mirror of
https://github.com/Atmosphere-NX/Atmosphere.git
synced 2024-11-23 20:32:10 +00:00
1884 lines
90 KiB
C++
1884 lines
90 KiB
C++
/*
|
|
* Copyright (c) 2018-2020 Atmosphère-NX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <mesosphere.hpp>
|
|
#include <mesosphere/kern_select_page_table.hpp>
|
|
|
|
namespace ams::kern {
|
|
|
|
Result KPageTableBase::InitializeForKernel(bool is_64_bit, void *table, KVirtualAddress start, KVirtualAddress end) {
|
|
/* Initialize our members. */
|
|
this->address_space_width = (is_64_bit) ? BITSIZEOF(u64) : BITSIZEOF(u32);
|
|
this->address_space_start = KProcessAddress(GetInteger(start));
|
|
this->address_space_end = KProcessAddress(GetInteger(end));
|
|
this->is_kernel = true;
|
|
this->enable_aslr = true;
|
|
|
|
this->heap_region_start = 0;
|
|
this->heap_region_end = 0;
|
|
this->current_heap_end = 0;
|
|
this->alias_region_start = 0;
|
|
this->alias_region_end = 0;
|
|
this->stack_region_start = 0;
|
|
this->stack_region_end = 0;
|
|
this->kernel_map_region_start = 0;
|
|
this->kernel_map_region_end = 0;
|
|
this->alias_code_region_start = 0;
|
|
this->alias_code_region_end = 0;
|
|
this->code_region_start = 0;
|
|
this->code_region_end = 0;
|
|
this->max_heap_size = 0;
|
|
this->mapped_physical_memory_size = 0;
|
|
this->mapped_unsafe_physical_memory = 0;
|
|
|
|
this->memory_block_slab_manager = std::addressof(Kernel::GetSystemMemoryBlockManager());
|
|
this->block_info_manager = std::addressof(Kernel::GetBlockInfoManager());
|
|
|
|
this->allocate_option = KMemoryManager::EncodeOption(KMemoryManager::Pool_System, KMemoryManager::Direction_FromFront);
|
|
this->heap_fill_value = MemoryFillValue_Zero;
|
|
this->ipc_fill_value = MemoryFillValue_Zero;
|
|
this->stack_fill_value = MemoryFillValue_Zero;
|
|
|
|
this->cached_physical_linear_region = nullptr;
|
|
this->cached_physical_heap_region = nullptr;
|
|
this->cached_virtual_heap_region = nullptr;
|
|
|
|
/* Initialize our implementation. */
|
|
this->impl.InitializeForKernel(table, start, end);
|
|
|
|
/* Initialize our memory block manager. */
|
|
return this->memory_block_manager.Initialize(this->address_space_start, this->address_space_end, this->memory_block_slab_manager);
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::InitializeForProcess(ams::svc::CreateProcessFlag as_type, bool enable_aslr, bool from_back, KMemoryManager::Pool pool, void *table, KProcessAddress start, KProcessAddress end, KProcessAddress code_address, size_t code_size, KMemoryBlockSlabManager *mem_block_slab_manager, KBlockInfoManager *block_info_manager) {
|
|
/* Validate the region. */
|
|
MESOSPHERE_ABORT_UNLESS(start <= code_address);
|
|
MESOSPHERE_ABORT_UNLESS(code_address < code_address + code_size);
|
|
MESOSPHERE_ABORT_UNLESS(code_address + code_size - 1 <= end - 1);
|
|
|
|
/* Declare variables to hold our region sizes. */
|
|
|
|
/* Define helpers. */
|
|
auto GetSpaceStart = [&](KAddressSpaceInfo::Type type) ALWAYS_INLINE_LAMBDA {
|
|
return KAddressSpaceInfo::GetAddressSpaceStart(this->address_space_width, type);
|
|
};
|
|
auto GetSpaceSize = [&](KAddressSpaceInfo::Type type) ALWAYS_INLINE_LAMBDA {
|
|
return KAddressSpaceInfo::GetAddressSpaceSize(this->address_space_width, type);
|
|
};
|
|
|
|
/* Set our width and heap/alias sizes. */
|
|
this->address_space_width = GetAddressSpaceWidth(as_type);
|
|
size_t alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Alias);
|
|
size_t heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Heap);
|
|
|
|
/* Adjust heap/alias size if we don't have an alias region. */
|
|
if ((as_type & ams::svc::CreateProcessFlag_AddressSpaceMask) == ams::svc::CreateProcessFlag_AddressSpace32BitWithoutAlias) {
|
|
heap_region_size += alias_region_size;
|
|
alias_region_size = 0;
|
|
}
|
|
|
|
/* Set code regions and determine remaining sizes. */
|
|
KProcessAddress process_code_start;
|
|
KProcessAddress process_code_end;
|
|
size_t stack_region_size;
|
|
size_t kernel_map_region_size;
|
|
if (this->address_space_width == 39) {
|
|
alias_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Alias);
|
|
heap_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Heap);
|
|
stack_region_size = GetSpaceSize(KAddressSpaceInfo::Type_Stack);
|
|
kernel_map_region_size = GetSpaceSize(KAddressSpaceInfo::Type_32Bit);
|
|
this->code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_Large64Bit);
|
|
this->code_region_end = this->code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_Large64Bit);
|
|
this->alias_code_region_start = this->code_region_start;
|
|
this->alias_code_region_end = this->code_region_end;
|
|
process_code_start = util::AlignDown(GetInteger(code_address), RegionAlignment);
|
|
process_code_end = util::AlignUp(GetInteger(code_address) + code_size, RegionAlignment);
|
|
} else {
|
|
stack_region_size = 0;
|
|
kernel_map_region_size = 0;
|
|
this->code_region_start = GetSpaceStart(KAddressSpaceInfo::Type_32Bit);
|
|
this->code_region_end = this->code_region_start + GetSpaceSize(KAddressSpaceInfo::Type_32Bit);
|
|
this->stack_region_start = this->code_region_start;
|
|
this->alias_code_region_start = this->code_region_start;
|
|
this->alias_code_region_end = GetSpaceStart(KAddressSpaceInfo::Type_Small64Bit) + GetSpaceSize(KAddressSpaceInfo::Type_Small64Bit);
|
|
this->stack_region_end = this->code_region_end;
|
|
this->kernel_map_region_start = this->code_region_start;
|
|
this->kernel_map_region_end = this->code_region_end;
|
|
process_code_start = this->code_region_start;
|
|
process_code_end = this->code_region_end;
|
|
}
|
|
|
|
/* Set other basic fields. */
|
|
this->enable_aslr = enable_aslr;
|
|
this->address_space_start = start;
|
|
this->address_space_end = end;
|
|
this->is_kernel = false;
|
|
this->memory_block_slab_manager = mem_block_slab_manager;
|
|
this->block_info_manager = block_info_manager;
|
|
|
|
/* Determine the region we can place our undetermineds in. */
|
|
KProcessAddress alloc_start;
|
|
size_t alloc_size;
|
|
if ((GetInteger(process_code_start) - GetInteger(this->code_region_start)) >= (GetInteger(end) - GetInteger(process_code_end))) {
|
|
alloc_start = this->code_region_start;
|
|
alloc_size = GetInteger(process_code_start) - GetInteger(this->code_region_start);
|
|
} else {
|
|
alloc_start = process_code_end;
|
|
alloc_size = GetInteger(end) - GetInteger(process_code_end);
|
|
}
|
|
const size_t needed_size = (alias_region_size + heap_region_size + stack_region_size + kernel_map_region_size);
|
|
R_UNLESS(alloc_size >= needed_size, svc::ResultOutOfMemory());
|
|
|
|
const size_t remaining_size = alloc_size - needed_size;
|
|
|
|
/* Determine random placements for each region. */
|
|
size_t alias_rnd = 0, heap_rnd = 0, stack_rnd = 0, kmap_rnd = 0;
|
|
if (enable_aslr) {
|
|
alias_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
|
|
heap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
|
|
stack_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
|
|
kmap_rnd = KSystemControl::GenerateRandomRange(0, remaining_size / RegionAlignment) * RegionAlignment;
|
|
}
|
|
|
|
/* Setup heap and alias regions. */
|
|
this->alias_region_start = alloc_start + alias_rnd;
|
|
this->alias_region_end = this->alias_region_start + alias_region_size;
|
|
this->heap_region_start = alloc_start + heap_rnd;
|
|
this->heap_region_end = this->heap_region_start + heap_region_size;
|
|
|
|
if (alias_rnd <= heap_rnd) {
|
|
this->heap_region_start += alias_region_size;
|
|
this->heap_region_end += alias_region_size;
|
|
} else {
|
|
this->alias_region_start += heap_region_size;
|
|
this->alias_region_end += heap_region_size;
|
|
}
|
|
|
|
/* Setup stack region. */
|
|
if (stack_region_size) {
|
|
this->stack_region_start = alloc_start + stack_rnd;
|
|
this->stack_region_end = this->stack_region_start + stack_region_size;
|
|
|
|
if (alias_rnd < stack_rnd) {
|
|
this->stack_region_start += alias_region_size;
|
|
this->stack_region_end += alias_region_size;
|
|
} else {
|
|
this->alias_region_start += stack_region_size;
|
|
this->alias_region_end += stack_region_size;
|
|
}
|
|
|
|
if (heap_rnd < stack_rnd) {
|
|
this->stack_region_start += heap_region_size;
|
|
this->stack_region_end += heap_region_size;
|
|
} else {
|
|
this->heap_region_start += stack_region_size;
|
|
this->heap_region_end += stack_region_size;
|
|
}
|
|
}
|
|
|
|
/* Setup kernel map region. */
|
|
if (kernel_map_region_size) {
|
|
this->kernel_map_region_start = alloc_start + kmap_rnd;
|
|
this->kernel_map_region_end = this->kernel_map_region_start + kernel_map_region_size;
|
|
|
|
if (alias_rnd < kmap_rnd) {
|
|
this->kernel_map_region_start += alias_region_size;
|
|
this->kernel_map_region_end += alias_region_size;
|
|
} else {
|
|
this->alias_region_start += kernel_map_region_size;
|
|
this->alias_region_end += kernel_map_region_size;
|
|
}
|
|
|
|
if (heap_rnd < kmap_rnd) {
|
|
this->kernel_map_region_start += heap_region_size;
|
|
this->kernel_map_region_end += heap_region_size;
|
|
} else {
|
|
this->heap_region_start += kernel_map_region_size;
|
|
this->heap_region_end += kernel_map_region_size;
|
|
}
|
|
|
|
if (stack_region_size) {
|
|
if (stack_rnd < kmap_rnd) {
|
|
this->kernel_map_region_start += stack_region_size;
|
|
this->kernel_map_region_end += stack_region_size;
|
|
} else {
|
|
this->stack_region_start += kernel_map_region_size;
|
|
this->stack_region_end += kernel_map_region_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set heap and fill members. */
|
|
