
const u8 *stack = static_cast<const u8 *>(m_kernel_stack_top) - PageSize;
size_t i;
for (i = 0; i < PageSize; ++i) {
if (stack[i] != 0xCC) {
break;
}
}
return PageSize - i;
#else
return 0;
#endif
}
Result KThread::SetActivity(ams::svc::ThreadActivity activity) {
/* Lock ourselves. */
KScopedLightLock lk(m_activity_pause_lock);
/* Set the activity. */
{
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Verify our state. */
const auto cur_state = this->GetState();
R_UNLESS((cur_state == ThreadState_Waiting || cur_state == ThreadState_Runnable), svc::ResultInvalidState());
/* Either pause or resume. */
if (activity == ams::svc::ThreadActivity_Paused) {
/* Verify that we're not suspended. */
R_UNLESS(!this->IsSuspendRequested(SuspendType_Thread), svc::ResultInvalidState());
/* Suspend. */
this->RequestSuspend(SuspendType_Thread);
} else {
MESOSPHERE_ASSERT(activity == ams::svc::ThreadActivity_Runnable);
/* Verify that we're suspended. */
R_UNLESS(this->IsSuspendRequested(SuspendType_Thread), svc::ResultInvalidState());
/* Resume. */
this->Resume(SuspendType_Thread);
}
}
/* If the thread is now paused, update the pinned waiter list. */
if (activity == ams::svc::ThreadActivity_Paused) {
ThreadQueueImplForKThreadSetProperty wait_queue(std::addressof(m_pinned_waiter_list));
bool thread_is_current;
do {
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Don't do any further management if our termination has been requested. */
R_SUCCEED_IF(this->IsTerminationRequested());
/* By default, treat the thread as not current. */
thread_is_current = false;
/* Check whether the thread is pinned. */
if (this->GetStackParameters().is_pinned) {
/* Verify that the current thread isn't terminating. */
R_UNLESS(!GetCurrentThread().IsTerminationRequested(), svc::ResultTerminationRequested());
/* Wait until the thread isn't pinned any more. */
m_pinned_waiter_list.push_back(GetCurrentThread());
GetCurrentThread().BeginWait(std::addressof(wait_queue));
} else {
/* Check if the thread is currently running. */
/* If it is, we'll need to retry. */
for (auto i = 0; i < static_cast<s32>(cpu::NumCores); ++i) {
if (Kernel::GetScheduler(i).GetSchedulerCurrentThread() == this) {
thread_is_current = true;
break;
}
}
}
} while (thread_is_current);
}
R_SUCCEED();
}
Result KThread::GetThreadContext3(ams::svc::ThreadContext *out) {
/* Lock ourselves. */
KScopedLightLock lk(m_activity_pause_lock);
/* Get the context. */
{
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* Verify that we're suspended. */
R_UNLESS(this->IsSuspendRequested(SuspendType_Thread), svc::ResultInvalidState());
/* If we're not terminating, get the thread's user context. */
if (!this->IsTerminationRequested()) {
GetUserContext(out, this);
}
}
R_SUCCEED();
}
void KThread::AddHeldLock(LockWithPriorityInheritanceInfo *lock_info) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Set ourselves as the lock's owner. */
lock_info->SetOwner(this);
/* Add the lock to our held list. */
m_held_lock_info_list.push_front(*lock_info);
}
KThread::LockWithPriorityInheritanceInfo *KThread::FindHeldLock(KProcessAddress address_key) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Try to find an existing held lock. */
for (auto &held_lock : m_held_lock_info_list) {
if (held_lock.GetAddressKey() == address_key) {
return std::addressof(held_lock);
}
}
return nullptr;
}
void KThread::AddWaiterImpl(KThread *thread) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(thread->GetConditionVariableTree() == nullptr);
/* Get the thread's address key. */
const auto address_key = thread->GetAddressKey();
/* Keep track of how many kernel waiters we have. */
if (IsKernelAddressKey(address_key)) {
MESOSPHERE_ABORT_UNLESS((m_num_kernel_waiters++) >= 0);
KScheduler::SetSchedulerUpdateNeeded();
}
/* Get the relevant lock info. */
auto *lock_info = this->FindHeldLock(address_key);
if (lock_info == nullptr) {
/* Create a new lock for the address key. */
lock_info = LockWithPriorityInheritanceInfo::Create(address_key);
/* Add the new lock to our list. */
this->AddHeldLock(lock_info);
}
/* Add the thread as waiter to the lock info. */
lock_info->AddWaiter(thread);
}
