1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-11 13:02:03 +00:00
Atmosphere/stratosphere/ams_mitm/source/fs_mitm/fsmitm_romfs.cpp
SciresM f2ee44da74
romfs/ams.mitm/pm: refactor to dynamically steal heap for certain games. (#2122)
* fs.mitm: skeleton the use of special allocation in romfs build

* pm: add api for ams.mitm to steal application memory

* pm/mitm: okay, that api won't work, try a different one

* romfs: revert memory usage increases; we'll handle torture games case-by-case.

* pm/romfs: first (broken?) pass at dynamic heap.

I cannot wait to figure out all the ways this is wrong.

* Release the dynamic heap a little more eagerly

* romfs: animal crossing is also not a nice game

* romfs: fix issues in close-during-build

* romfs: zelda is a blight upon this earth
2023-05-14 03:06:52 -07:00

1033 lines
46 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include "../amsmitm_fs_utils.hpp"
#include "fsmitm_romfs.hpp"
#include "fsmitm_layered_romfs_storage.hpp"
namespace ams::mitm::fs {
using namespace ams::fs;
namespace romfs {
namespace {
struct ApplicationWithDynamicHeapInfo {
ncm::ProgramId program_id;
size_t dynamic_app_heap_size;
size_t dynamic_system_heap_size;
};
constexpr const ApplicationWithDynamicHeapInfo ApplicationsWithDynamicHeap[] = {
/* Animal Crossing: New Horizons. */
/* Requirement ~24 MB. */
/* No particular heap sensitivity. */
{ 0x01006F8002326000, 16_MB, 0_MB },
/* Fire Emblem: Engage. */
/* Requirement ~32+ MB. */
/* No particular heap sensitivity. */
{ 0x0100A6301214E000, 16_MB, 0_MB },
/* The Legend of Zelda: Tears of the Kingdom. */
/* Requirement ~48 MB. */
/* Game is highly sensitive to memory stolen from application heap. */
/* 1.0.0 tolerates no more than 16 MB stolen. 1.1.0 no more than 12 MB. */
{ 0x0100F2C0115B6000, 10_MB, 8_MB },
};
constexpr size_t GetDynamicAppHeapSize(ncm::ProgramId program_id) {
for (const auto &info : ApplicationsWithDynamicHeap) {
if (info.program_id == program_id) {
return info.dynamic_app_heap_size;
}
}
return 0;
}
constexpr size_t GetDynamicSysHeapSize(ncm::ProgramId program_id) {
for (const auto &info : ApplicationsWithDynamicHeap) {
if (info.program_id == program_id) {
return info.dynamic_system_heap_size;
}
}
return 0;
}
template<auto MapImpl, auto UnmapImpl>
struct DynamicHeap {
uintptr_t heap_address{};
size_t heap_size{};
size_t outstanding_allocations{};
util::TypedStorage<mem::StandardAllocator> heap{};
os::SdkMutex release_heap_lock{};
constexpr DynamicHeap() = default;
void Map() {
if (this->heap_address == 0) {
/* NOTE: Lock not necessary, because this is the only location which do 0 -> non-zero. */
R_ABORT_UNLESS(MapImpl(std::addressof(this->heap_address), this->heap_size));
AMS_ABORT_UNLESS(this->heap_address != 0);
/* Create heap. */
util::ConstructAt(this->heap, reinterpret_cast<void *>(this->heap_address), this->heap_size);
}
}
void TryRelease() {
if (this->outstanding_allocations == 0) {
std::scoped_lock lk(this->release_heap_lock);
if (this->heap_address != 0) {
util::DestroyAt(this->heap);
this->heap = {};
R_ABORT_UNLESS(UnmapImpl(this->heap_address, this->heap_size));
this->heap_address = 0;
}
}
}
void *Allocate(size_t size) {
void * const ret = util::GetReference(this->heap).Allocate(size);
if (AMS_LIKELY(ret != nullptr)) {
++this->outstanding_allocations;
}
return ret;
}
bool TryFree(void *p) {
if (this->IsAllocated(p)) {
--this->outstanding_allocations;
util::GetReference(this->heap).Free(p);
return true;
} else {
return false;
}
}
bool IsAllocated(void *p) const {
const uintptr_t address = reinterpret_cast<uintptr_t>(p);
return this->heap_address != 0 && (this->heap_address <= address && address < this->heap_address + this->heap_size);
}
void Reset() {
/* This should require no remaining allocations. */
AMS_ABORT_UNLESS(this->outstanding_allocations == 0);
/* Free the heap. */
this->TryRelease();
AMS_ABORT_UNLESS(this->heap_address == 0);
/* Clear the heap size. */
this->heap_size = 0;
}
};
Result MapByHeap(uintptr_t *out, size_t size) {