this->current_heap_end = this->heap_region_start;
|
|
this->max_heap_size = 0;
|
|
this->mapped_physical_memory_size = 0;
|
|
this->mapped_unsafe_physical_memory = 0;
|
|
|
|
const bool fill_memory = KTargetSystem::IsDebugMemoryFillEnabled();
|
|
this->heap_fill_value = fill_memory ? MemoryFillValue_Heap : MemoryFillValue_Zero;
|
|
this->ipc_fill_value = fill_memory ? MemoryFillValue_Ipc : MemoryFillValue_Zero;
|
|
this->stack_fill_value = fill_memory ? MemoryFillValue_Stack : MemoryFillValue_Zero;
|
|
|
|
/* Set allocation option. */
|
|
this->allocate_option = KMemoryManager::EncodeOption(pool, from_back ? KMemoryManager::Direction_FromBack : KMemoryManager::Direction_FromFront);
|
|
|
|
/* Ensure that we regions inside our address space. */
|
|
auto IsInAddressSpace = [&](KProcessAddress addr) ALWAYS_INLINE_LAMBDA { return this->address_space_start <= addr && addr <= this->address_space_end; };
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->alias_region_start));
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->alias_region_end));
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->heap_region_start));
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->heap_region_end));
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->stack_region_start));
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->stack_region_end));
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->kernel_map_region_start));
|
|
MESOSPHERE_ABORT_UNLESS(IsInAddressSpace(this->kernel_map_region_end));
|
|
|
|
/* Ensure that we selected regions that don't overlap. */
|
|
const KProcessAddress alias_start = this->alias_region_start;
|
|
const KProcessAddress alias_last = this->alias_region_end - 1;
|
|
const KProcessAddress heap_start = this->heap_region_start;
|
|
const KProcessAddress heap_last = this->heap_region_end - 1;
|
|
const KProcessAddress stack_start = this->stack_region_start;
|
|
const KProcessAddress stack_last = this->stack_region_end - 1;
|
|
const KProcessAddress kmap_start = this->kernel_map_region_start;
|
|
const KProcessAddress kmap_last = this->kernel_map_region_end - 1;
|
|
MESOSPHERE_ABORT_UNLESS(alias_last < heap_start || heap_last < alias_start);
|
|
MESOSPHERE_ABORT_UNLESS(alias_last < stack_start || stack_last < alias_start);
|
|
MESOSPHERE_ABORT_UNLESS(alias_last < kmap_start || kmap_last < alias_start);
|
|
MESOSPHERE_ABORT_UNLESS(heap_last < stack_start || stack_last < heap_start);
|
|
MESOSPHERE_ABORT_UNLESS(heap_last < kmap_start || kmap_last < heap_start);
|
|
|
|
/* Initialize our implementation. */
|
|
this->impl.InitializeForProcess(table, GetInteger(start), GetInteger(end));
|
|
|
|
/* Initialize our memory block manager. */
|
|
return this->memory_block_manager.Initialize(this->address_space_start, this->address_space_end, this->memory_block_slab_manager);
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
|
|
void KPageTableBase::Finalize() {
|
|
this->memory_block_manager.Finalize(this->memory_block_slab_manager);
|
|
MESOSPHERE_TODO("cpu::InvalidateEntireInstructionCache();");
|
|
}
|
|
|
|
KProcessAddress KPageTableBase::GetRegionAddress(KMemoryState state) const {
|
|
switch (state) {
|
|
case KMemoryState_Free:
|
|
case KMemoryState_Kernel:
|
|
return this->address_space_start;
|
|
case KMemoryState_Normal:
|
|
return this->heap_region_start;
|
|
case KMemoryState_Ipc:
|
|
case KMemoryState_NonSecureIpc:
|
|
case KMemoryState_NonDeviceIpc:
|
|
return this->alias_region_start;
|
|
case KMemoryState_Stack:
|
|
return this->stack_region_start;
|
|
case KMemoryState_Io:
|
|
case KMemoryState_Static:
|
|
case KMemoryState_ThreadLocal:
|
|
return this->kernel_map_region_start;
|
|
case KMemoryState_Shared:
|
|
case KMemoryState_AliasCode:
|
|
case KMemoryState_AliasCodeData:
|
|
case KMemoryState_Transfered:
|
|
case KMemoryState_SharedTransfered:
|
|
case KMemoryState_SharedCode:
|
|
case KMemoryState_GeneratedCode:
|
|
case KMemoryState_CodeOut:
|
|
return this->alias_code_region_start;
|
|
case KMemoryState_Code:
|
|
case KMemoryState_CodeData:
|
|
return this->code_region_start;
|
|
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
}
|
|
|
|
size_t KPageTableBase::GetRegionSize(KMemoryState state) const {
|
|
switch (state) {
|
|
case KMemoryState_Free:
|
|
case KMemoryState_Kernel:
|
|
return this->address_space_end - this->address_space_start;
|
|
case KMemoryState_Normal:
|
|
return this->heap_region_end - this->heap_region_start;
|
|
case KMemoryState_Ipc:
|
|
case KMemoryState_NonSecureIpc:
|
|
case KMemoryState_NonDeviceIpc:
|
|
return this->alias_region_end - this->alias_region_start;
|
|
case KMemoryState_Stack:
|
|
return this->stack_region_end - this->stack_region_start;
|
|
case KMemoryState_Io:
|
|
case KMemoryState_Static:
|
|
case KMemoryState_ThreadLocal:
|
|
return this->kernel_map_region_end - this->kernel_map_region_start;
|
|
case KMemoryState_Shared:
|
|
case KMemoryState_AliasCode:
|
|
case KMemoryState_AliasCodeData:
|
|
case KMemoryState_Transfered:
|
|
case KMemoryState_SharedTransfered:
|
|
case KMemoryState_SharedCode:
|
|
case KMemoryState_GeneratedCode:
|
|
case KMemoryState_CodeOut:
|
|
return this->alias_code_region_end - this->alias_code_region_start;
|
|
case KMemoryState_Code:
|
|
case KMemoryState_CodeData:
|
|
return this->code_region_end - this->code_region_start;
|
|
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
}
|
|
|
|
bool KPageTableBase::CanContain(KProcessAddress addr, size_t size, KMemoryState state) const {
|
|
const KProcessAddress end = addr + size;
|
|
const KProcessAddress last = end - 1;
|
|
|
|
const KProcessAddress region_start = this->GetRegionAddress(state);
|
|
const size_t region_size = this->GetRegionSize(state);
|
|
|
|
const bool is_in_region = region_start <= addr && addr < end && last <= region_start + region_size - 1;
|
|
const bool is_in_heap = !(end <= this->heap_region_start || this->heap_region_end <= addr);
|
|
const bool is_in_alias = !(end <= this->alias_region_start || this->alias_region_end <= addr);
|
|
switch (state) {
|
|
case KMemoryState_Free:
|
|
case KMemoryState_Kernel:
|
|
return is_in_region;
|
|
case KMemoryState_Io:
|
|
case KMemoryState_Static:
|
|
case KMemoryState_Code:
|
|
case KMemoryState_CodeData:
|
|
case KMemoryState_Shared:
|
|
case KMemoryState_AliasCode:
|
|
case KMemoryState_AliasCodeData:
|
|
case KMemoryState_Stack:
|
|
case KMemoryState_ThreadLocal:
|
|
case KMemoryState_Transfered:
|
|
case KMemoryState_SharedTransfered:
|
|
case KMemoryState_SharedCode:
|
|
case KMemoryState_GeneratedCode:
|
|
case KMemoryState_CodeOut:
|
|
return is_in_region && !is_in_heap && !is_in_alias;
|
|
case KMemoryState_Normal:
|
|
MESOSPHERE_ASSERT(is_in_heap);
|
|
return is_in_region && !is_in_alias;
|
|
case KMemoryState_Ipc:
|
|
case KMemoryState_NonSecureIpc:
|
|
case KMemoryState_NonDeviceIpc:
|
|
MESOSPHERE_ASSERT(is_in_alias);
|
|
return is_in_region && !is_in_heap;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Result KPageTableBase::CheckMemoryState(const KMemoryInfo &info, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr) const {
|
|
/* Validate the states match expectation. */
|
|
R_UNLESS((info.state & state_mask) == state, svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS((info.perm & perm_mask) == perm, svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS((info.attribute & attr_mask) == attr, svc::ResultInvalidCurrentMemory());
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::CheckMemoryStateContiguous(KProcessAddress addr, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr) const {
|
|
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
|
|
|
|
/* Get information about the first block. */
|
|
const KProcessAddress last_addr = addr + size - 1;
|
|
KMemoryBlockManager::const_iterator it = this->memory_block_manager.FindIterator(addr);
|
|
KMemoryInfo info = it->GetMemoryInfo();
|
|
|
|
while (true) {
|
|
/* Validate against the provided masks. */
|
|
R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
|
|
|
|
/* Break once we're done. */
|
|
if (last_addr <= info.GetLastAddress()) {
|
|
break;
|
|
}
|
|
|
|
/* Advance our iterator. */
|
|
it++;
|
|
MESOSPHERE_ASSERT(it != this->memory_block_manager.cend());
|
|
info = it->GetMemoryInfo();
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::CheckMemoryState(KMemoryState *out_state, KMemoryPermission *out_perm, KMemoryAttribute *out_attr, KProcessAddress addr, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr, u32 ignore_attr) const {
|
|
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
|
|
|
|
/* Get information about the first block. */
|
|
const KProcessAddress last_addr = addr + size - 1;
|
|
KMemoryBlockManager::const_iterator it = this->memory_block_manager.FindIterator(addr);
|
|
KMemoryInfo info = it->GetMemoryInfo();
|
|
|
|
/* Validate all blocks in the range have correct state. */
|
|
const KMemoryState first_state = info.state;
|
|
const KMemoryPermission first_perm = info.perm;
|
|
const KMemoryAttribute first_attr = info.attribute;
|
|
while (true) {
|
|
/* Validate the current block. */
|
|
R_UNLESS(info.state == first_state, svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS(info.perm == first_perm, svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS((info.attribute | ignore_attr) == (first_attr | ignore_attr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Validate against the provided masks. */
|
|
R_TRY(this->CheckMemoryState(info, state_mask, state, perm_mask, perm, attr_mask, attr));
