1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-27 04:36:04 +00:00
Atmosphere/libraries/libexosphere/source/se/se_suspend.cpp

354 lines
16 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "se_execute.hpp"
namespace ams::se {
namespace {
constexpr inline size_t SE1ContextSaveOperationCount = 133;
constexpr inline size_t SE2ContextSaveOperationCount = 646;
static_assert(((SE1ContextSaveOperationCount - 2) + 1) * se::AesBlockSize == sizeof(se::Context));
constinit const u8 FixedPattern[AesBlockSize] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};
bool TestRegister(volatile u32 &r, u16 v) {
return (static_cast<u16>(reg::Read(r))) == v;
}
void ExecuteContextSaveOperation(volatile SecurityEngineRegisters *SE, void *dst, size_t dst_size, const void *src, size_t src_size) {
/* Save the output to a temporary buffer. */
util::AlignedBuffer<hw::DataCacheLineSize, AesBlockSize> temp;
AMS_ABORT_UNLESS(dst_size <= AesBlockSize);
/* Ensure that the cpu and SE see consistent data. */
if (src_size > 0) {
hw::FlushDataCache(src, src_size);
hw::DataSynchronizationBarrierInnerShareable();
}
if (dst_size > 0) {
hw::FlushDataCache(temp, AesBlockSize);
hw::DataSynchronizationBarrierInnerShareable();
}
/* Execute the operation. */
ExecuteOperation(SE, SE_OPERATION_OP_CTX_SAVE, temp, dst_size, src, src_size);
/* Copy output from the operation, if any. */
if (dst_size > 0) {
hw::DataSynchronizationBarrierInnerShareable();
hw::FlushDataCache(temp, AesBlockSize);
hw::DataSynchronizationBarrierInnerShareable();
std::memcpy(dst, temp, dst_size);
}
}
void SaveContextBlock(volatile SecurityEngineRegisters *SE, void *dst) {
/* Configure to encrypt a single block. */
reg::Write(SE->SE_CRYPTO_LAST_BLOCK, 0);
/* Execute the operation. */
ExecuteContextSaveOperation(SE, dst, AesBlockSize, nullptr, 0);
}
void ConfigureForAutomaticContextSave(volatile SecurityEngineRegisters *SE) {
/* Configure the engine to do RNG encryption. */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_ENC_ALG, RNG),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DST, MEMORY));
reg::Write(SE->SE_CRYPTO_CONFIG, SE_REG_BITS_ENUM (CRYPTO_CONFIG_MEMIF, AHB),
SE_REG_BITS_VALUE(CRYPTO_CONFIG_CTR_CNTN, 0),
SE_REG_BITS_ENUM (CRYPTO_CONFIG_KEYSCH_BYPASS, DISABLE),
SE_REG_BITS_ENUM (CRYPTO_CONFIG_CORE_SEL, ENCRYPT),
SE_REG_BITS_ENUM (CRYPTO_CONFIG_IV_SELECT, ORIGINAL),
SE_REG_BITS_ENUM (CRYPTO_CONFIG_VCTRAM_SEL, MEMORY),
SE_REG_BITS_ENUM (CRYPTO_CONFIG_INPUT_SEL, RANDOM),
SE_REG_BITS_ENUM (CRYPTO_CONFIG_XOR_POS, BYPASS),
SE_REG_BITS_ENUM (CRYPTO_CONFIG_HASH_ENB, DISABLE));
}
void WaitAutomaticContextSaveDone(volatile SecurityEngineRegisters *SE) {
/* Wait for operation. */
while (!reg::HasValue(SE->SE_INT_STATUS, SE_REG_BITS_ENUM(INT_STATUS_SE_OP_DONE, ACTIVE))) { /* ... */ }
/* Wait for the engine to be idle. */
while (!reg::HasValue(SE->SE_STATUS, SE_REG_BITS_ENUM(STATUS_STATE, IDLE))) { /* ... */ }
/* Wait for the memory interface to be idle. */
while (!reg::HasValue(SE->SE_STATUS, SE_REG_BITS_ENUM(STATUS_MEM_INTERFACE, IDLE))) { /* ... */ }
}
void ValidateErrStatus(volatile SecurityEngineRegisters *SE) {
/* Ensure there is no error status. */
AMS_ABORT_UNLESS(reg::Read(SE->SE_ERR_STATUS) == 0);
/* Ensure no error occurred. */
AMS_ABORT_UNLESS(reg::HasValue(SE->SE_INT_STATUS, SE_REG_BITS_ENUM(INT_STATUS_ERR_STAT, CLEAR)));
}
}
bool ValidateStickyBits(const StickyBits &bits) {
/* Get the registers. */
auto *SE = GetRegisters();
/* Check SE_SECURITY. */
if (!TestRegister(SE->SE_SE_SECURITY, bits.se_security)) { return false; }
/* Check TZRAM_SECURITY. */
if (!TestRegister(SE->SE_TZRAM_SECURITY, bits.tzram_security)) { return false; }
/* Check CRYPTO_SECURITY_PERKEY. */
if (!TestRegister(SE->SE_CRYPTO_SECURITY_PERKEY, bits.crypto_security_perkey)) { return false; }