R_TRY(os::SetMemoryHeapSize(size));
R_RETURN(os::AllocateMemoryBlock(out, size));
}
Result UnmapByHeap(uintptr_t address, size_t size) {
os::FreeMemoryBlock(address, size);
R_RETURN(os::SetMemoryHeapSize(0));
}
/* Dynamic allocation globals. */
constinit os::SdkMutex g_romfs_build_lock;
constinit ncm::ProgramId g_dynamic_heap_program_id{};
constinit bool g_building_from_dynamic_heap = false;
constinit DynamicHeap<os::AllocateUnsafeMemory, os::FreeUnsafeMemory> g_dynamic_app_heap;
constinit DynamicHeap<MapByHeap, UnmapByHeap> g_dynamic_sys_heap;
void InitializeDynamicHeapForBuildRomfs(ncm::ProgramId program_id) {
if (program_id == g_dynamic_heap_program_id && g_dynamic_app_heap.heap_size > 0) {
/* This romfs will build out of dynamic heap. */
g_building_from_dynamic_heap = true;
g_dynamic_app_heap.Map();
if (g_dynamic_sys_heap.heap_size > 0) {
g_dynamic_sys_heap.Map();
}
}
}
void FinalizeDynamicHeapForBuildRomfs() {
/* We are definitely no longer building out of dynamic heap. */
g_building_from_dynamic_heap = false;
g_dynamic_app_heap.TryRelease();
}
}
void *AllocateTracked(AllocationType type, size_t size) {
AMS_UNUSED(type);
if (g_building_from_dynamic_heap) {
void *ret = g_dynamic_app_heap.Allocate(size);
if (ret == nullptr && g_dynamic_sys_heap.heap_address != 0) {
ret = g_dynamic_sys_heap.Allocate(size);
}
if (ret == nullptr) {
ret = std::malloc(size);
}
return ret;
} else {
return std::malloc(size);
}
}
void FreeTracked(AllocationType type, void *p, size_t size) {
AMS_UNUSED(type);
AMS_UNUSED(size);
if (g_dynamic_app_heap.TryFree(p)) {
if (!g_building_from_dynamic_heap) {
g_dynamic_app_heap.TryRelease();
}
} else if (g_dynamic_sys_heap.TryFree(p)) {
if (!g_building_from_dynamic_heap) {
g_dynamic_sys_heap.TryRelease();
}
} else {
std::free(p);
}
}
namespace {
constexpr u32 EmptyEntry = 0xFFFFFFFF;
constexpr size_t FilePartitionOffset = 0x200;
struct Header {
s64 header_size;
s64 dir_hash_table_ofs;
s64 dir_hash_table_size;
s64 dir_table_ofs;
s64 dir_table_size;
s64 file_hash_table_ofs;
s64 file_hash_table_size;
s64 file_table_ofs;
s64 file_table_size;
s64 file_partition_ofs;
};
static_assert(util::is_pod<Header>::value && sizeof(Header) == 0x50);
struct DirectoryEntry {
u32 parent;
u32 sibling;
u32 child;
u32 file;
u32 hash;
u32 name_size;
char name[];
};
static_assert(util::is_pod<DirectoryEntry>::value && sizeof(DirectoryEntry) == 0x18);
struct FileEntry {
u32 parent;
u32 sibling;
s64 offset;
s64 size;
u32 hash;
u32 name_size;
char name[];
};
static_assert(util::is_pod<FileEntry>::value && sizeof(FileEntry) == 0x20);
class DynamicTableCache {
NON_COPYABLE(DynamicTableCache);
NON_MOVEABLE(DynamicTableCache);
private:
static constexpr size_t MaxCachedSize = (1_MB / 4);
private:
size_t m_cache_bitsize;
size_t m_cache_size;
protected:
void *m_cache;
protected:
DynamicTableCache(size_t sz) {
m_cache_size = util::CeilingPowerOfTwo(std::min(sz, MaxCachedSize));
m_cache = AllocateTracked(AllocationType_TableCache, m_cache_size);
while (m_cache == nullptr) {
m_cache_size >>= 1;
AMS_ABORT_UNLESS(m_cache_size >= 16_KB);
m_cache = AllocateTracked(AllocationType_TableCache, m_cache_size);
}
m_cache_bitsize = util::CountTrailingZeros(m_cache_size);
}
~DynamicTableCache() {
FreeTracked(AllocationType_TableCache, m_cache, m_cache_size);
}
ALWAYS_INLINE size_t GetCacheSize() const { return static_cast<size_t>(1) << m_cache_bitsize; }
};
class HashTableStorage : public DynamicTableCache {
public:
HashTableStorage(size_t sz) : DynamicTableCache(sz) { /* ... */ }
ALWAYS_INLINE u32 *GetBuffer() { return reinterpret_cast<u32 *>(m_cache); }
ALWAYS_INLINE size_t GetBufferSize() const { return DynamicTableCache::GetCacheSize(); }
};
template<typename Entry>
class TableReader : public DynamicTableCache {
NON_COPYABLE(TableReader);
NON_MOVEABLE(TableReader);
private:
static constexpr size_t FallbackCacheSize = 1_KB;
private:
ams::fs::IStorage *m_storage;
size_t m_offset;
size_t m_size;
size_t m_cache_idx;
u8 m_fallback_cache[FallbackCacheSize];
private:
ALWAYS_INLINE bool Read(size_t ofs, void *dst, size_t size) {