|
|
|
|
/* Break once we're done. */
|
|
if (last_addr <= info.GetLastAddress()) {
|
|
break;
|
|
}
|
|
|
|
/* Advance our iterator. */
|
|
it++;
|
|
MESOSPHERE_ASSERT(it != this->memory_block_manager.cend());
|
|
info = it->GetMemoryInfo();
|
|
}
|
|
|
|
/* Write output state. */
|
|
if (out_state) {
|
|
*out_state = first_state;
|
|
}
|
|
if (out_perm) {
|
|
*out_perm = first_perm;
|
|
}
|
|
if (out_attr) {
|
|
*out_attr = static_cast<KMemoryAttribute>(first_attr & ~ignore_attr);
|
|
}
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::LockMemoryAndOpen(KPageGroup *out_pg, KPhysicalAddress *out_paddr, KProcessAddress addr, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr, KMemoryPermission new_perm, u32 lock_attr) {
|
|
/* Validate basic preconditions. */
|
|
MESOSPHERE_ASSERT((lock_attr & attr) == 0);
|
|
MESOSPHERE_ASSERT((lock_attr & (KMemoryAttribute_IpcLocked | KMemoryAttribute_DeviceShared)) == 0);
|
|
|
|
/* Validate the lock request. */
|
|
const size_t num_pages = size / PageSize;
|
|
R_UNLESS(this->Contains(addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check that the output page group is empty, if it exists. */
|
|
if (out_pg) {
|
|
MESOSPHERE_ASSERT(out_pg->GetNumPages() == 0);
|
|
}
|
|
|
|
/* Check the state. */
|
|
KMemoryState old_state;
|
|
KMemoryPermission old_perm;
|
|
KMemoryAttribute old_attr;
|
|
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr), addr, size, state_mask | KMemoryState_FlagReferenceCounted, state | KMemoryState_FlagReferenceCounted, perm_mask, perm, attr_mask, attr));
|
|
|
|
/* Get the physical address, if we're supposed to. */
|
|
if (out_paddr != nullptr) {
|
|
MESOSPHERE_ABORT_UNLESS(this->GetPhysicalAddress(out_paddr, addr));
|
|
}
|
|
|
|
/* Make the page group, if we're supposed to. */
|
|
if (out_pg != nullptr) {
|
|
R_TRY(this->MakePageGroup(*out_pg, addr, num_pages));
|
|
}
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* Decide on new perm and attr. */
|
|
new_perm = (new_perm != KMemoryPermission_None) ? new_perm : old_perm;
|
|
KMemoryAttribute new_attr = static_cast<KMemoryAttribute>(old_attr | lock_attr);
|
|
|
|
/* Update permission, if we need to. */
|
|
if (new_perm != old_perm) {
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
const KPageProperties properties = { new_perm, false, (old_attr & KMemoryAttribute_Uncached) != 0, true };
|
|
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, Null<KPhysicalAddress>, false, properties, OperationType_ChangePermissions, false));
|
|
}
|
|
|
|
/* Apply the memory block updates. */
|
|
this->memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm, new_attr);
|
|
|
|
/* If we have an output group, open. */
|
|
if (out_pg) {
|
|
out_pg->Open();
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::UnlockMemory(KProcessAddress addr, size_t size, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr, KMemoryPermission new_perm, u32 lock_attr, const KPageGroup *pg) {
|
|
/* Validate basic preconditions. */
|
|
MESOSPHERE_ASSERT((attr_mask & lock_attr) == lock_attr);
|
|
MESOSPHERE_ASSERT((attr & lock_attr) == lock_attr);
|
|
|
|
/* Validate the unlock request. */
|
|
const size_t num_pages = size / PageSize;
|
|
R_UNLESS(this->Contains(addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check the state. */
|
|
KMemoryState old_state;
|
|
KMemoryPermission old_perm;
|
|
KMemoryAttribute old_attr;
|
|
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), std::addressof(old_attr), addr, size, state_mask | KMemoryState_FlagReferenceCounted, state | KMemoryState_FlagReferenceCounted, perm_mask, perm, attr_mask, attr));
|
|
|
|
/* Check the page group. */
|
|
if (pg != nullptr) {
|
|
R_UNLESS(this->IsValidPageGroup(*pg, addr, num_pages), svc::ResultInvalidMemoryRegion());
|
|
}
|
|
|
|
/* Decide on new perm and attr. */
|
|
new_perm = (new_perm != KMemoryPermission_None) ? new_perm : old_perm;
|
|
KMemoryAttribute new_attr = static_cast<KMemoryAttribute>(old_attr & ~lock_attr);
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* Update permission, if we need to. */
|
|
if (new_perm != old_perm) {
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
const KPageProperties properties = { new_perm, false, (old_attr & KMemoryAttribute_Uncached) != 0, false };
|
|
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, Null<KPhysicalAddress>, false, properties, OperationType_ChangePermissions, false));
|
|
}
|
|
|
|
/* Apply the memory block updates. */
|
|
this->memory_block_manager.Update(std::addressof(allocator), addr, num_pages, old_state, new_perm, new_attr);
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::QueryInfoImpl(KMemoryInfo *out_info, ams::svc::PageInfo *out_page, KProcessAddress address) const {
|
|
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
|
|
MESOSPHERE_ASSERT(out_info != nullptr);
|
|
MESOSPHERE_ASSERT(out_page != nullptr);
|
|
|
|
const KMemoryBlock *block = this->memory_block_manager.FindBlock(address);
|
|
R_UNLESS(block != nullptr, svc::ResultInvalidCurrentMemory());
|
|
|
|
*out_info = block->GetMemoryInfo();
|
|
out_page->flags = 0;
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::MapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Validate that the source address's state is valid. */
|
|
KMemoryState src_state;
|
|
R_TRY(this->CheckMemoryState(std::addressof(src_state), nullptr, nullptr, src_address, size, KMemoryState_FlagCanAlias, KMemoryState_FlagCanAlias, KMemoryPermission_All, KMemoryPermission_UserReadWrite, KMemoryAttribute_All, KMemoryAttribute_None));
|
|
|
|
/* Validate that the dst address's state is valid. */
|
|
R_TRY(this->CheckMemoryState(dst_address, size, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
|
|
|
|
/* Create an update allocator for the source. */
|
|
KMemoryBlockManagerUpdateAllocator src_allocator(this->memory_block_slab_manager);
|
|
R_TRY(src_allocator.GetResult());
|
|
|
|
/* Create an update allocator for the destination. */
|
|
KMemoryBlockManagerUpdateAllocator dst_allocator(this->memory_block_slab_manager);
|
|
R_TRY(dst_allocator.GetResult());
|
|
|
|
/* Map the memory. */
|
|
{
|
|
/* Determine the number of pages being operated on. */
|
|
const size_t num_pages = size / PageSize;
|
|
|
|
/* Create page groups for the memory being unmapped. */
|
|
KPageGroup pg(this->block_info_manager);
|
|
|
|
/* Create the page group representing the source. */
|
|
R_TRY(this->MakePageGroup(pg, src_address, num_pages));
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Reprotect the source as kernel-read/not mapped. */
|
|
const KMemoryPermission new_src_perm = static_cast<KMemoryPermission>(KMemoryPermission_KernelRead | KMemoryPermission_NotMapped);
|
|
const KMemoryAttribute new_src_attr = static_cast<KMemoryAttribute>(KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked);
|
|
const KPageProperties src_properties = { new_src_perm, false, false, false };
|
|
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, Null<KPhysicalAddress>, false, src_properties, OperationType_ChangePermissions, false));
|
|
|
|
/* Ensure that we unprotect the source pages on failure. */
|
|
auto unprot_guard = SCOPE_GUARD {
|
|
const KPageProperties unprotect_properties = { KMemoryPermission_UserReadWrite, false, false, false };
|
|
MESOSPHERE_R_ABORT_UNLESS(this->Operate(updater.GetPageList(), src_address, num_pages, Null<KPhysicalAddress>, false, unprotect_properties, OperationType_ChangePermissions, true));
|
|
};
|
|
|
|
/* Map the alias pages. */
|
|
const KPageProperties dst_map_properties = { KMemoryPermission_UserReadWrite, false, false, false };
|
|
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_map_properties, false));
|
|
|
|
/* We successfully mapped the alias pages, so we don't need to unprotect the src pages on failure. */
|
|
unprot_guard.Cancel();
|
|
|
|
/* Apply the memory block updates. */
|
|
this->memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages, src_state, new_src_perm, new_src_attr);
|
|
this->memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages, KMemoryState_Stack, KMemoryPermission_UserReadWrite, KMemoryAttribute_None);
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::UnmapMemory(KProcessAddress dst_address, KProcessAddress src_address, size_t size) {
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Validate that the source address's state is valid. */
|
|
KMemoryState src_state;
|
|
R_TRY(this->CheckMemoryState(std::addressof(src_state), nullptr, nullptr, src_address, size, KMemoryState_FlagCanAlias, KMemoryState_FlagCanAlias, KMemoryPermission_All, KMemoryPermission_NotMapped | KMemoryPermission_KernelRead, KMemoryAttribute_All, KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked));
|
|
|
|
/* Validate that the dst address's state is valid. */
|
|
KMemoryPermission dst_perm;
|
|
R_TRY(this->CheckMemoryState(nullptr, std::addressof(dst_perm), nullptr, dst_address, size, KMemoryState_All, KMemoryState_Stack, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_All, KMemoryAttribute_None));
|
|
|
|
/* Create an update allocator for the source. */
|
|
KMemoryBlockManagerUpdateAllocator src_allocator(this->memory_block_slab_manager);
|
|
R_TRY(src_allocator.GetResult());
|
|
|
|
/* Create an update allocator for the destination. */
|
|
KMemoryBlockManagerUpdateAllocator dst_allocator(this->memory_block_slab_manager);
|
|
R_TRY(dst_allocator.GetResult());
|
|
|
|
/* Unmap the memory. */
|
|
{
|
|