/* Check CRYPTO_KEYTABLE_ACCESS. */
for (int i = 0; i < AesKeySlotCount; ++i) {
if (!TestRegister(SE->SE_CRYPTO_KEYTABLE_ACCESS[i], bits.crypto_keytable_access[i])) { return false; }
}
/* Test RSA_SECURITY_PERKEY */
if (!TestRegister(SE->SE_RSA_SECURITY_PERKEY, bits.rsa_security_perkey)) { return false; }
/* Check RSA_KEYTABLE_ACCESS. */
for (int i = 0; i < RsaKeySlotCount; ++i) {
if (!TestRegister(SE->SE_RSA_KEYTABLE_ACCESS[i], bits.rsa_keytable_access[i])) { return false; }
}
/* All sticky bits are valid. */
return true;
}
void SaveContext(Context *dst) {
/* Get the registers. */
auto *SE = GetRegisters();
/* Generate a random srk. */
GenerateSrk();
/* Save a randomly-generated block. */
{
util::AlignedBuffer<hw::DataCacheLineSize, AesBlockSize> random_block;
/* Flush the region we're about to fill to ensure consistency with the SE. */
hw::FlushDataCache(random_block, AesBlockSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Generate random bytes. */
GenerateRandomBytes(random_block, AesBlockSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Flush to ensure the CPU sees consistent data for the region. */
hw::FlushDataCache(random_block, AesBlockSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Configure to encrypt the random block to memory. */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_DEC_MODE, AESMODE_KEY128),
SE_REG_BITS_ENUM(CONFIG_ENC_ALG, AES_ENC),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DST, MEMORY));
/* Configure to context save using memory as source. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM(CTX_SAVE_CONFIG_SRC, MEM));
/* Configure to encrypt a single block. */
reg::Write(SE->SE_CRYPTO_LAST_BLOCK, 0);
/* Execute the operation. */
ExecuteContextSaveOperation(SE, dst->random, AesBlockSize, random_block, AesBlockSize);
}
/* Save the sticky bits. */
for (size_t i = 0; i < util::size(dst->sticky_bits); ++i) {
/* Configure to encrypt the sticky bits block. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM (CTX_SAVE_CONFIG_SRC, STICKY_BITS),
SE_REG_BITS_VALUE(CTX_SAVE_CONFIG_STICKY_WORD_QUAD, i));
/* Save the block. */
SaveContextBlock(SE, dst->sticky_bits[i]);
}
/* Save the aes keytable. */
{
for (size_t key = 0; key < util::size(dst->aes_key); ++key) {
for (auto part = 0; part < AesKeySlotPartCount; ++part) {
/* Configure to encrypt the part of the key. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM (CTX_SAVE_CONFIG_SRC, AES_KEYTABLE),
SE_REG_BITS_VALUE(CTX_SAVE_CONFIG_AES_KEY_INDEX, key),
SE_REG_BITS_VALUE(CTX_SAVE_CONFIG_AES_WORD_QUAD, part));
/* Save the block. */
SaveContextBlock(SE, dst->aes_key[key][part]);
}
}
for (size_t key = 0; key < util::size(dst->aes_oiv); ++key) {
/* Configure to encrypt the original iv. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM (CTX_SAVE_CONFIG_SRC, AES_KEYTABLE),
SE_REG_BITS_VALUE(CTX_SAVE_CONFIG_AES_KEY_INDEX, key),
SE_REG_BITS_ENUM (CTX_SAVE_CONFIG_AES_WORD_QUAD, ORIGINAL_IVS));
/* Save the block. */
SaveContextBlock(SE, dst->aes_oiv[key]);
}
for (size_t key = 0; key < util::size(dst->aes_uiv); ++key) {
/* Configure to encrypt the updated iv. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM (CTX_SAVE_CONFIG_SRC, AES_KEYTABLE),
SE_REG_BITS_VALUE(CTX_SAVE_CONFIG_AES_KEY_INDEX, key),
SE_REG_BITS_ENUM (CTX_SAVE_CONFIG_AES_WORD_QUAD, UPDATED_IVS));
/* Save the block. */
SaveContextBlock(SE, dst->aes_uiv[key]);
}
}
/* Save the rsa keytable. */
for (size_t key = 0; key < util::size(dst->rsa_key); ++key) {
for (auto part = 0; part < RsaKeySlotPartCount; ++part) {
/* Note that the parts are done in reverse order. */
const auto part_index = RsaKeySlotPartCount - 1 - part;
/* Determine a total key index. */
const auto key_index = key * util::size(dst->rsa_key) + part_index;
for (size_t block = 0; block < RsaSize / AesBlockSize; ++block) {