R_TRY_CATCH(m_storage->Read(m_offset + ofs, dst, size)) {
R_CATCH(fs::ResultNcaExternalKeyNotFound) { return false; }
} R_END_TRY_CATCH_WITH_ABORT_UNLESS;
return true;
}
ALWAYS_INLINE bool ReloadCacheImpl(size_t idx) {
const size_t rel_ofs = idx * this->GetCacheSize();
AMS_ABORT_UNLESS(rel_ofs < m_size);
const size_t new_cache_size = std::min(m_size - rel_ofs, this->GetCacheSize());
if (!this->Read(rel_ofs, m_cache, new_cache_size)) {
return false;
}
m_cache_idx = idx;
return true;
}
ALWAYS_INLINE bool ReloadCache(size_t idx) {
if (m_cache_idx != idx) {
if (!this->ReloadCacheImpl(idx)) {
return false;
}
}
return true;
}
ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) {
return ofs / this->GetCacheSize();
}
public:
TableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : DynamicTableCache(sz), m_storage(s), m_offset(ofs), m_size(sz), m_cache_idx(0) {
AMS_ABORT_UNLESS(m_cache != nullptr);
this->ReloadCacheImpl(0);
}
const Entry *GetEntry(u32 entry_offset) {
if (!this->ReloadCache(this->GetCacheIndex(entry_offset))) {
return nullptr;
}
const size_t ofs = entry_offset % this->GetCacheSize();
const Entry *entry = reinterpret_cast<const Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs);
if (AMS_UNLIKELY(this->GetCacheIndex(entry_offset) != this->GetCacheIndex(entry_offset + sizeof(Entry) + entry->name_size + sizeof(u32)))) {
if (!this->Read(entry_offset, m_fallback_cache, std::min(m_size - entry_offset, FallbackCacheSize))) {
return nullptr;
}
entry = reinterpret_cast<const Entry *>(m_fallback_cache);
}
return entry;
}
};
template<typename Entry>
class TableWriter : public DynamicTableCache {
NON_COPYABLE(TableWriter);
NON_MOVEABLE(TableWriter);
private:
static constexpr size_t FallbackCacheSize = 1_KB;
private:
::FsFile *m_file;
size_t m_offset;
size_t m_size;
size_t m_cache_idx;
u8 m_fallback_cache[FallbackCacheSize];
size_t m_fallback_cache_entry_offset;
size_t m_fallback_cache_entry_size;
bool m_cache_dirty;
bool m_fallback_cache_dirty;
private:
ALWAYS_INLINE void Read(size_t ofs, void *dst, size_t sz) {
u64 read_size;
R_ABORT_UNLESS(fsFileRead(m_file, m_offset + ofs, dst, sz, 0, std::addressof(read_size)));
AMS_ABORT_UNLESS(read_size == sz);
}
ALWAYS_INLINE void Write(size_t ofs, const void *src, size_t sz) {
R_ABORT_UNLESS(fsFileWrite(m_file, m_offset + ofs, src, sz, FsWriteOption_None));
}
ALWAYS_INLINE void Flush() {
AMS_ABORT_UNLESS(!(m_cache_dirty && m_fallback_cache_dirty));
if (m_cache_dirty) {
const size_t ofs = m_cache_idx * this->GetCacheSize();
this->Write(ofs, m_cache, std::min(m_size - ofs, this->GetCacheSize()));
m_cache_dirty = false;
}
if (m_fallback_cache_dirty) {
this->Write(m_fallback_cache_entry_offset, m_fallback_cache, m_fallback_cache_entry_size);
m_fallback_cache_dirty = false;
}
}
ALWAYS_INLINE size_t GetCacheIndex(u32 ofs) {
return ofs / this->GetCacheSize();
}
ALWAYS_INLINE void RefreshCacheImpl() {
const size_t cur_cache = m_cache_idx * this->GetCacheSize();
this->Read(cur_cache, m_cache, std::min(m_size - cur_cache, this->GetCacheSize()));
}
ALWAYS_INLINE void RefreshCache(u32 entry_offset) {
if (size_t idx = this->GetCacheIndex(entry_offset); idx != m_cache_idx || m_fallback_cache_dirty) {
this->Flush();
m_cache_idx = idx;
this->RefreshCacheImpl();
}
}
public:
TableWriter(::FsFile *f, size_t ofs, size_t sz) : DynamicTableCache(sz), m_file(f), m_offset(ofs), m_size(sz), m_cache_idx(0), m_fallback_cache_entry_offset(), m_fallback_cache_entry_size(), m_cache_dirty(), m_fallback_cache_dirty() {
AMS_ABORT_UNLESS(m_cache != nullptr);
std::memset(m_cache, 0, this->GetCacheSize());
std::memset(m_fallback_cache, 0, sizeof(m_fallback_cache));
for (size_t cur = 0; cur < m_size; cur += this->GetCacheSize()) {
this->Write(cur, m_cache, std::min(m_size - cur, this->GetCacheSize()));
}
}
~TableWriter() {
this->Flush();
}
Entry *GetEntry(u32 entry_offset, u32 name_len) {
this->RefreshCache(entry_offset);
const size_t ofs = entry_offset % this->GetCacheSize();
