1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-24 11:16:11 +00:00
Atmosphere/stratosphere/spl/source/spl_secmon_wrapper.cpp
2019-06-20 02:00:59 -07:00

875 lines
No EOL
32 KiB
C++

/*
* Copyright (c) 2018-2019 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <switch.h>
#include <stratosphere.hpp>
#include "spl_secmon_wrapper.hpp"
#include "spl_smc_wrapper.hpp"
#include "spl_ctr_drbg.hpp"
/* Convenient. */
constexpr size_t DeviceAddressSpaceAlignSize = 0x400000;
constexpr size_t DeviceAddressSpaceAlignMask = DeviceAddressSpaceAlignSize - 1;
constexpr u32 WorkBufferMapBase = 0x80000000u;
constexpr u32 CryptAesInMapBase = 0x90000000u;
constexpr u32 CryptAesOutMapBase = 0xC0000000u;
constexpr size_t CryptAesSizeMax = static_cast<size_t>(CryptAesOutMapBase - CryptAesInMapBase);
constexpr size_t RsaPrivateKeySize = 0x100;
constexpr size_t RsaPrivateKeyMetaSize = 0x30;
constexpr size_t LabelDigestSizeMax = 0x20;
/* Types. */
struct SeLinkedListEntry {
u32 num_entries;
u32 address;
u32 size;
};
struct SeCryptContext {
SeLinkedListEntry in;
SeLinkedListEntry out;
};
class DeviceAddressSpaceMapHelper {
private:
Handle das_hnd;
u64 dst_addr;
u64 src_addr;
size_t size;
u32 perm;
public:
DeviceAddressSpaceMapHelper(Handle h, u64 dst, u64 src, size_t sz, u32 p) : das_hnd(h), dst_addr(dst), src_addr(src), size(sz), perm(p) {
R_ASSERT(svcMapDeviceAddressSpaceAligned(this->das_hnd, CUR_PROCESS_HANDLE, this->src_addr, this->size, this->dst_addr, this->perm));
}
~DeviceAddressSpaceMapHelper() {
R_ASSERT(svcUnmapDeviceAddressSpace(this->das_hnd, CUR_PROCESS_HANDLE, this->src_addr, this->size, this->dst_addr));
}
};
/* Globals. */
static CtrDrbg g_drbg;
static Event g_se_event;
static IEvent *g_se_keyslot_available_event = nullptr;
static Handle g_se_das_hnd;
static u32 g_se_mapped_work_buffer_addr;
static __attribute__((aligned(0x1000))) u8 g_work_buffer[0x1000];
constexpr size_t MaxWorkBufferSize = sizeof(g_work_buffer) / 2;
static HosMutex g_async_op_lock;
void SecureMonitorWrapper::InitializeCtrDrbg() {
u8 seed[CtrDrbg::SeedSize];
if (SmcWrapper::GenerateRandomBytes(seed, sizeof(seed)) != SmcResult_Success) {
std::abort();
}
g_drbg.Initialize(seed);
}
void SecureMonitorWrapper::InitializeSeEvents() {
u64 irq_num;
SmcWrapper::GetConfig(&irq_num, 1, SplConfigItem_SecurityEngineIrqNumber);
Handle hnd;
R_ASSERT(svcCreateInterruptEvent(&hnd, irq_num, 1));
eventLoadRemote(&g_se_event, hnd, true);
g_se_keyslot_available_event = CreateWriteOnlySystemEvent();
g_se_keyslot_available_event->Signal();
}
void SecureMonitorWrapper::InitializeDeviceAddressSpace() {
constexpr u64 DeviceName_SE = 29;
/* Create Address Space. */
R_ASSERT(svcCreateDeviceAddressSpace(&g_se_das_hnd, 0, (1ul << 32)));
/* Attach it to the SE. */
R_ASSERT(svcAttachDeviceAddressSpace(DeviceName_SE, g_se_das_hnd));
const u64 work_buffer_addr = reinterpret_cast<u64>(g_work_buffer);
g_se_mapped_work_buffer_addr = WorkBufferMapBase + (work_buffer_addr & DeviceAddressSpaceAlignMask);
/* Map the work buffer for the SE. */
R_ASSERT(svcMapDeviceAddressSpaceAligned(g_se_das_hnd, CUR_PROCESS_HANDLE, work_buffer_addr, sizeof(g_work_buffer), g_se_mapped_work_buffer_addr, 3));
}
void SecureMonitorWrapper::Initialize() {
/* Initialize the Drbg. */
InitializeCtrDrbg();