/* Determine the number of pages being operated on. */
|
|
const size_t num_pages = size / PageSize;
|
|
|
|
/* Create page groups for the memory being unmapped. */
|
|
KPageGroup pg(this->block_info_manager);
|
|
|
|
/* Create the page group representing the destination. */
|
|
R_TRY(this->MakePageGroup(pg, dst_address, num_pages));
|
|
|
|
/* Ensure the page group is the valid for the source. */
|
|
R_UNLESS(this->IsValidPageGroup(pg, src_address, num_pages), svc::ResultInvalidMemoryRegion());
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Unmap the aliased copy of the pages. */
|
|
const KPageProperties dst_unmap_properties = { KMemoryPermission_None, false, false, false };
|
|
R_TRY(this->Operate(updater.GetPageList(), dst_address, num_pages, Null<KPhysicalAddress>, false, dst_unmap_properties, OperationType_Unmap, false));
|
|
|
|
/* Ensure that we re-map the aliased pages on failure. */
|
|
auto remap_guard = SCOPE_GUARD {
|
|
const KPageProperties dst_remap_properties = { dst_perm, false, false, false };
|
|
MESOSPHERE_R_ABORT_UNLESS(this->MapPageGroupImpl(updater.GetPageList(), dst_address, pg, dst_remap_properties, true));
|
|
};
|
|
|
|
/* Try to set the permissions for the source pages back to what they should be. */
|
|
const KPageProperties src_properties = { KMemoryPermission_UserReadWrite, false, false, false };
|
|
R_TRY(this->Operate(updater.GetPageList(), src_address, num_pages, Null<KPhysicalAddress>, false, src_properties, OperationType_ChangePermissions, false));
|
|
|
|
/* We successfully changed the permissions for the source pages, so we don't need to re-map the dst pages on failure. */
|
|
remap_guard.Cancel();
|
|
|
|
/* Apply the memory block updates. */
|
|
this->memory_block_manager.Update(std::addressof(src_allocator), src_address, num_pages, src_state, KMemoryPermission_UserReadWrite, KMemoryAttribute_None);
|
|
this->memory_block_manager.Update(std::addressof(dst_allocator), dst_address, num_pages, KMemoryState_None, KMemoryPermission_None, KMemoryAttribute_None);
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
KProcessAddress KPageTableBase::FindFreeArea(KProcessAddress region_start, size_t region_num_pages, size_t num_pages, size_t alignment, size_t offset, size_t guard_pages) const {
|
|
KProcessAddress address = Null<KProcessAddress>;
|
|
|
|
if (num_pages <= region_num_pages) {
|
|
if (this->IsAslrEnabled()) {
|
|
/* Try to directly find a free area up to 8 times. */
|
|
for (size_t i = 0; i < 8; i++) {
|
|
const size_t random_offset = KSystemControl::GenerateRandomRange(0, (region_num_pages - num_pages - guard_pages) * PageSize / alignment) * alignment;
|
|
const KProcessAddress candidate = util::AlignDown(GetInteger(region_start + random_offset), alignment) + offset;
|
|
|
|
KMemoryInfo info;
|
|
ams::svc::PageInfo page_info;
|
|
MESOSPHERE_R_ABORT_UNLESS(this->QueryInfoImpl(&info, &page_info, candidate));
|
|
|
|
if (info.state != KMemoryState_Free) { continue; }
|
|
if (!(region_start <= candidate)) { continue; }
|
|
if (!(info.GetAddress() + guard_pages * PageSize <= GetInteger(candidate))) { continue; }
|
|
if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <= info.GetLastAddress())) { continue; }
|
|
if (!(candidate + (num_pages + guard_pages) * PageSize - 1 <= region_start + region_num_pages * PageSize - 1)) { continue; }
|
|
|
|
address = candidate;
|
|
break;
|
|
}
|
|
/* Fall back to finding the first free area with a random offset. */
|
|
if (address == Null<KProcessAddress>) {
|
|
/* NOTE: Nintendo does not account for guard pages here. */
|
|
/* This may theoretically cause an offset to be chosen that cannot be mapped. */
|
|
/* TODO: Should we account for guard pages? */
|
|
const size_t offset_pages = KSystemControl::GenerateRandomRange(0, region_num_pages - num_pages);
|
|
address = this->memory_block_manager.FindFreeArea(region_start + offset_pages * PageSize, region_num_pages - offset_pages, num_pages, alignment, offset, guard_pages);
|
|
}
|
|
}
|
|
/* Find the first free area. */
|
|
if (address == Null<KProcessAddress>) {
|
|
address = this->memory_block_manager.FindFreeArea(region_start, region_num_pages, num_pages, alignment, offset, guard_pages);
|
|
}
|
|
}
|
|
|
|
return address;
|
|
}
|
|
|
|
Result KPageTableBase::AllocateAndMapPagesImpl(PageLinkedList *page_list, KProcessAddress address, size_t num_pages, const KPageProperties properties) {
|
|
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
|
|
|
|
/* Create a page group to hold the pages we allocate. */
|
|
KPageGroup pg(this->block_info_manager);
|
|
|
|
/* Allocate the pages. */
|
|
R_TRY(Kernel::GetMemoryManager().Allocate(std::addressof(pg), num_pages, this->allocate_option));
|
|
|
|
/* Ensure that the page group is open while we work with it. */
|
|
KScopedPageGroup spg(pg);
|
|
|
|
/* Clear all pages. */
|
|
for (const auto &it : pg) {
|
|
std::memset(GetVoidPointer(it.GetAddress()), this->heap_fill_value, it.GetSize());
|
|
}
|
|
|
|
/* Map the pages. */
|
|
return this->Operate(page_list, address, num_pages, pg, properties, OperationType_MapGroup, false);
|
|
}
|
|
|
|
Result KPageTableBase::MapPageGroupImpl(PageLinkedList *page_list, KProcessAddress address, const KPageGroup &pg, const KPageProperties properties, bool reuse_ll) {
|
|
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
|
|
|
|
/* Note the current address, so that we can iterate. */
|
|
const KProcessAddress start_address = address;
|
|
KProcessAddress cur_address = address;
|
|
|
|
/* Ensure that we clean up on failure. */
|
|
auto mapping_guard = SCOPE_GUARD {
|
|
MESOSPHERE_ABORT_UNLESS(!reuse_ll);
|
|
if (cur_address != start_address) {
|
|
const KPageProperties unmap_properties = {};
|
|
MESOSPHERE_R_ABORT_UNLESS(this->Operate(page_list, start_address, (cur_address - start_address) / PageSize, Null<KPhysicalAddress>, false, unmap_properties, OperationType_Unmap, true));
|
|
}
|
|
};
|
|
|
|
/* Iterate, mapping all pages in the group. */
|
|
for (const auto &block : pg) {
|
|
/* We only allow mapping pages in the heap, and we require we're mapping non-empty blocks. */
|
|
MESOSPHERE_ABORT_UNLESS(block.GetAddress() < block.GetLastAddress());
|
|
MESOSPHERE_ABORT_UNLESS(IsHeapVirtualAddress(block.GetAddress(), block.GetSize()));
|
|
|
|
/* Map and advance. */
|
|
R_TRY(this->Operate(page_list, cur_address, block.GetNumPages(), GetHeapPhysicalAddress(block.GetAddress()), true, properties, OperationType_Map, reuse_ll));
|
|
cur_address += block.GetSize();
|
|
}
|
|
|
|
/* We succeeded! */
|
|
mapping_guard.Cancel();
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::MakePageGroup(KPageGroup &pg, KProcessAddress addr, size_t num_pages) {
|
|
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
|
|
|
|
const size_t size = num_pages * PageSize;
|
|
|
|
/* We're making a new group, not adding to an existing one. */
|
|
R_UNLESS(pg.empty(), svc::ResultInvalidCurrentMemory());
|
|
|
|
auto &impl = this->GetImpl();
|
|
|
|
/* Begin traversal. */
|
|
TraversalContext context;
|
|
TraversalEntry next_entry;
|
|
R_UNLESS(impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_addr = next_entry.phys_addr;
|
|
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
|
|
size_t tot_size = cur_size;
|
|
|
|
/* Iterate, adding to group as we go. */
|
|
while (tot_size < size) {
|
|
R_UNLESS(impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context)), svc::ResultInvalidCurrentMemory());
|
|
|
|
if (next_entry.phys_addr != (cur_addr + cur_size)) {
|
|
const size_t cur_pages = cur_size / PageSize;
|
|
|
|
R_UNLESS(IsHeapPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
|
|
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_addr), cur_pages));
|
|
|
|
cur_addr = next_entry.phys_addr;
|
|
cur_size = next_entry.block_size;
|
|
} else {
|
|
cur_size += next_entry.block_size;
|
|
}
|
|
|
|
tot_size += next_entry.block_size;
|
|
}
|
|
|
|
/* Ensure we add the right amount for the last block. */
|
|
if (tot_size > size) {
|
|
cur_size -= (tot_size - size);
|
|
}
|
|
|
|
/* add the last block. */
|
|
const size_t cur_pages = cur_size / PageSize;
|
|
R_UNLESS(IsHeapPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
|
|
R_TRY(pg.AddBlock(GetHeapVirtualAddress(cur_addr), cur_pages));
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
bool KPageTableBase::IsValidPageGroup(const KPageGroup &pg, KProcessAddress addr, size_t num_pages) {
|
|
MESOSPHERE_ASSERT(this->IsLockedByCurrentThread());
|
|
|
|
const size_t size = num_pages * PageSize;
|
|
|
|
/* Empty groups are necessarily invalid. */
|
|
if (pg.empty()) {
|
|
return false;
|
|
}
|
|
|
|
auto &impl = this->GetImpl();
|
|
|
|
/* We're going to validate that the group we'd expect is the group we see. */
|
|
auto cur_it = pg.begin();
|
|
KVirtualAddress cur_block_address = cur_it->GetAddress();
|
|
size_t cur_block_pages = cur_it->GetNumPages();
|
|
|
|
auto UpdateCurrentIterator = [&]() ALWAYS_INLINE_LAMBDA {
|
|
if (cur_block_pages == 0) {
|
|
if ((++cur_it) == pg.end()) {
|
|
return false;
|
|
}
|
|
|
|
cur_block_address = cur_it->GetAddress();
|
|
cur_block_pages = cur_it->GetNumPages();
|
|
}
|
|
return true;
|
|
};
|
|
|
|
/* Begin traversal. */
|
|
TraversalContext context;
|
|
TraversalEntry next_entry;
|
|
if (!impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), addr)) {
|
|
return false;
|
|
}
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_addr = next_entry.phys_addr;
|
|
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