Entry *entry = reinterpret_cast<Entry *>(reinterpret_cast<uintptr_t>(m_cache) + ofs);
if (ofs + sizeof(Entry) + util::AlignUp(name_len, sizeof(u32)) > this->GetCacheSize()) {
this->Flush();
m_fallback_cache_entry_offset = entry_offset;
m_fallback_cache_entry_size = sizeof(Entry) + util::AlignUp(name_len, sizeof(u32));
this->Read(m_fallback_cache_entry_offset, m_fallback_cache, m_fallback_cache_entry_size);
entry = reinterpret_cast<Entry *>(m_fallback_cache);
m_fallback_cache_dirty = true;
} else {
m_cache_dirty = true;
}
return entry;
}
};
using DirectoryTableWriter = TableWriter<DirectoryEntry>;
using FileTableWriter = TableWriter<FileEntry>;
constexpr inline u32 CalculatePathHash(u32 parent, const char *path, u32 start, size_t path_len) {
u32 hash = parent ^ 123456789;
for (size_t i = 0; i < path_len; i++) {
hash = (hash >> 5) | (hash << 27);
hash ^= static_cast<unsigned char>(path[start + i]);
}
return hash;
}
constexpr inline size_t GetHashTableSize(size_t num_entries) {
if (num_entries < 3) {
return 3;
} else if (num_entries < 19) {
return num_entries | 1;
} else {
size_t count = num_entries;
while ((count % 2 == 0) ||
(count % 3 == 0) ||
(count % 5 == 0) ||
(count % 7 == 0) ||
(count % 11 == 0) ||
(count % 13 == 0) ||
(count % 17 == 0))
{
count++;
}
return count;
}
}
constinit os::SdkMutex g_fs_romfs_path_lock;
constinit char g_fs_romfs_path_buffer[fs::EntryNameLengthMax + 1];
NOINLINE void OpenFileSystemRomfsDirectory(FsDir *out, ncm::ProgramId program_id, BuildDirectoryContext *parent, fs::OpenDirectoryMode mode, FsFileSystem *fs) {
std::scoped_lock lk(g_fs_romfs_path_lock);
parent->GetPath(g_fs_romfs_path_buffer);
R_ABORT_UNLESS(mitm::fs::OpenAtmosphereRomfsDirectory(out, program_id, g_fs_romfs_path_buffer, mode, fs));
}
}
Builder::Builder(ncm::ProgramId pr_id) : m_program_id(pr_id), m_num_dirs(0), m_num_files(0), m_dir_table_size(0), m_file_table_size(0), m_dir_hash_table_size(0), m_file_hash_table_size(0), m_file_partition_size(0) {
/* Ensure only one romfs is built at any time. */
g_romfs_build_lock.Lock();
/* If we should be using dynamic heap, turn it on. */
InitializeDynamicHeapForBuildRomfs(m_program_id);
auto res = m_directories.emplace(std::unique_ptr<BuildDirectoryContext>(AllocateTyped<BuildDirectoryContext>(AllocationType_BuildDirContext, BuildDirectoryContext::RootTag{})));
AMS_ABORT_UNLESS(res.second);
m_root = res.first->get();
m_num_dirs = 1;
m_dir_table_size = 0x18;
}
Builder::~Builder() {
/* If we have nothing remaining in dynamic heap, release it. */
FinalizeDynamicHeapForBuildRomfs();
/* Release the romfs build lock. */
g_romfs_build_lock.Unlock();
}
void Builder::AddDirectory(BuildDirectoryContext **out, BuildDirectoryContext *parent_ctx, std::unique_ptr<BuildDirectoryContext> child_ctx) {
/* Set parent context member. */
child_ctx->parent = parent_ctx;
/* Check if the directory already exists. */
auto existing = m_directories.find(child_ctx);
if (existing != m_directories.end()) {
*out = existing->get();
return;
}
/* Add a new directory. */
m_num_dirs++;
m_dir_table_size += sizeof(DirectoryEntry) + util::AlignUp(child_ctx->path_len, 4);
*out = child_ctx.get();
m_directories.emplace(std::move(child_ctx));
}
void Builder::AddFile(BuildDirectoryContext *parent_ctx, std::unique_ptr<BuildFileContext> file_ctx) {
/* Set parent context member. */
file_ctx->parent = parent_ctx;
/* Check if the file already exists. */
if (m_files.find(file_ctx) != m_files.end()) {
return;
}
/* Add a new file. */
m_num_files++;
m_file_table_size += sizeof(FileEntry) + util::AlignUp(file_ctx->path_len, 4);
m_files.emplace(std::move(file_ctx));
}
void Builder::VisitDirectory(FsFileSystem *fs, BuildDirectoryContext *parent) {
FsDir dir;
/* Get number of child directories. */
s64 num_child_dirs = 0;
{
OpenFileSystemRomfsDirectory(std::addressof(dir), m_program_id, parent, OpenDirectoryMode_Directory, fs);
ON_SCOPE_EXIT { fsDirClose(std::addressof(dir)); };
R_ABORT_UNLESS(fsDirGetEntryCount(std::addressof(dir), std::addressof(num_child_dirs)));
}
AMS_ABORT_UNLESS(num_child_dirs >= 0);
{