void KThread::RemoveWaiterImpl(KThread *thread) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Keep track of how many kernel waiters we have. */
if (IsKernelAddressKey(thread->GetAddressKey())) {
MESOSPHERE_ABORT_UNLESS((m_num_kernel_waiters--) > 0);
KScheduler::SetSchedulerUpdateNeeded();
}
/* Get the info for the lock the thread is waiting on. */
auto *lock_info = thread->GetWaitingLockInfo();
MESOSPHERE_ASSERT(lock_info->GetOwner() == this);
/* Remove the waiter. */
if (lock_info->RemoveWaiter(thread)) {
m_held_lock_info_list.erase(m_held_lock_info_list.iterator_to(*lock_info));
LockWithPriorityInheritanceInfo::Free(lock_info);
}
}
void KThread::RestorePriority(KThread *thread) {
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
while (thread != nullptr) {
/* We want to inherit priority where possible. */
s32 new_priority = thread->GetBasePriority();
for (const auto &held_lock : thread->m_held_lock_info_list) {
new_priority = std::min(new_priority, held_lock.GetHighestPriorityWaiter()->GetPriority());
}
/* If the priority we would inherit is not different from ours, don't do anything. */
if (new_priority == thread->GetPriority()) {
return;
}
/* Get the owner of whatever lock this thread is waiting on. */
KThread * const lock_owner = thread->GetLockOwner();
/* If the thread is waiting on some lock, remove it as a waiter to prevent violating red black tree invariants. */
if (lock_owner != nullptr) {
lock_owner->RemoveWaiterImpl(thread);
}
/* Ensure we don't violate condition variable red black tree invariants. */
if (auto *cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
BeforeUpdatePriority(cv_tree, thread);
}
/* Change the priority. */
const s32 old_priority = thread->GetPriority();
thread->SetPriority(new_priority);
/* Restore the condition variable, if relevant. */
if (auto *cv_tree = thread->GetConditionVariableTree(); cv_tree != nullptr) {
AfterUpdatePriority(cv_tree, thread);
}
/* If we removed the thread from some lock's waiting list, add it back. */
if (lock_owner != nullptr) {
lock_owner->AddWaiterImpl(thread);
}
/* Update the scheduler. */
KScheduler::OnThreadPriorityChanged(thread, old_priority);
/* Continue inheriting priority. */
thread = lock_owner;
}
}
void KThread::AddWaiter(KThread *thread) {
MESOSPHERE_ASSERT_THIS();
this->AddWaiterImpl(thread);
/* If the thread has a higher priority than us, we should inherit. */
if (thread->GetPriority() < this->GetPriority()) {
RestorePriority(this);
}
}
void KThread::RemoveWaiter(KThread *thread) {
MESOSPHERE_ASSERT_THIS();
this->RemoveWaiterImpl(thread);
/* If our priority is the same as the thread's (and we've inherited), we may need to restore to lower priority. */
if (this->GetPriority() == thread->GetPriority() && this->GetPriority() < this->GetBasePriority()) {
RestorePriority(this);
}
}
KThread *KThread::RemoveWaiterByKey(bool *out_has_waiters, KProcessAddress key) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(KScheduler::IsSchedulerLockedByCurrentThread());
/* Get the relevant lock info. */
auto *lock_info = this->FindHeldLock(key);
if (lock_info == nullptr) {
*out_has_waiters = false;
return nullptr;
}
/* Remove the lock info from our held list. */
m_held_lock_info_list.erase(m_held_lock_info_list.iterator_to(*lock_info));
/* Keep track of how many kernel waiters we have. */
if (IsKernelAddressKey(lock_info->GetAddressKey())) {
m_num_kernel_waiters -= lock_info->GetWaiterCount();
MESOSPHERE_ABORT_UNLESS(m_num_kernel_waiters >= 0);
KScheduler::SetSchedulerUpdateNeeded();
}
MESOSPHERE_ASSERT(lock_info->GetWaiterCount() > 0);
/* Remove the highest priority waiter from the lock to be the next owner. */
KThread *next_lock_owner = lock_info->GetHighestPriorityWaiter();
if (lock_info->RemoveWaiter(next_lock_owner)) {
/* The new owner was the only waiter. */
*out_has_waiters = false;
/* Free the lock info, since it has no waiters. */
LockWithPriorityInheritanceInfo::Free(lock_info);
} else {
/* There are additional waiters on the lock. */
*out_has_waiters = true;
/* Add the lock to the new owner's held list. */
next_lock_owner->AddHeldLock(lock_info);
/* Keep track of any kernel waiters for the new owner. */
if (IsKernelAddressKey(lock_info->GetAddressKey())) {