|
|
size_t tot_size = cur_size;
|
|
|
|
/* Iterate, comparing expected to actual. */
|
|
while (tot_size < size) {
|
|
if (!impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context))) {
|
|
return false;
|
|
}
|
|
|
|
if (next_entry.phys_addr != (cur_addr + cur_size)) {
|
|
const size_t cur_pages = cur_size / PageSize;
|
|
|
|
if (!IsHeapPhysicalAddress(cur_addr)) {
|
|
return false;
|
|
}
|
|
|
|
if (!UpdateCurrentIterator()) {
|
|
return false;
|
|
}
|
|
|
|
if (cur_block_address != GetHeapVirtualAddress(cur_addr) || cur_block_pages < cur_pages) {
|
|
return false;
|
|
}
|
|
|
|
cur_block_address += cur_size;
|
|
cur_block_pages -= cur_pages;
|
|
cur_addr = next_entry.phys_addr;
|
|
cur_size = next_entry.block_size;
|
|
} else {
|
|
cur_size += next_entry.block_size;
|
|
}
|
|
|
|
tot_size += next_entry.block_size;
|
|
}
|
|
|
|
/* Ensure we compare the right amount for the last block. */
|
|
if (tot_size > size) {
|
|
cur_size -= (tot_size - size);
|
|
}
|
|
|
|
if (!IsHeapPhysicalAddress(cur_addr)) {
|
|
return false;
|
|
}
|
|
|
|
if (!UpdateCurrentIterator()) {
|
|
return false;
|
|
}
|
|
|
|
return cur_block_address == GetHeapVirtualAddress(cur_addr) && cur_block_pages == (cur_size / PageSize);
|
|
}
|
|
|
|
Result KPageTableBase::SetMemoryPermission(KProcessAddress addr, size_t size, ams::svc::MemoryPermission svc_perm) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
Result KPageTableBase::SetProcessMemoryPermission(KProcessAddress addr, size_t size, ams::svc::MemoryPermission svc_perm) {
|
|
const size_t num_pages = size / PageSize;
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Verify we can change the memory permission. */
|
|
KMemoryState old_state;
|
|
KMemoryPermission old_perm;
|
|
R_TRY(this->CheckMemoryState(std::addressof(old_state), std::addressof(old_perm), nullptr, addr, size, KMemoryState_FlagCode, KMemoryState_FlagCode, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_All, KMemoryAttribute_None));
|
|
|
|
/* Make a new page group for the region. */
|
|
KPageGroup pg(this->block_info_manager);
|
|
|
|
/* Determine new perm/state. */
|
|
const KMemoryPermission new_perm = ConvertToKMemoryPermission(svc_perm);
|
|
KMemoryState new_state = old_state;
|
|
const bool is_w = (new_perm & KMemoryPermission_UserWrite) == KMemoryPermission_UserWrite;
|
|
const bool is_x = (new_perm & KMemoryPermission_UserExecute) == KMemoryPermission_UserExecute;
|
|
MESOSPHERE_ASSERT(!(is_w && is_x));
|
|
|
|
if (is_w) {
|
|
switch (old_state) {
|
|
case KMemoryState_Code: new_state = KMemoryState_CodeData; break;
|
|
case KMemoryState_AliasCode: new_state = KMemoryState_AliasCodeData; break;
|
|
MESOSPHERE_UNREACHABLE_DEFAULT_CASE();
|
|
}
|
|
}
|
|
|
|
/* Create a page group, if we're setting execute permissions. */
|
|
if (is_x) {
|
|
R_TRY(this->MakePageGroup(pg, GetInteger(addr), num_pages));
|
|
}
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Perform mapping operation. */
|
|
const KPageProperties properties = { new_perm, false, false, false };
|
|
const auto operation = is_x ? OperationType_ChangePermissionsAndRefresh : OperationType_ChangePermissions;
|
|
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, Null<KPhysicalAddress>, false, properties, operation, false));
|
|
|
|
/* Update the blocks. */
|
|
this->memory_block_manager.Update(&allocator, addr, num_pages, new_state, new_perm, KMemoryAttribute_None);
|
|
|
|
/* Ensure cache coherency, if we're setting pages as executable. */
|
|
if (is_x) {
|
|
for (const auto &block : pg) {
|
|
cpu::StoreDataCache(GetVoidPointer(block.GetAddress()), block.GetSize());
|
|
}
|
|
cpu::InvalidateEntireInstructionCache();
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::SetHeapSize(KProcessAddress *out, size_t size) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
Result KPageTableBase::SetMaxHeapSize(size_t size) {
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Only process page tables are allowed to set heap size. */
|
|
MESOSPHERE_ASSERT(!this->IsKernel());
|
|
|
|
this->max_heap_size = size;
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::QueryInfo(KMemoryInfo *out_info, ams::svc::PageInfo *out_page_info, KProcessAddress addr) const {
|
|
/* If the address is invalid, create a fake block. */
|
|
if (!this->Contains(addr, 1)) {
|
|
*out_info = {
|
|
.address = GetInteger(this->address_space_end),
|
|
.size = 0 - GetInteger(this->address_space_end),
|
|
.state = static_cast<KMemoryState>(ams::svc::MemoryState_Inaccessible),
|
|
.perm = KMemoryPermission_None,
|
|
.attribute = KMemoryAttribute_None,
|
|
.original_perm = KMemoryPermission_None,
|
|
.ipc_lock_count = 0,
|
|
.device_use_count = 0,
|
|
};
|
|
out_page_info->flags = 0;
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
/* Otherwise, lock the table and query. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
return this->QueryInfoImpl(out_info, out_page_info, addr);
|
|
}
|
|
|
|
Result KPageTableBase::MapIo(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
|
|
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(phys_addr), PageSize));
|
|
MESOSPHERE_ASSERT(util::IsAligned(size, PageSize));
|
|
MESOSPHERE_ASSERT(size > 0);
|
|
R_UNLESS(phys_addr < phys_addr + size, svc::ResultInvalidAddress());
|
|
const size_t num_pages = size / PageSize;
|
|
const KPhysicalAddress last = phys_addr + size - 1;
|
|
|
|
/* Get region extents. */
|
|
const KProcessAddress region_start = this->GetRegionAddress(KMemoryState_Io);
|
|
const size_t region_size = this->GetRegionSize(KMemoryState_Io);
|
|
const size_t region_num_pages = region_size / PageSize;
|
|
|
|
/* Locate the memory region. */
|
|
auto region_it = KMemoryLayout::FindContainingRegion(phys_addr);
|
|
const auto end_it = KMemoryLayout::GetEnd(phys_addr);
|
|
R_UNLESS(region_it != end_it, svc::ResultInvalidAddress());
|
|
|
|
MESOSPHERE_ASSERT(region_it->Contains(GetInteger(phys_addr)));
|
|
|
|
/* Ensure that the region is mappable. */
|
|
const bool is_rw = perm == KMemoryPermission_UserReadWrite;
|
|
do {
|
|
/* Check the region attributes. */
|
|
R_UNLESS(!region_it->IsDerivedFrom(KMemoryRegionType_Dram), svc::ResultInvalidAddress());
|
|
R_UNLESS(!region_it->HasTypeAttribute(KMemoryRegionAttr_UserReadOnly) || !is_rw, svc::ResultInvalidAddress());
|
|
R_UNLESS(!region_it->HasTypeAttribute(KMemoryRegionAttr_NoUserMap), svc::ResultInvalidAddress());
|
|
|
|
/* Check if we're done. */
|
|
if (GetInteger(last) <= region_it->GetLastAddress()) {
|
|
break;
|
|
}
|
|
|
|
/* Advance. */
|
|
region_it++;
|
|
} while (region_it != end_it);
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Select an address to map at. */
|
|
KProcessAddress addr = Null<KProcessAddress>;
|
|
const size_t phys_alignment = std::min(std::min(GetInteger(phys_addr) & -GetInteger(phys_addr), size & -size), MaxPhysicalMapAlignment);
|
|
for (s32 block_type = KPageTable::GetMaxBlockType(); block_type >= 0; block_type--) {
|
|
const size_t alignment = KPageTable::GetBlockSize(static_cast<KPageTable::BlockType>(block_type));
|
|
if (alignment > phys_alignment) {
|
|
continue;
|
|
}
|
|
|
|
addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0, this->GetNumGuardPages());
|
|
if (addr != Null<KProcessAddress>) {
|
|
break;
|
|
}
|
|
}
|
|
R_UNLESS(addr != Null<KProcessAddress>, svc::ResultOutOfMemory());
|
|
|
|
/* Check that we can map IO here. */
|
|
MESOSPHERE_ASSERT(this->CanContain(addr, size, KMemoryState_Io));
|
|
MESOSPHERE_R_ASSERT(this->CheckMemoryState(addr, size, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Perform mapping operation. */
|
|
const KPageProperties properties = { perm, true, false, false };
|
|
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties, OperationType_Map, false));
|
|
|
|
/* Update the blocks. */
|
|
this->memory_block_manager.Update(&allocator, addr, num_pages, KMemoryState_Io, perm, KMemoryAttribute_None);
|
|
|
|
/* We successfully mapped the pages. */
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::MapStatic(KPhysicalAddress phys_addr, size_t size, KMemoryPermission perm) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
Result KPageTableBase::MapRegion(KMemoryRegionType region_type, KMemoryPermission perm) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
Result KPageTableBase::MapPages(KProcessAddress *out_addr, size_t num_pages, size_t alignment, KPhysicalAddress phys_addr, bool is_pa_valid, KProcessAddress region_start, size_t region_num_pages, KMemoryState state, KMemoryPermission perm) {
|
|
MESOSPHERE_ASSERT(util::IsAligned(alignment, PageSize) && alignment >= PageSize);
|
|
|
|
/* Ensure this is a valid map request. */
|
|
R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state), svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS(num_pages < region_num_pages, svc::ResultOutOfMemory());
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Find a random address to map at. */
|
|
KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, alignment, 0, this->GetNumGuardPages());
|
|
R_UNLESS(addr != Null<KProcessAddress>, svc::ResultOutOfMemory());
|
|
MESOSPHERE_ASSERT(util::IsAligned(GetInteger(addr), alignment));
|
|
MESOSPHERE_ASSERT(this->CanContain(addr, num_pages * PageSize, state));
|
|
MESOSPHERE_R_ASSERT(this->CheckMemoryState(addr, num_pages * PageSize, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Perform mapping operation. */
|
|
const KPageProperties properties = { perm, false, false, false };
|
|
if (is_pa_valid) {