BuildDirectoryContext **child_dirs = num_child_dirs != 0 ? reinterpret_cast<BuildDirectoryContext **>(AllocateTracked(AllocationType_DirPointerArray, sizeof(BuildDirectoryContext *) * num_child_dirs)) : nullptr;
AMS_ABORT_UNLESS(num_child_dirs == 0 || child_dirs != nullptr);
ON_SCOPE_EXIT { if (child_dirs != nullptr) { FreeTracked(AllocationType_DirPointerArray, child_dirs, sizeof(BuildDirectoryContext *) * num_child_dirs); } };
s64 cur_child_dir_ind = 0;
{
OpenFileSystemRomfsDirectory(std::addressof(dir), m_program_id, parent, OpenDirectoryMode_All, fs);
ON_SCOPE_EXIT { fsDirClose(std::addressof(dir)); };
s64 read_entries = 0;
while (true) {
R_ABORT_UNLESS(fsDirRead(std::addressof(dir), std::addressof(read_entries), 1, std::addressof(m_dir_entry)));
if (read_entries != 1) {
break;
}
AMS_ABORT_UNLESS(m_dir_entry.type == FsDirEntryType_Dir || m_dir_entry.type == FsDirEntryType_File);
if (m_dir_entry.type == FsDirEntryType_Dir) {
AMS_ABORT_UNLESS(child_dirs != nullptr);
BuildDirectoryContext *real_child = nullptr;
this->AddDirectory(std::addressof(real_child), parent, std::unique_ptr<BuildDirectoryContext>(AllocateTyped<BuildDirectoryContext>(AllocationType_BuildDirContext, m_dir_entry.name, strlen(m_dir_entry.name))));
AMS_ABORT_UNLESS(real_child != nullptr);
child_dirs[cur_child_dir_ind++] = real_child;
AMS_ABORT_UNLESS(cur_child_dir_ind <= num_child_dirs);
} else /* if (m_dir_entry.type == FsDirEntryType_File) */ {
this->AddFile(parent, std::unique_ptr<BuildFileContext>(AllocateTyped<BuildFileContext>(AllocationType_BuildFileContext, m_dir_entry.name, strlen(m_dir_entry.name), m_dir_entry.file_size, 0, m_cur_source_type)));
}
}
}
AMS_ABORT_UNLESS(num_child_dirs == cur_child_dir_ind);
for (s64 i = 0; i < num_child_dirs; i++) {
this->VisitDirectory(fs, child_dirs[i]);
}
}
}
class DirectoryTableReader : public TableReader<DirectoryEntry> {
public:
DirectoryTableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : TableReader(s, ofs, sz) { /* ... */ }
};
class FileTableReader : public TableReader<FileEntry> {
public:
FileTableReader(ams::fs::IStorage *s, size_t ofs, size_t sz) : TableReader(s, ofs, sz) { /* ... */ }
};
void Builder::VisitDirectory(BuildDirectoryContext *parent, u32 parent_offset, DirectoryTableReader &dir_table, FileTableReader &file_table) {
const DirectoryEntry *parent_entry = dir_table.GetEntry(parent_offset);
if (AMS_UNLIKELY(parent_entry == nullptr)) {
return;
}
u32 cur_file_offset = parent_entry->file;
while (cur_file_offset != EmptyEntry) {
const FileEntry *cur_file = file_table.GetEntry(cur_file_offset);
if (AMS_UNLIKELY(cur_file == nullptr)) {
return;
}
this->AddFile(parent, std::unique_ptr<BuildFileContext>(AllocateTyped<BuildFileContext>(AllocationType_BuildFileContext, cur_file->name, cur_file->name_size, cur_file->size, cur_file->offset, m_cur_source_type)));
cur_file_offset = cur_file->sibling;
}
u32 cur_child_offset = parent_entry->child;
while (cur_child_offset != EmptyEntry) {
BuildDirectoryContext *real_child = nullptr;
u32 next_child_offset = 0;
{
const DirectoryEntry *cur_child = dir_table.GetEntry(cur_child_offset);
if (AMS_UNLIKELY(cur_child == nullptr)) {
return;
}
this->AddDirectory(std::addressof(real_child), parent, std::unique_ptr<BuildDirectoryContext>(AllocateTyped<BuildDirectoryContext>(AllocationType_BuildDirContext, cur_child->name, cur_child->name_size)));
AMS_ABORT_UNLESS(real_child != nullptr);
next_child_offset = cur_child->sibling;
__asm__ __volatile__("" ::: "memory");
}
this->VisitDirectory(real_child, cur_child_offset, dir_table, file_table);
cur_child_offset = next_child_offset;
}
}
void Builder::AddSdFiles() {
/* Open Sd Card filesystem. */
FsFileSystem sd_filesystem;
R_ABORT_UNLESS(fsOpenSdCardFileSystem(std::addressof(sd_filesystem)));
ON_SCOPE_EXIT { fsFsClose(std::addressof(sd_filesystem)); };
/* If there is no romfs folder on the SD, don't bother continuing. */
{
FsDir dir;
if (R_FAILED(mitm::fs::OpenAtmosphereRomfsDirectory(std::addressof(dir), m_program_id, m_root->path, OpenDirectoryMode_Directory, std::addressof(sd_filesystem)))) {