/* Configure to encrypt the part of the key. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM (CTX_SAVE_CONFIG_SRC, RSA_KEYTABLE),
SE_REG_BITS_VALUE(CTX_SAVE_CONFIG_RSA_KEY_INDEX, key_index),
SE_REG_BITS_VALUE(CTX_SAVE_CONFIG_RSA_WORD_QUAD, block));
/* Save the block. */
SaveContextBlock(SE, dst->rsa_key[key][part][block]);
}
}
}
/* Save the fixed pattern. */
{
/* Configure to context save using memory as source. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM(CTX_SAVE_CONFIG_SRC, MEM));
/* Configure to encrypt a single block. */
reg::Write(SE->SE_CRYPTO_LAST_BLOCK, 0);
/* Execute the operation. */
ExecuteContextSaveOperation(SE, dst->fixed_pattern, AesBlockSize, FixedPattern, AesBlockSize);
}
/* Save the srk. */
{
/* Configure to context save using srk as source. */
reg::Write(SE->SE_CTX_SAVE_CONFIG, SE_REG_BITS_ENUM(CTX_SAVE_CONFIG_SRC, SRK));
/* Configure to encrypt a single block. */
reg::Write(SE->SE_CRYPTO_LAST_BLOCK, 0);
/* Execute the operation. */
ExecuteContextSaveOperation(SE, nullptr, 0, nullptr, 0);
}
/* Perform a no-op context save operation. */
{
/* Configure to perform no-op. */
reg::Write(SE->SE_CONFIG, SE_REG_BITS_ENUM(CONFIG_ENC_ALG, NOP),
SE_REG_BITS_ENUM(CONFIG_DEC_ALG, NOP));
/* Execute the operation. */
ExecuteContextSaveOperation(SE, nullptr, 0, nullptr, 0);
}
}
void ConfigureAutomaticContextSave() {
/* Get registers. */
auto *SE = GetRegisters();
auto *SE2 = GetRegisters2();
/* Automatic context save is supported only on mariko. */
if (fuse::GetSocType() == fuse::SocType_Mariko) {
/* Configure SE1 to do automatic context save. */
reg::Write(SE->SE_CTX_SAVE_AUTO, SE_REG_BITS_ENUM(CTX_SAVE_AUTO_ENABLE, YES),
SE_REG_BITS_ENUM(CTX_SAVE_AUTO_LOCK, YES));
/* Configure SE2 to do automatic context save. */
reg::Write(SE2->SE_CTX_SAVE_AUTO, SE_REG_BITS_ENUM(CTX_SAVE_AUTO_ENABLE, YES),
SE_REG_BITS_ENUM(CTX_SAVE_AUTO_LOCK, YES));
}
}
void SaveContextAutomatic() {
/* Get registers. */
auto *SE = GetRegisters();
auto *SE2 = GetRegisters2();
/* Ensure there's no error status before or after we save context. */
ValidateErrStatus();
ON_SCOPE_EXIT { ValidateErrStatus(); };
/* Perform atomic context save. */
{
/* Check that context save has not already been performed. */
AMS_ABORT_UNLESS(reg::HasValue(SE->SE_CTX_SAVE_AUTO, SE_REG_BITS_VALUE(CTX_SAVE_AUTO_CURR_CNT, 0)));
AMS_ABORT_UNLESS(reg::HasValue(SE2->SE_CTX_SAVE_AUTO, SE_REG_BITS_VALUE(CTX_SAVE_AUTO_CURR_CNT, 0)));
/* Configure SE1 to do context save. */
ConfigureForAutomaticContextSave(SE);
ConfigureForAutomaticContextSave(SE2);
/* Start the context save operation. */
reg::Write(SE->SE_OPERATION, SE_REG_BITS_ENUM(OPERATION_OP, CTX_SAVE));
reg::Write(SE2->SE_OPERATION, SE_REG_BITS_ENUM(OPERATION_OP, CTX_SAVE));
/* Wait for the context save operation to complete. */
WaitAutomaticContextSaveDone(SE);
WaitAutomaticContextSaveDone(SE2);
/* Check that the correct sizes were written. */
AMS_ABORT_UNLESS(reg::HasValue(SE->SE_CTX_SAVE_AUTO, SE_REG_BITS_VALUE(CTX_SAVE_AUTO_CURR_CNT, SE1ContextSaveOperationCount)));
AMS_ABORT_UNLESS(reg::HasValue(SE2->SE_CTX_SAVE_AUTO, SE_REG_BITS_VALUE(CTX_SAVE_AUTO_CURR_CNT, SE2ContextSaveOperationCount)));
}
}
void SaveTzramAutomatic() {
/* Get registers. */
auto *SE = GetRegisters();
/* Begin save-to-shadow-tzram operation. */
reg::Write(SE->SE_TZRAM_OPERATION, SE_REG_BITS_ENUM(TZRAM_OPERATION_MODE, SAVE),
SE_REG_BITS_ENUM(TZRAM_OPERATION_REQ, INITIATE));
/* Wait for operation to complete. */
while (reg::HasValue(SE->SE_TZRAM_OPERATION, SE_REG_BITS_ENUM(TZRAM_OPERATION_BUSY, YES))) { /* ... */ }
}
void ValidateErrStatus() {
/* Ensure SE has no error status. */
ValidateErrStatus(GetRegisters());
/* If on mariko, ensure SE2 has no error status. */
if (fuse::GetSocType() == fuse::SocType_Mariko) {
ValidateErrStatus(GetRegisters2());
}
}
}