|
|
R_TRY(this->Operate(updater.GetPageList(), addr, num_pages, phys_addr, true, properties, OperationType_Map, false));
|
|
} else {
|
|
R_TRY(this->AllocateAndMapPagesImpl(updater.GetPageList(), addr, num_pages, properties));
|
|
}
|
|
|
|
/* Update the blocks. */
|
|
this->memory_block_manager.Update(&allocator, addr, num_pages, state, perm, KMemoryAttribute_None);
|
|
|
|
/* We successfully mapped the pages. */
|
|
*out_addr = addr;
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::UnmapPages(KProcessAddress address, size_t num_pages, KMemoryState state) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
Result KPageTableBase::MapPageGroup(KProcessAddress *out_addr, const KPageGroup &pg, KProcessAddress region_start, size_t region_num_pages, KMemoryState state, KMemoryPermission perm) {
|
|
MESOSPHERE_ASSERT(!this->IsLockedByCurrentThread());
|
|
|
|
/* Ensure this is a valid map request. */
|
|
const size_t num_pages = pg.GetNumPages();
|
|
R_UNLESS(this->CanContain(region_start, region_num_pages * PageSize, state), svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS(num_pages < region_num_pages, svc::ResultOutOfMemory());
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Find a random address to map at. */
|
|
KProcessAddress addr = this->FindFreeArea(region_start, region_num_pages, num_pages, PageSize, 0, this->GetNumGuardPages());
|
|
R_UNLESS(addr != Null<KProcessAddress>, svc::ResultOutOfMemory());
|
|
MESOSPHERE_ASSERT(this->CanContain(addr, num_pages * PageSize, state));
|
|
MESOSPHERE_R_ASSERT(this->CheckMemoryState(addr, num_pages * PageSize, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Perform mapping operation. */
|
|
const KPageProperties properties = { perm, state == KMemoryState_Io, false, false };
|
|
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
|
|
|
|
/* Update the blocks. */
|
|
this->memory_block_manager.Update(&allocator, addr, num_pages, state, perm, KMemoryAttribute_None);
|
|
|
|
/* We successfully mapped the pages. */
|
|
*out_addr = addr;
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::MapPageGroup(KProcessAddress addr, const KPageGroup &pg, KMemoryState state, KMemoryPermission perm) {
|
|
MESOSPHERE_ASSERT(!this->IsLockedByCurrentThread());
|
|
|
|
/* Ensure this is a valid map request. */
|
|
const size_t num_pages = pg.GetNumPages();
|
|
const size_t size = num_pages * PageSize;
|
|
R_UNLESS(this->CanContain(addr, size, state), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check if state allows us to map. */
|
|
R_TRY(this->CheckMemoryState(addr, size, KMemoryState_All, KMemoryState_Free, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_None, KMemoryAttribute_None));
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Perform mapping operation. */
|
|
const KPageProperties properties = { perm, state == KMemoryState_Io, false, false };
|
|
R_TRY(this->MapPageGroupImpl(updater.GetPageList(), addr, pg, properties, false));
|
|
|
|
/* Update the blocks. */
|
|
this->memory_block_manager.Update(&allocator, addr, num_pages, state, perm, KMemoryAttribute_None);
|
|
|
|
/* We successfully mapped the pages. */
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::UnmapPageGroup(KProcessAddress address, const KPageGroup &pg, KMemoryState state) {
|
|
MESOSPHERE_ASSERT(!this->IsLockedByCurrentThread());
|
|
|
|
/* Ensure this is a valid unmap request. */
|
|
const size_t num_pages = pg.GetNumPages();
|
|
const size_t size = num_pages * PageSize;
|
|
R_UNLESS(this->CanContain(address, size, state), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check if state allows us to unmap. */
|
|
R_TRY(this->CheckMemoryState(address, size, KMemoryState_All, state, KMemoryPermission_None, KMemoryPermission_None, KMemoryAttribute_All, KMemoryAttribute_None));
|
|
|
|
/* Check that the page group is valid. */
|
|
R_UNLESS(this->IsValidPageGroup(pg, address, num_pages), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Create an update allocator. */
|
|
KMemoryBlockManagerUpdateAllocator allocator(this->memory_block_slab_manager);
|
|
R_TRY(allocator.GetResult());
|
|
|
|
/* We're going to perform an update, so create a helper. */
|
|
KScopedPageTableUpdater updater(this);
|
|
|
|
/* Perform unmapping operation. */
|
|
const KPageProperties properties = { KMemoryPermission_None, false, false, false };
|
|
R_TRY(this->Operate(updater.GetPageList(), address, num_pages, Null<KPhysicalAddress>, false, properties, OperationType_Unmap, false));
|
|
|
|
/* Update the blocks. */
|
|
this->memory_block_manager.Update(&allocator, address, num_pages, KMemoryState_Free, KMemoryPermission_None, KMemoryAttribute_None);
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::MakeAndOpenPageGroup(KPageGroup *out, KProcessAddress address, size_t num_pages, u32 state_mask, u32 state, u32 perm_mask, u32 perm, u32 attr_mask, u32 attr) {
|
|
/* Ensure that the page group isn't null. */
|
|
MESOSPHERE_ASSERT(out != nullptr);
|
|
|
|
/* Make sure that the region we're mapping is valid for the table. */
|
|
const size_t size = num_pages * PageSize;
|
|
R_UNLESS(this->Contains(address, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check if state allows us to create the group. */
|
|
R_TRY(this->CheckMemoryState(address, size, state_mask | KMemoryState_FlagReferenceCounted, state | KMemoryState_FlagReferenceCounted, perm_mask, perm, attr_mask, attr));
|
|
|
|
/* Create a new page group for the region. */
|
|
R_TRY(this->MakePageGroup(*out, address, num_pages));
|
|
|
|
/* Open a new reference to the pages in the group. */
|
|
out->Open();
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::LockForIpcUserBuffer(KPhysicalAddress *out, KProcessAddress address, size_t size) {
|
|
return this->LockMemoryAndOpen(nullptr, out, address, size,
|
|
KMemoryState_FlagCanIpcUserBuffer, KMemoryState_FlagCanIpcUserBuffer,
|
|
KMemoryPermission_All, KMemoryPermission_UserReadWrite,
|
|
KMemoryAttribute_All, KMemoryAttribute_None,
|
|
static_cast<KMemoryPermission>(KMemoryPermission_NotMapped | KMemoryPermission_KernelReadWrite),
|
|
KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked);
|
|
}
|
|
|
|
Result KPageTableBase::UnlockForIpcUserBuffer(KProcessAddress address, size_t size) {
|
|
return this->UnlockMemory(address, size,
|
|
KMemoryState_FlagCanIpcUserBuffer, KMemoryState_FlagCanIpcUserBuffer,
|
|
KMemoryPermission_None, KMemoryPermission_None,
|
|
KMemoryAttribute_All, KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked,
|
|
KMemoryPermission_UserReadWrite,
|
|
KMemoryAttribute_AnyLocked | KMemoryAttribute_Locked, nullptr);
|
|
}
|
|
|
|
Result KPageTableBase::CopyMemoryFromLinearToUser(KProcessAddress dst_addr, size_t size, KProcessAddress src_addr, u32 src_state_mask, u32 src_state, KMemoryPermission src_test_perm, u32 src_attr_mask, u32 src_attr) {
|
|
/* Lightly validate the range before doing anything else. */
|
|
R_UNLESS(this->Contains(src_addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the memory. */
|
|
{
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check memory state. */
|
|
R_TRY(this->CheckMemoryStateContiguous(src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm, src_attr_mask | KMemoryAttribute_Uncached, src_attr));
|
|
|
|
auto &impl = this->GetImpl();
|
|
|
|
/* Begin traversal. */
|
|
TraversalContext context;
|
|
TraversalEntry next_entry;
|
|
bool traverse_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_addr = next_entry.phys_addr;
|
|
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
|
|
size_t tot_size = cur_size;
|
|
|
|
auto PerformCopy = [&] ALWAYS_INLINE_LAMBDA () -> Result {
|
|
/* Ensure the address is linear mapped. */
|
|
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy as much aligned data as we can. */
|
|
if (cur_size >= sizeof(u32)) {
|
|
const size_t copy_size = util::AlignDown(cur_size, sizeof(u32));
|
|
R_UNLESS(UserspaceAccess::CopyMemoryToUserAligned32Bit(GetVoidPointer(dst_addr), GetVoidPointer(GetLinearMappedVirtualAddress(cur_addr)), copy_size), svc::ResultInvalidCurrentMemory());
|
|
dst_addr += copy_size;
|
|
cur_addr += copy_size;
|
|
cur_size -= copy_size;
|
|
}
|
|
|
|
/* Copy remaining data. */
|
|
if (cur_size > 0) {
|
|
R_UNLESS(UserspaceAccess::CopyMemoryToUser(GetVoidPointer(dst_addr), GetVoidPointer(GetLinearMappedVirtualAddress(cur_addr)), cur_size), svc::ResultInvalidCurrentMemory());
|
|
}
|
|
|
|
return ResultSuccess();
|
|
};
|
|
|
|
/* Iterate. */
|
|
while (tot_size < size) {
|
|
/* Continue the traversal. */
|
|
traverse_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
if (next_entry.phys_addr != (cur_addr + cur_size)) {
|
|
/* Perform copy. */
|
|
R_TRY(PerformCopy());
|
|
|
|
/* Advance. */
|
|
dst_addr += cur_size;
|
|
|
|
cur_addr = next_entry.phys_addr;
|
|
cur_size = next_entry.block_size;
|
|
} else {
|
|
cur_size += next_entry.block_size;
|
|
}
|
|
|
|
tot_size += next_entry.block_size;
|
|
}
|
|
|
|
/* Ensure we use the right size for the last block. */
|
|
if (tot_size > size) {
|
|
cur_size -= (tot_size - size);
|
|
}
|
|
|
|
/* Perform copy for the last block. */
|
|
R_TRY(PerformCopy());
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::CopyMemoryFromLinearToKernel(KProcessAddress dst_addr, size_t size, KProcessAddress src_addr, u32 src_state_mask, u32 src_state, KMemoryPermission src_test_perm, u32 src_attr_mask, u32 src_attr) {
|
|
/* Lightly validate the range before doing anything else. */
|
|