return;
}
fsDirClose(std::addressof(dir));
}
m_cur_source_type = DataSourceType::LooseSdFile;
this->VisitDirectory(std::addressof(sd_filesystem), m_root);
}
void Builder::AddStorageFiles(ams::fs::IStorage *storage, DataSourceType source_type) {
Header header;
R_ABORT_UNLESS(storage->Read(0, std::addressof(header), sizeof(Header)));
AMS_ABORT_UNLESS(header.header_size == sizeof(Header));
/* Read tables. */
DirectoryTableReader dir_table(storage, header.dir_table_ofs, header.dir_table_size);
FileTableReader file_table(storage, header.file_table_ofs, header.file_table_size);
m_cur_source_type = source_type;
this->VisitDirectory(m_root, 0x0, dir_table, file_table);
}
void Builder::Build(SourceInfoVector *out_infos) {
/* Clear output. */
out_infos->clear();
/* Open an SD card filesystem. */
FsFileSystem sd_filesystem;
R_ABORT_UNLESS(fsOpenSdCardFileSystem(std::addressof(sd_filesystem)));
ON_SCOPE_EXIT { fsFsClose(std::addressof(sd_filesystem)); };
/* Calculate hash table sizes. */
const size_t num_dir_hash_table_entries = GetHashTableSize(m_num_dirs);
const size_t num_file_hash_table_entries = GetHashTableSize(m_num_files);
m_dir_hash_table_size = sizeof(u32) * num_dir_hash_table_entries;
m_file_hash_table_size = sizeof(u32) * num_file_hash_table_entries;
/* Allocate metadata, make pointers. */
Header *header = reinterpret_cast<Header *>(AllocateTracked(AllocationType_Memory, sizeof(Header)));
std::memset(header, 0x00, sizeof(*header));
/* Open metadata file. */
const size_t metadata_size = m_dir_hash_table_size + m_dir_table_size + m_file_hash_table_size + m_file_table_size;
FsFile metadata_file;
R_ABORT_UNLESS(mitm::fs::CreateAndOpenAtmosphereSdFile(std::addressof(metadata_file), m_program_id, "romfs_metadata.bin", metadata_size));
/* Ensure later hash tables will have correct defaults. */
static_assert(EmptyEntry == 0xFFFFFFFF);
/* Emplace metadata source info. */
out_infos->emplace_back(0, sizeof(*header), DataSourceType::Memory, header);
/* Process Files. */
{
u32 entry_offset = 0;
BuildFileContext *cur_file = nullptr;
BuildFileContext *prev_file = nullptr;
for (const auto &it : m_files) {
cur_file = it.get();
/* By default, pad to 0x10 alignment. */
m_file_partition_size = util::AlignUp(m_file_partition_size, 0x10);
/* Check if extra padding is present in original source, preserve it to make our life easier. */
const bool is_storage_or_file = cur_file->source_type == DataSourceType::Storage || cur_file->source_type == DataSourceType::File;
if (prev_file != nullptr && prev_file->source_type == cur_file->source_type && is_storage_or_file) {
const s64 expected = m_file_partition_size - prev_file->offset + prev_file->orig_offset;
if (expected != cur_file->orig_offset) {
AMS_ABORT_UNLESS(expected <= cur_file->orig_offset);
m_file_partition_size += cur_file->orig_offset - expected;
}
}
/* Calculate offsets. */
cur_file->offset = m_file_partition_size;
m_file_partition_size += cur_file->size;
cur_file->entry_offset = entry_offset;
entry_offset += sizeof(FileEntry) + util::AlignUp(cur_file->path_len, 4);
/* Save current file as prev for next iteration. */
prev_file = cur_file;
}
/* Assign deferred parent/sibling ownership. */
for (auto it = m_files.rbegin(); it != m_files.rend(); it++) {
cur_file = it->get();
cur_file->sibling = cur_file->parent->file;
cur_file->parent->file = cur_file;
}
}
/* Process Directories. */
{
u32 entry_offset = 0;
BuildDirectoryContext *cur_dir = nullptr;
for (const auto &it : m_directories) {
cur_dir = it.get();
cur_dir->entry_offset = entry_offset;
entry_offset += sizeof(DirectoryEntry) + util::AlignUp(cur_dir->path_len, 4);
}
/* Assign deferred parent/sibling ownership. */
for (auto it = m_directories.rbegin(); it != m_directories.rend(); it++) {
cur_dir = it->get();
if (cur_dir == m_root) {
continue;
}
cur_dir->sibling = cur_dir->parent->child;
cur_dir->parent->child = cur_dir;
}
}
/* Set all files' hash value = hash index. */
for (const auto &it : m_files) {
BuildFileContext *cur_file = it.get();