/* Initialize SE interrupt + keyslot events. */
InitializeSeEvents();
/* Initialize DAS for the SE. */
InitializeDeviceAddressSpace();
}
void SecureMonitorWrapper::CalcMgf1AndXor(void *dst, size_t dst_size, const void *src, size_t src_size) {
uint8_t *dst_u8 = reinterpret_cast<u8 *>(dst);
u32 ctr = 0;
while (dst_size > 0) {
size_t cur_size = SHA256_HASH_SIZE;
if (cur_size > dst_size) {
cur_size = dst_size;
}
dst_size -= cur_size;
u32 ctr_be = __builtin_bswap32(ctr++);
u8 hash[SHA256_HASH_SIZE];
{
Sha256Context ctx;
sha256ContextCreate(&ctx);
sha256ContextUpdate(&ctx, src, src_size);
sha256ContextUpdate(&ctx, &ctr_be, sizeof(ctr_be));
sha256ContextGetHash(&ctx, hash);
}
for (size_t i = 0; i < cur_size; i++) {
*(dst_u8++) ^= hash[i];
}
}
}
size_t SecureMonitorWrapper::DecodeRsaOaep(void *dst, size_t dst_size, const void *label_digest, size_t label_digest_size, const void *src, size_t src_size) {
/* Very basic validation. */
if (dst_size == 0 || src_size != 0x100 || label_digest_size != SHA256_HASH_SIZE) {
return 0;
}
u8 block[0x100];
std::memcpy(block, src, sizeof(block));
/* First, validate byte 0 == 0, and unmask DB. */
int invalid = block[0];
u8 *salt = block + 1;
u8 *db = salt + SHA256_HASH_SIZE;
CalcMgf1AndXor(salt, SHA256_HASH_SIZE, db, src_size - (1 + SHA256_HASH_SIZE));
CalcMgf1AndXor(db, src_size - (1 + SHA256_HASH_SIZE), salt, SHA256_HASH_SIZE);
/* Validate label digest. */
for (size_t i = 0; i < SHA256_HASH_SIZE; i++) {
invalid |= db[i] ^ reinterpret_cast<const u8 *>(label_digest)[i];
}
/* Locate message after 00...0001 padding. */
const u8 *padded_msg = db + SHA256_HASH_SIZE;
size_t padded_msg_size = src_size - (1 + 2 * SHA256_HASH_SIZE);
size_t msg_ind = 0;
int not_found = 1;
int wrong_padding = 0;
size_t i = 0;
while (i < padded_msg_size) {
int zero = (padded_msg[i] == 0);
int one = (padded_msg[i] == 1);
msg_ind += static_cast<size_t>(not_found & one) * (++i);
not_found &= ~one;
wrong_padding |= (not_found & ~zero);
}
if (invalid | not_found | wrong_padding) {
return 0;
}
/* Copy message out. */
size_t msg_size = padded_msg_size - msg_ind;
if (msg_size > dst_size) {
return 0;
}
std::memcpy(dst, padded_msg + msg_ind, msg_size);
return msg_size;
}
void SecureMonitorWrapper::WaitSeOperationComplete() {
eventWait(&g_se_event, U64_MAX);
}
Result SecureMonitorWrapper::ConvertToSplResult(SmcResult result) {
if (result == SmcResult_Success) {
return ResultSuccess;
}
if (result < SmcResult_Max) {
return MAKERESULT(Module_Spl, static_cast<u32>(result));
}
return ResultSplUnknownSmcResult;
}
SmcResult SecureMonitorWrapper::WaitCheckStatus(AsyncOperationKey op_key) {
WaitSeOperationComplete();
SmcResult op_res;
SmcResult res = SmcWrapper::CheckStatus(&op_res, op_key);
if (res != SmcResult_Success) {
return res;
}
return op_res;
}
SmcResult SecureMonitorWrapper::WaitGetResult(void *out_buf, size_t out_buf_size, AsyncOperationKey op_key) {
WaitSeOperationComplete();
SmcResult op_res;
SmcResult res = SmcWrapper::GetResult(&op_res, out_buf, out_buf_size, op_key);
if (res != SmcResult_Success) {
return res;
}
return op_res;
}
SmcResult SecureMonitorWrapper::DecryptAesBlock(u32 keyslot, void *dst, const void *src) {
struct DecryptAesBlockLayout {
SeCryptContext crypt_ctx;
u8 in_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE)));