R_UNLESS(this->Contains(src_addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the memory. */
|
|
{
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check memory state. */
|
|
R_TRY(this->CheckMemoryStateContiguous(src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm, src_attr_mask | KMemoryAttribute_Uncached, src_attr));
|
|
|
|
auto &impl = this->GetImpl();
|
|
|
|
/* Begin traversal. */
|
|
TraversalContext context;
|
|
TraversalEntry next_entry;
|
|
bool traverse_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), src_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_addr = next_entry.phys_addr;
|
|
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
|
|
size_t tot_size = cur_size;
|
|
|
|
auto PerformCopy = [&] ALWAYS_INLINE_LAMBDA () -> Result {
|
|
/* Ensure the address is linear mapped. */
|
|
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the data. */
|
|
std::memcpy(GetVoidPointer(dst_addr), GetVoidPointer(GetLinearMappedVirtualAddress(cur_addr)), cur_size);
|
|
|
|
return ResultSuccess();
|
|
};
|
|
|
|
/* Iterate. */
|
|
while (tot_size < size) {
|
|
/* Continue the traversal. */
|
|
traverse_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
if (next_entry.phys_addr != (cur_addr + cur_size)) {
|
|
/* Perform copy. */
|
|
R_TRY(PerformCopy());
|
|
|
|
/* Advance. */
|
|
dst_addr += cur_size;
|
|
|
|
cur_addr = next_entry.phys_addr;
|
|
cur_size = next_entry.block_size;
|
|
} else {
|
|
cur_size += next_entry.block_size;
|
|
}
|
|
|
|
tot_size += next_entry.block_size;
|
|
}
|
|
|
|
/* Ensure we use the right size for the last block. */
|
|
if (tot_size > size) {
|
|
cur_size -= (tot_size - size);
|
|
}
|
|
|
|
/* Perform copy for the last block. */
|
|
R_TRY(PerformCopy());
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::CopyMemoryFromUserToLinear(KProcessAddress dst_addr, size_t size, u32 dst_state_mask, u32 dst_state, KMemoryPermission dst_test_perm, u32 dst_attr_mask, u32 dst_attr, KProcessAddress src_addr) {
|
|
/* Lightly validate the range before doing anything else. */
|
|
R_UNLESS(this->Contains(dst_addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the memory. */
|
|
{
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check memory state. */
|
|
R_TRY(this->CheckMemoryStateContiguous(dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm, dst_attr_mask | KMemoryAttribute_Uncached, dst_attr));
|
|
|
|
auto &impl = this->GetImpl();
|
|
|
|
/* Begin traversal. */
|
|
TraversalContext context;
|
|
TraversalEntry next_entry;
|
|
bool traverse_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_addr = next_entry.phys_addr;
|
|
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
|
|
size_t tot_size = cur_size;
|
|
|
|
auto PerformCopy = [&] ALWAYS_INLINE_LAMBDA () -> Result {
|
|
/* Ensure the address is linear mapped. */
|
|
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy as much aligned data as we can. */
|
|
if (cur_size >= sizeof(u32)) {
|
|
const size_t copy_size = util::AlignDown(cur_size, sizeof(u32));
|
|
R_UNLESS(UserspaceAccess::CopyMemoryFromUserAligned32Bit(GetVoidPointer(GetLinearMappedVirtualAddress(cur_addr)), GetVoidPointer(src_addr), copy_size), svc::ResultInvalidCurrentMemory());
|
|
src_addr += copy_size;
|
|
cur_addr += copy_size;
|
|
cur_size -= copy_size;
|
|
}
|
|
|
|
/* Copy remaining data. */
|
|
if (cur_size > 0) {
|
|
R_UNLESS(UserspaceAccess::CopyMemoryFromUser(GetVoidPointer(GetLinearMappedVirtualAddress(cur_addr)), GetVoidPointer(src_addr), cur_size), svc::ResultInvalidCurrentMemory());
|
|
}
|
|
|
|
return ResultSuccess();
|
|
};
|
|
|
|
/* Iterate. */
|
|
while (tot_size < size) {
|
|
/* Continue the traversal. */
|
|
traverse_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
if (next_entry.phys_addr != (cur_addr + cur_size)) {
|
|
/* Perform copy. */
|
|
R_TRY(PerformCopy());
|
|
|
|
/* Advance. */
|
|
src_addr += cur_size;
|
|
|
|
cur_addr = next_entry.phys_addr;
|
|
cur_size = next_entry.block_size;
|
|
} else {
|
|
cur_size += next_entry.block_size;
|
|
}
|
|
|
|
tot_size += next_entry.block_size;
|
|
}
|
|
|
|
/* Ensure we use the right size for the last block. */
|
|
if (tot_size > size) {
|
|
cur_size -= (tot_size - size);
|
|
}
|
|
|
|
/* Perform copy for the last block. */
|
|
R_TRY(PerformCopy());
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::CopyMemoryFromKernelToLinear(KProcessAddress dst_addr, size_t size, u32 dst_state_mask, u32 dst_state, KMemoryPermission dst_test_perm, u32 dst_attr_mask, u32 dst_attr, KProcessAddress src_addr) {
|
|
/* Lightly validate the range before doing anything else. */
|
|
R_UNLESS(this->Contains(dst_addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the memory. */
|
|
{
|
|
/* Lock the table. */
|
|
KScopedLightLock lk(this->general_lock);
|
|
|
|
/* Check memory state. */
|
|
R_TRY(this->CheckMemoryStateContiguous(dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm, dst_attr_mask | KMemoryAttribute_Uncached, dst_attr));
|
|
|
|
auto &impl = this->GetImpl();
|
|
|
|
/* Begin traversal. */
|
|
TraversalContext context;
|
|
TraversalEntry next_entry;
|
|
bool traverse_valid = impl.BeginTraversal(std::addressof(next_entry), std::addressof(context), dst_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_addr = next_entry.phys_addr;
|
|
size_t cur_size = next_entry.block_size - (GetInteger(cur_addr) & (next_entry.block_size - 1));
|
|
size_t tot_size = cur_size;
|
|
|
|
auto PerformCopy = [&] ALWAYS_INLINE_LAMBDA () -> Result {
|
|
/* Ensure the address is linear mapped. */
|
|
R_UNLESS(IsLinearMappedPhysicalAddress(cur_addr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the data. */
|
|
std::memcpy(GetVoidPointer(GetLinearMappedVirtualAddress(cur_addr)), GetVoidPointer(src_addr), cur_size);
|
|
|
|
return ResultSuccess();
|
|
};
|
|
|
|
/* Iterate. */
|
|
while (tot_size < size) {
|
|
/* Continue the traversal. */
|
|
traverse_valid = impl.ContinueTraversal(std::addressof(next_entry), std::addressof(context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
if (next_entry.phys_addr != (cur_addr + cur_size)) {
|
|
/* Perform copy. */
|
|
R_TRY(PerformCopy());
|
|
|
|
/* Advance. */
|
|
src_addr += cur_size;
|
|
|
|
cur_addr = next_entry.phys_addr;
|
|
cur_size = next_entry.block_size;
|
|
} else {
|
|
cur_size += next_entry.block_size;
|
|
}
|
|
|
|
tot_size += next_entry.block_size;
|
|
}
|
|
|
|
/* Ensure we use the right size for the last block. */
|
|
if (tot_size > size) {
|
|
cur_size -= (tot_size - size);
|
|
}
|
|
|
|
/* Perform copy for the last block. */
|
|
R_TRY(PerformCopy());
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::CopyMemoryFromHeapToHeap(KPageTableBase &dst_page_table, KProcessAddress dst_addr, size_t size, u32 dst_state_mask, u32 dst_state, KMemoryPermission dst_test_perm, u32 dst_attr_mask, u32 dst_attr, KProcessAddress src_addr, u32 src_state_mask, u32 src_state, KMemoryPermission src_test_perm, u32 src_attr_mask, u32 src_attr) {
|
|
/* For convenience, alias this. */
|
|
KPageTableBase &src_page_table = *this;
|
|
|
|
/* Lightly validate the ranges before doing anything else. */
|
|
R_UNLESS(src_page_table.Contains(src_addr, size), svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS(dst_page_table.Contains(dst_addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the memory. */
|
|
{
|
|
/* Get the table locks. */
|
|
KLightLock &lock_0 = (reinterpret_cast<uintptr_t>(std::addressof(src_page_table)) <= reinterpret_cast<uintptr_t>(std::addressof(dst_page_table))) ? src_page_table.general_lock : dst_page_table.general_lock;
|
|
KLightLock &lock_1 = (reinterpret_cast<uintptr_t>(std::addressof(src_page_table)) <= reinterpret_cast<uintptr_t>(std::addressof(dst_page_table))) ? dst_page_table.general_lock : src_page_table.general_lock;
|
|
|
|
/* Lock the first lock. */
|
|
KScopedLightLock lk0(lock_0);
|
|
|
|
/* If necessary, lock the second lock. */
|
|
std::optional<KScopedLightLock> lk1;
|
|
if (std::addressof(lock_0) != std::addressof(lock_1)) {
|
|
lk1.emplace(lock_1);
|
|
}
|
|
|
|
/* Check memory state. */
|
|
R_TRY(src_page_table.CheckMemoryStateContiguous(src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm, src_attr_mask | KMemoryAttribute_Uncached, src_attr));
|
|
R_TRY(dst_page_table.CheckMemoryStateContiguous(dst_addr, size, dst_state_mask, dst_state, dst_test_perm, dst_test_perm, dst_attr_mask | KMemoryAttribute_Uncached, dst_attr));
|
|
|
|
/* Get implementations. */
|
|
auto &src_impl = src_page_table.GetImpl();
|
|
auto &dst_impl = dst_page_table.GetImpl();
|
|
|
|
/* Prepare for traversal. */
|
|
TraversalContext src_context;
|
|
TraversalContext dst_context;
|
|
TraversalEntry src_next_entry;
|
|
TraversalEntry dst_next_entry;
|
|
bool traverse_valid;
|
|
|
|
/* Begin traversal. */
|
|
traverse_valid = src_impl.BeginTraversal(std::addressof(src_next_entry), std::addressof(src_context), src_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
traverse_valid = dst_impl.BeginTraversal(std::addressof(dst_next_entry), std::addressof(dst_context), dst_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_src_block_addr = src_next_entry.phys_addr;
|
|
KPhysicalAddress cur_dst_block_addr = dst_next_entry.phys_addr;
|
|
size_t cur_src_size = src_next_entry.block_size - (GetInteger(cur_src_block_addr) & (src_next_entry.block_size - 1));
|
|
size_t cur_dst_size = dst_next_entry.block_size - (GetInteger(cur_dst_block_addr) & (dst_next_entry.block_size - 1));
|
|
|
|
/* Adjust the initial block sizes. */
|
|