next_lock_owner->m_num_kernel_waiters += lock_info->GetWaiterCount();
MESOSPHERE_ABORT_UNLESS(next_lock_owner->m_num_kernel_waiters > 0);
/* NOTE: No need to set scheduler update needed, because we will have already done so when removing earlier. */
}
}
/* If our priority is the same as the next owner's (and we've inherited), we may need to restore to lower priority. */
if (this->GetPriority() == next_lock_owner->GetPriority() && this->GetPriority() < this->GetBasePriority()) {
RestorePriority(this);
/* NOTE: No need to restore priority on the next lock owner, because it was already the highest priority waiter on the lock. */
}
/* Return the next lock owner. */
return next_lock_owner;
}
Result KThread::Run() {
MESOSPHERE_ASSERT_THIS();
/* If the kernel hasn't finished initializing, then we should suspend. */
if (Kernel::GetState() != Kernel::State::Initialized) {
this->RequestSuspend(SuspendType_Init);
}
while (true) {
KScopedSchedulerLock lk;
/* If either this thread or the current thread are requesting termination, note it. */
R_UNLESS(!this->IsTerminationRequested(), svc::ResultTerminationRequested());
R_UNLESS(!GetCurrentThread().IsTerminationRequested(), svc::ResultTerminationRequested());
/* Ensure our thread state is correct. */
R_UNLESS(this->GetState() == ThreadState_Initialized, svc::ResultInvalidState());
/* If the current thread has been asked to suspend, suspend it and retry. */
if (GetCurrentThread().IsSuspended()) {
GetCurrentThread().UpdateState();
continue;
}
/* If we're not a kernel thread and we've been asked to suspend, suspend ourselves. */
if (KProcess *parent = this->GetOwnerProcess(); parent != nullptr) {
if (this->IsSuspended()) {
this->UpdateState();
}
parent->IncrementRunningThreadCount();
}
/* Open a reference, now that we're running. */
this->Open();
/* Set our state and finish. */
this->SetState(KThread::ThreadState_Runnable);
R_SUCCEED();
}
}
void KThread::Exit() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this == GetCurrentThreadPointer());
/* Call the debug callback. */
KDebug::OnExitThread(this);
/* Release the thread resource hint, running thread count from parent. */
if (m_parent != nullptr) {
m_parent->ReleaseResource(ams::svc::LimitableResource_ThreadCountMax, 0, 1);
m_resource_limit_release_hint = true;
m_parent->DecrementRunningThreadCount();
}
/* Destroy any dependent objects. */
this->DestroyClosedObjects();
/* Perform termination. */
{
KScopedSchedulerLock sl;
/* Disallow all suspension. */
m_suspend_allowed_flags = 0;
this->UpdateState();
/* Start termination. */
this->StartTermination();
/* Register the thread as a work task. */
KWorkerTaskManager::AddTask(KWorkerTaskManager::WorkerType_ExitThread, this);
}
MESOSPHERE_PANIC("KThread::Exit() would return");
}
Result KThread::Terminate() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this != GetCurrentThreadPointer());
/* Request the thread terminate if it hasn't already. */
if (const auto new_state = this->RequestTerminate(); new_state != ThreadState_Terminated) {
/* If the thread isn't terminated, wait for it to terminate. */
s32 index;
KSynchronizationObject *objects[] = { this };
R_TRY(KSynchronizationObject::Wait(std::addressof(index), objects, 1, ams::svc::WaitInfinite));
}
R_SUCCEED();
}
KThread::ThreadState KThread::RequestTerminate() {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(this != GetCurrentThreadPointer());
KScopedSchedulerLock sl;
/* Determine if this is the first termination request. */
const bool first_request = [&]() ALWAYS_INLINE_LAMBDA -> bool {
/* Perform an atomic compare-and-swap from false to true. */
bool expected = false;
return m_termination_requested.CompareExchangeStrong(expected, true);
}();
/* If this is the first request, start termination procedure. */
if (first_request) {
/* If the thread is in initialized state, just change state to terminated. */
if (this->GetState() == ThreadState_Initialized) {
m_thread_state = ThreadState_Terminated;
return ThreadState_Terminated;
}
/* Register the terminating dpc. */
this->RegisterDpc(DpcFlag_Terminating);
/* If the thread is pinned, unpin it. */
if (this->GetStackParameters().is_pinned) {
this->GetOwnerProcess()->UnpinThread(this);
}