cur_file->hash_value = CalculatePathHash(cur_file->parent->entry_offset, cur_file->path, 0, cur_file->path_len) % num_file_hash_table_entries;
}
/* Set all directories' hash value = hash index. */
for (const auto &it : m_directories) {
BuildDirectoryContext *cur_dir = it.get();
cur_dir->hash_value = CalculatePathHash(cur_dir == m_root ? 0 : cur_dir->parent->entry_offset, cur_dir->path, 0, cur_dir->path_len) % num_dir_hash_table_entries;
}
/* Write hash tables. */
{
HashTableStorage hash_table_storage(std::max(m_dir_hash_table_size, m_file_hash_table_size));
u32 *hash_table = hash_table_storage.GetBuffer();
size_t hash_table_size = hash_table_storage.GetBufferSize();
/* Write the file hash table. */
for (size_t ofs = 0; ofs < m_file_hash_table_size; ofs += hash_table_size) {
std::memset(hash_table, 0xFF, hash_table_size);
const u32 ofs_ind = ofs / sizeof(u32);
const u32 end_ind = (ofs + hash_table_size) / sizeof(u32);
for (const auto &it : m_files) {
BuildFileContext *cur_file = it.get();
if (cur_file->HasHashMark()) {
continue;
}
if (const auto hash_ind = cur_file->hash_value; ofs_ind <= hash_ind && hash_ind < end_ind) {
cur_file->hash_value = hash_table[hash_ind - ofs_ind];
hash_table[hash_ind - ofs_ind] = cur_file->entry_offset;
cur_file->SetHashMark();
}
}
R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size + ofs, hash_table, std::min(m_file_hash_table_size - ofs, hash_table_size), FsWriteOption_None));
}
/* Write the directory hash table. */
for (size_t ofs = 0; ofs < m_dir_hash_table_size; ofs += hash_table_size) {
std::memset(hash_table, 0xFF, hash_table_size);
const u32 ofs_ind = ofs / sizeof(u32);
const u32 end_ind = (ofs + hash_table_size) / sizeof(u32);
for (const auto &it : m_directories) {
BuildDirectoryContext *cur_dir = it.get();
if (cur_dir->HasHashMark()) {
continue;
}
if (const auto hash_ind = cur_dir->hash_value; ofs_ind <= hash_ind && hash_ind < end_ind) {
cur_dir->hash_value = hash_table[hash_ind - ofs_ind];
hash_table[hash_ind - ofs_ind] = cur_dir->entry_offset;
cur_dir->SetHashMark();
}
}
R_ABORT_UNLESS(fsFileWrite(std::addressof(metadata_file), ofs, hash_table, std::min(m_dir_hash_table_size - ofs, hash_table_size), FsWriteOption_None));
}
}
/* Replace sibling pointers with sibling entry_offsets, so that we can de-allocate as we go. */
{
/* Set all directories sibling and file pointers. */
for (const auto &it : m_directories) {
BuildDirectoryContext *cur_dir = it.get();
cur_dir->ClearHashMark();
cur_dir->sibling_offset = (cur_dir->sibling == nullptr) ? EmptyEntry : cur_dir->sibling->entry_offset;
cur_dir->child_offset = (cur_dir->child == nullptr) ? EmptyEntry : cur_dir->child->entry_offset;
cur_dir->file_offset = (cur_dir->file == nullptr) ? EmptyEntry : cur_dir->file->entry_offset;
cur_dir->parent_offset = cur_dir == m_root ? 0 : cur_dir->parent->entry_offset;
}
/* Replace all files' sibling pointers. */
for (const auto &it : m_files) {
BuildFileContext *cur_file = it.get();
cur_file->ClearHashMark();
cur_file->sibling_offset = (cur_file->sibling == nullptr) ? EmptyEntry : cur_file->sibling->entry_offset;
}
}
/* Write the file table. */
{
FileTableWriter file_table(std::addressof(metadata_file), m_dir_hash_table_size + m_dir_table_size + m_file_hash_table_size, m_file_table_size);
for (auto it = m_files.begin(); it != m_files.end(); it = m_files.erase(it)) {
BuildFileContext *cur_file = it->get();
FileEntry *cur_entry = file_table.GetEntry(cur_file->entry_offset, cur_file->path_len);
/* Set entry fields. */
cur_entry->parent = cur_file->parent->entry_offset;
cur_entry->sibling = cur_file->sibling_offset;
cur_entry->offset = cur_file->offset;
cur_entry->size = cur_file->size;
cur_entry->hash = cur_file->hash_value;
/* Set name. */
const u32 name_size = cur_file->path_len;
cur_entry->name_size = name_size;
if (name_size) {
std::memcpy(cur_entry->name, cur_file->path, name_size);
for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) {
cur_entry->name[i] = 0;
}
}
/* Emplace a source. */
switch (cur_file->source_type) {