src_next_entry.block_size = cur_src_size;
|
|
dst_next_entry.block_size = cur_dst_size;
|
|
|
|
/* Before we get any crazier, succeed if there's nothing to do. */
|
|
R_SUCCEED_IF(size == 0);
|
|
|
|
/* We're going to manage dual traversal via an offset against the total size. */
|
|
KPhysicalAddress cur_src_addr = cur_src_block_addr;
|
|
KPhysicalAddress cur_dst_addr = cur_dst_block_addr;
|
|
size_t cur_min_size = std::min<size_t>(cur_src_size, cur_dst_size);
|
|
|
|
/* Iterate. */
|
|
size_t ofs = 0;
|
|
while (ofs < size) {
|
|
/* Determine how much we can copy this iteration. */
|
|
const size_t cur_copy_size = std::min<size_t>(cur_min_size, size - ofs);
|
|
|
|
/* If we need to advance the traversals, do so. */
|
|
bool updated_src = false, updated_dst = false, skip_copy = false;
|
|
if (ofs + cur_copy_size != size) {
|
|
if (cur_src_addr + cur_min_size == cur_src_block_addr + cur_src_size) {
|
|
/* Continue the src traversal. */
|
|
traverse_valid = src_impl.ContinueTraversal(std::addressof(src_next_entry), std::addressof(src_context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
/* Update source. */
|
|
updated_src = cur_src_addr + cur_min_size != GetInteger(src_next_entry.phys_addr);
|
|
}
|
|
|
|
if (cur_dst_addr + cur_min_size == dst_next_entry.phys_addr + dst_next_entry.block_size) {
|
|
/* Continue the dst traversal. */
|
|
traverse_valid = dst_impl.ContinueTraversal(std::addressof(dst_next_entry), std::addressof(dst_context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
/* Update destination. */
|
|
updated_dst = cur_dst_addr + cur_min_size != GetInteger(dst_next_entry.phys_addr);
|
|
}
|
|
|
|
/* If we didn't update either of source/destination, skip the copy this iteration. */
|
|
if (!updated_src && !updated_dst) {
|
|
skip_copy = true;
|
|
|
|
/* Update the source block address. */
|
|
cur_src_block_addr = src_next_entry.phys_addr;
|
|
}
|
|
}
|
|
|
|
/* Do the copy, unless we're skipping it. */
|
|
if (!skip_copy) {
|
|
/* We need both ends of the copy to be heap blocks. */
|
|
R_UNLESS(IsHeapPhysicalAddress(cur_src_addr), svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS(IsHeapPhysicalAddress(cur_dst_addr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the data. */
|
|
std::memcpy(GetVoidPointer(GetHeapVirtualAddress(cur_dst_addr)), GetVoidPointer(GetHeapVirtualAddress(cur_src_addr)), cur_copy_size);
|
|
|
|
/* Update. */
|
|
cur_src_block_addr = src_next_entry.phys_addr;
|
|
cur_src_addr = updated_src ? cur_src_block_addr : cur_src_addr + cur_copy_size;
|
|
cur_dst_block_addr = dst_next_entry.phys_addr;
|
|
cur_dst_addr = updated_dst ? cur_dst_block_addr : cur_dst_addr + cur_copy_size;
|
|
|
|
/* Advance offset. */
|
|
ofs += cur_copy_size;
|
|
}
|
|
|
|
/* Update min size. */
|
|
cur_src_size = src_next_entry.block_size;
|
|
cur_dst_size = dst_next_entry.block_size;
|
|
cur_min_size = std::min<size_t>(cur_src_block_addr - cur_src_addr + cur_src_size, cur_dst_block_addr - cur_dst_addr + cur_dst_size);
|
|
}
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::CopyMemoryFromHeapToHeapWithoutCheckDestination(KPageTableBase &dst_page_table, KProcessAddress dst_addr, size_t size, u32 dst_state_mask, u32 dst_state, KMemoryPermission dst_test_perm, u32 dst_attr_mask, u32 dst_attr, KProcessAddress src_addr, u32 src_state_mask, u32 src_state, KMemoryPermission src_test_perm, u32 src_attr_mask, u32 src_attr) {
|
|
/* For convenience, alias this. */
|
|
KPageTableBase &src_page_table = *this;
|
|
|
|
/* Lightly validate the ranges before doing anything else. */
|
|
R_UNLESS(src_page_table.Contains(src_addr, size), svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS(dst_page_table.Contains(dst_addr, size), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the memory. */
|
|
{
|
|
/* Get the table locks. */
|
|
KLightLock &lock_0 = (reinterpret_cast<uintptr_t>(std::addressof(src_page_table)) <= reinterpret_cast<uintptr_t>(std::addressof(dst_page_table))) ? src_page_table.general_lock : dst_page_table.general_lock;
|
|
KLightLock &lock_1 = (reinterpret_cast<uintptr_t>(std::addressof(src_page_table)) <= reinterpret_cast<uintptr_t>(std::addressof(dst_page_table))) ? dst_page_table.general_lock : src_page_table.general_lock;
|
|
|
|
/* Lock the first lock. */
|
|
KScopedLightLock lk0(lock_0);
|
|
|
|
/* If necessary, lock the second lock. */
|
|
std::optional<KScopedLightLock> lk1;
|
|
if (std::addressof(lock_0) != std::addressof(lock_1)) {
|
|
lk1.emplace(lock_1);
|
|
}
|
|
|
|
/* Check memory state. */
|
|
R_TRY(src_page_table.CheckMemoryStateContiguous(src_addr, size, src_state_mask, src_state, src_test_perm, src_test_perm, src_attr_mask | KMemoryAttribute_Uncached, src_attr));
|
|
|
|
/* Get implementations. */
|
|
auto &src_impl = src_page_table.GetImpl();
|
|
auto &dst_impl = dst_page_table.GetImpl();
|
|
|
|
/* Prepare for traversal. */
|
|
TraversalContext src_context;
|
|
TraversalContext dst_context;
|
|
TraversalEntry src_next_entry;
|
|
TraversalEntry dst_next_entry;
|
|
bool traverse_valid;
|
|
|
|
/* Begin traversal. */
|
|
traverse_valid = src_impl.BeginTraversal(std::addressof(src_next_entry), std::addressof(src_context), src_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
traverse_valid = dst_impl.BeginTraversal(std::addressof(dst_next_entry), std::addressof(dst_context), dst_addr);
|
|
MESOSPHERE_ABORT_UNLESS(traverse_valid);
|
|
|
|
/* Prepare tracking variables. */
|
|
KPhysicalAddress cur_src_block_addr = src_next_entry.phys_addr;
|
|
KPhysicalAddress cur_dst_block_addr = dst_next_entry.phys_addr;
|
|
size_t cur_src_size = src_next_entry.block_size - (GetInteger(cur_src_block_addr) & (src_next_entry.block_size - 1));
|
|
size_t cur_dst_size = dst_next_entry.block_size - (GetInteger(cur_dst_block_addr) & (dst_next_entry.block_size - 1));
|
|
|
|
/* Adjust the initial block sizes. */
|
|
src_next_entry.block_size = cur_src_size;
|
|
dst_next_entry.block_size = cur_dst_size;
|
|
|
|
/* Before we get any crazier, succeed if there's nothing to do. */
|
|
R_SUCCEED_IF(size == 0);
|
|
|
|
/* We're going to manage dual traversal via an offset against the total size. */
|
|
KPhysicalAddress cur_src_addr = cur_src_block_addr;
|
|
KPhysicalAddress cur_dst_addr = cur_dst_block_addr;
|
|
size_t cur_min_size = std::min<size_t>(cur_src_size, cur_dst_size);
|
|
|
|
/* Iterate. */
|
|
size_t ofs = 0;
|
|
while (ofs < size) {
|
|
/* Determine how much we can copy this iteration. */
|
|
const size_t cur_copy_size = std::min<size_t>(cur_min_size, size - ofs);
|
|
|
|
/* If we need to advance the traversals, do so. */
|
|
bool updated_src = false, updated_dst = false, skip_copy = false;
|
|
if (ofs + cur_copy_size != size) {
|
|
if (cur_src_addr + cur_min_size == cur_src_block_addr + cur_src_size) {
|
|
/* Continue the src traversal. */
|
|
traverse_valid = src_impl.ContinueTraversal(std::addressof(src_next_entry), std::addressof(src_context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
/* Update source. */
|
|
updated_src = cur_src_addr + cur_min_size != GetInteger(src_next_entry.phys_addr);
|
|
}
|
|
|
|
if (cur_dst_addr + cur_min_size == dst_next_entry.phys_addr + dst_next_entry.block_size) {
|
|
/* Continue the dst traversal. */
|
|
traverse_valid = dst_impl.ContinueTraversal(std::addressof(dst_next_entry), std::addressof(dst_context));
|
|
MESOSPHERE_ASSERT(traverse_valid);
|
|
|
|
/* Update destination. */
|
|
updated_dst = cur_dst_addr + cur_min_size != GetInteger(dst_next_entry.phys_addr);
|
|
}
|
|
|
|
/* If we didn't update either of source/destination, skip the copy this iteration. */
|
|
if (!updated_src && !updated_dst) {
|
|
skip_copy = true;
|
|
|
|
/* Update the source block address. */
|
|
cur_src_block_addr = src_next_entry.phys_addr;
|
|
}
|
|
}
|
|
|
|
/* Do the copy, unless we're skipping it. */
|
|
if (!skip_copy) {
|
|
/* We need both ends of the copy to be heap blocks. */
|
|
R_UNLESS(IsHeapPhysicalAddress(cur_src_addr), svc::ResultInvalidCurrentMemory());
|
|
R_UNLESS(IsHeapPhysicalAddress(cur_dst_addr), svc::ResultInvalidCurrentMemory());
|
|
|
|
/* Copy the data. */
|
|
std::memcpy(GetVoidPointer(GetHeapVirtualAddress(cur_dst_addr)), GetVoidPointer(GetHeapVirtualAddress(cur_src_addr)), cur_copy_size);
|
|
|
|
/* Update. */
|
|
cur_src_block_addr = src_next_entry.phys_addr;
|
|
cur_src_addr = updated_src ? cur_src_block_addr : cur_src_addr + cur_copy_size;
|
|
cur_dst_block_addr = dst_next_entry.phys_addr;
|
|
cur_dst_addr = updated_dst ? cur_dst_block_addr : cur_dst_addr + cur_copy_size;
|
|
|
|
/* Advance offset. */
|
|
ofs += cur_copy_size;
|
|
}
|
|
|
|
/* Update min size. */
|
|
cur_src_size = src_next_entry.block_size;
|
|
cur_dst_size = dst_next_entry.block_size;
|
|
cur_min_size = std::min<size_t>(cur_src_block_addr - cur_src_addr + cur_src_size, cur_dst_block_addr - cur_dst_addr + cur_dst_size);
|
|
}
|
|
}
|
|
|
|
return ResultSuccess();
|
|
}
|
|
|
|
Result KPageTableBase::SetupForIpc(KProcessAddress *out_dst_addr, size_t size, KProcessAddress src_addr, KPageTableBase &src_page_table, KMemoryPermission test_perm, KMemoryState dst_state, bool send) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
Result KPageTableBase::CleanupForIpcServer(KProcessAddress address, size_t size, KMemoryState dst_state, KProcess *server_process) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
Result KPageTableBase::CleanupForIpcClient(KProcessAddress address, size_t size, KMemoryState dst_state) {
|
|
MESOSPHERE_UNIMPLEMENTED();
|
|
}
|
|
|
|
}
|