/* If the thread is suspended, continue it. */
if (this->IsSuspended()) {
m_suspend_allowed_flags = 0;
this->UpdateState();
}
/* Change the thread's priority to be higher than any system thread's. */
this->IncreaseBasePriority(TerminatingThreadPriority);
/* If the thread is runnable, send a termination interrupt to other cores. */
if (this->GetState() == ThreadState_Runnable) {
if (const u64 core_mask = m_physical_affinity_mask.GetAffinityMask() & ~(1ul << GetCurrentCoreId()); core_mask != 0) {
cpu::DataSynchronizationBarrierInnerShareable();
Kernel::GetInterruptManager().SendInterProcessorInterrupt(KInterruptName_ThreadTerminate, core_mask);
}
}
/* Wake up the thread. */
if (this->GetState() == ThreadState_Waiting) {
m_wait_queue->CancelWait(this, svc::ResultTerminationRequested(), true);
}
}
return this->GetState();
}
Result KThread::Sleep(s64 timeout) {
MESOSPHERE_ASSERT_THIS();
MESOSPHERE_ASSERT(!KScheduler::IsSchedulerLockedByCurrentThread());
MESOSPHERE_ASSERT(this == GetCurrentThreadPointer());
MESOSPHERE_ASSERT(timeout > 0);
ThreadQueueImplForKThreadSleep wait_queue;
KHardwareTimer *timer;
{
/* Setup the scheduling lock and sleep. */
KScopedSchedulerLockAndSleep slp(std::addressof(timer), this, timeout);
/* Check if the thread should terminate. */
if (this->IsTerminationRequested()) {
slp.CancelSleep();
R_THROW(svc::ResultTerminationRequested());
}
/* Wait for the sleep to end. */
wait_queue.SetHardwareTimer(timer);
this->BeginWait(std::addressof(wait_queue));
}
R_SUCCEED();
}
void KThread::BeginWait(KThreadQueue *queue) {
/* Set our state as waiting. */
this->SetState(ThreadState_Waiting);
/* Set our wait queue. */
m_wait_queue = queue;
}
void KThread::NotifyAvailable(KSynchronizationObject *signaled_object, Result wait_result) {
MESOSPHERE_ASSERT_THIS();
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* If we're waiting, notify our queue that we're available. */
if (this->GetState() == ThreadState_Waiting) {
m_wait_queue->NotifyAvailable(this, signaled_object, wait_result);
}
}
void KThread::EndWait(Result wait_result) {
MESOSPHERE_ASSERT_THIS();
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* If we're waiting, notify our queue that we're available. */
if (this->GetState() == ThreadState_Waiting) {
m_wait_queue->EndWait(this, wait_result);
}
}
void KThread::CancelWait(Result wait_result, bool cancel_timer_task) {
MESOSPHERE_ASSERT_THIS();
/* Lock the scheduler. */
KScopedSchedulerLock sl;
/* If we're waiting, notify our queue that we're available. */
if (this->GetState() == ThreadState_Waiting) {
m_wait_queue->CancelWait(this, wait_result, cancel_timer_task);
}
}
void KThread::SetState(ThreadState state) {
MESOSPHERE_ASSERT_THIS();
KScopedSchedulerLock sl;
const ThreadState old_state = m_thread_state;
m_thread_state = static_cast<ThreadState>((old_state & ~ThreadState_Mask) | (state & ThreadState_Mask));
if (m_thread_state != old_state) {
KScheduler::OnThreadStateChanged(this, old_state);
}
}
KThread *KThread::GetThreadFromId(u64 thread_id) {
/* Lock the list. */
KThread::ListAccessor accessor;
const auto end = accessor.end();
/* Find the object with the right id. */
if (const auto it = accessor.find_key(thread_id); it != end) {
/* Try to open the thread. */
if (KThread *thread = static_cast<KThread *>(std::addressof(*it)); AMS_LIKELY(thread->Open())) {
MESOSPHERE_ASSERT(thread->GetId() == thread_id);
return thread;
}
}
/* We failed to find or couldn't open the thread. */
return nullptr;
}
Result KThread::GetThreadList(s32 *out_num_threads, ams::kern::svc::KUserPointer<u64 *> out_thread_ids, s32 max_out_count) {
/* Lock the list. */
KThread::ListAccessor accessor;
const auto end = accessor.end();
/* Iterate over the list. */
s32 count = 0;
for (auto it = accessor.begin(); it != end; ++it) {
/* If we're within array bounds, write the id. */
if (count < max_out_count) {
/* Get the thread id. */
KThread *thread = static_cast<KThread *>(std::addressof(*it));
const u64 id = thread->GetId();
/* Copy the id to userland. */
R_TRY(out_thread_ids.CopyArrayElementFrom(std::addressof(id), count));
}
/* Increment the count. */
++count;
}
/* We successfully iterated the list. */
*out_num_threads = count;
R_SUCCEED();
}
}