case DataSourceType::Storage:
case DataSourceType::File:
{
/* Try to compact if possible. */
auto &back = out_infos->back();
if (back.source_type == cur_file->source_type) {
back.size = cur_file->offset + FilePartitionOffset + cur_file->size - back.virtual_offset;
} else {
out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, cur_file->orig_offset + FilePartitionOffset);
}
}
break;
case DataSourceType::LooseSdFile:
{
char full_path[fs::EntryNameLengthMax + 1];
const size_t path_needed_size = cur_file->GetPathLength() + 1;
AMS_ABORT_UNLESS(path_needed_size <= sizeof(full_path));
cur_file->GetPath(full_path);
FreeTracked(AllocationType_FileName, cur_file->path, cur_file->path_len + 1);
cur_file->path = nullptr;
char *new_path = static_cast<char *>(AllocateTracked(AllocationType_FullPath, path_needed_size));
std::memcpy(new_path, full_path, path_needed_size);
out_infos->emplace_back(cur_file->offset + FilePartitionOffset, cur_file->size, cur_file->source_type, new_path);
}
break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
}
/* Write the directory table. */
{
DirectoryTableWriter dir_table(std::addressof(metadata_file), m_dir_hash_table_size, m_dir_table_size);
for (auto it = m_directories.begin(); it != m_directories.end(); it = m_directories.erase(it)) {
BuildDirectoryContext *cur_dir = it->get();
DirectoryEntry *cur_entry = dir_table.GetEntry(cur_dir->entry_offset, cur_dir->path_len);
/* Set entry fields. */
cur_entry->parent = cur_dir->parent_offset;
cur_entry->sibling = cur_dir->sibling_offset;
cur_entry->child = cur_dir->child_offset;
cur_entry->file = cur_dir->file_offset;
cur_entry->hash = cur_dir->hash_value;
/* Set name. */
const u32 name_size = cur_dir->path_len;
cur_entry->name_size = name_size;
if (name_size) {
std::memcpy(cur_entry->name, cur_dir->path, name_size);
for (size_t i = name_size; i < util::AlignUp(name_size, 4); i++) {
cur_entry->name[i] = 0;
}
}
}
}
/* Delete maps. */
m_root = nullptr;
m_directories.clear();
m_files.clear();
/* Set header fields. */
header->header_size = sizeof(*header);
header->file_hash_table_size = m_file_hash_table_size;
header->file_table_size = m_file_table_size;
header->dir_hash_table_size = m_dir_hash_table_size;
header->dir_table_size = m_dir_table_size;
header->file_partition_ofs = FilePartitionOffset;
header->dir_hash_table_ofs = util::AlignUp(FilePartitionOffset + m_file_partition_size, 4);
header->dir_table_ofs = header->dir_hash_table_ofs + header->dir_hash_table_size;
header->file_hash_table_ofs = header->dir_table_ofs + header->dir_table_size;
header->file_table_ofs = header->file_hash_table_ofs + header->file_hash_table_size;
/* Save metadata to the SD card, to save on memory space. */
{
R_ABORT_UNLESS(fsFileFlush(std::addressof(metadata_file)));
out_infos->emplace_back(header->dir_hash_table_ofs, metadata_size, DataSourceType::Metadata, new RemoteFile(metadata_file));
}
}
Result ConfigureDynamicHeap(u64 *out_size, ncm::ProgramId program_id, const cfg::OverrideStatus &status, bool is_application) {
/* Baseline: use no dynamic heap. */
*out_size = 0;
/* If the process is not an application, we do not care about dynamic heap. */
R_SUCCEED_IF(!is_application);
/* First, we need to ensure that, if the game used dynamic heap, we clear it. */
if (g_dynamic_app_heap.heap_size > 0) {
mitm::fs::FinalizeLayeredRomfsStorage(g_dynamic_heap_program_id);
/* Free the heap. */
g_dynamic_app_heap.Reset();
g_dynamic_sys_heap.Reset();
}
/* Next, if we aren't going to end up building a romfs, we can ignore dynamic heap. */
R_SUCCEED_IF(!status.IsProgramSpecific());
/* Only mitm if there is actually an override romfs. */
R_SUCCEED_IF(!mitm::fs::HasSdRomfsContent(program_id));
/* Next, set the new program id for dynamic heap. */
g_dynamic_heap_program_id = program_id;
g_dynamic_app_heap.heap_size = GetDynamicAppHeapSize(g_dynamic_heap_program_id);
g_dynamic_sys_heap.heap_size = GetDynamicSysHeapSize(g_dynamic_heap_program_id);
/* Set output. */
*out_size = g_dynamic_app_heap.heap_size;
R_SUCCEED();
}
}
}