u8 out_block[AES_BLOCK_SIZE] __attribute__((aligned(AES_BLOCK_SIZE)));
};
DecryptAesBlockLayout *layout = reinterpret_cast<DecryptAesBlockLayout *>(g_work_buffer);
layout->crypt_ctx.in.num_entries = 0;
layout->crypt_ctx.in.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, in_block);
layout->crypt_ctx.in.size = sizeof(layout->in_block);
layout->crypt_ctx.out.num_entries = 0;
layout->crypt_ctx.out.address = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, out_block);
layout->crypt_ctx.out.size = sizeof(layout->out_block);
std::memcpy(layout->in_block, src, sizeof(layout->in_block));
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock<HosMutex> lk(g_async_op_lock);
AsyncOperationKey op_key;
const IvCtr iv_ctr = {};
const u32 mode = SmcWrapper::GetCryptAesMode(SmcCipherMode_CbcDecrypt, keyslot);
const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.out);
const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(DecryptAesBlockLayout, crypt_ctx.in);
SmcResult res = SmcWrapper::CryptAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, sizeof(layout->in_block));
if (res != SmcResult_Success) {
return res;
}
if ((res = WaitCheckStatus(op_key)) != SmcResult_Success) {
return res;
}
}
armDCacheFlush(layout, sizeof(*layout));
std::memcpy(dst, layout->out_block, sizeof(layout->out_block));
return SmcResult_Success;
}
Result SecureMonitorWrapper::GetConfig(u64 *out, SplConfigItem which) {
/* Nintendo explicitly blacklists package2 hash here, amusingly. */
/* This is not blacklisted in safemode, but we're never in safe mode... */
if (which == SplConfigItem_Package2Hash) {
return ResultSplInvalidArgument;
}
SmcResult res = SmcWrapper::GetConfig(out, 1, which);
/* Nintendo has some special handling here for hardware type/is_retail. */
if (which == SplConfigItem_HardwareType && res == SmcResult_InvalidArgument) {
*out = 0;
res = SmcResult_Success;
}
if (which == SplConfigItem_IsRetail && res == SmcResult_InvalidArgument) {
*out = 0;
res = SmcResult_Success;
}
return ConvertToSplResult(res);
}
Result SecureMonitorWrapper::ExpMod(void *out, size_t out_size, const void *base, size_t base_size, const void *exp, size_t exp_size, const void *mod, size_t mod_size) {
struct ExpModLayout {
u8 base[0x100];
u8 exp[0x100];
u8 mod[0x100];
};
ExpModLayout *layout = reinterpret_cast<ExpModLayout *>(g_work_buffer);
/* Validate sizes. */
if (base_size > sizeof(layout->base)) {
return ResultSplInvalidSize;
}
if (exp_size > sizeof(layout->exp)) {
return ResultSplInvalidSize;
}
if (mod_size > sizeof(layout->mod)) {
return ResultSplInvalidSize;
}
if (out_size > MaxWorkBufferSize) {
return ResultSplInvalidSize;
}
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout->base) - base_size;
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
std::memset(layout, 0, sizeof(*layout));
std::memcpy(layout->base + base_ofs, base, base_size);
std::memcpy(layout->exp, exp, exp_size);
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock<HosMutex> lk(g_async_op_lock);
AsyncOperationKey op_key;
SmcResult res = SmcWrapper::ExpMod(&op_key, layout->base, layout->exp, exp_size, layout->mod);
if (res != SmcResult_Success) {
return ConvertToSplResult(res);
}
if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != SmcResult_Success) {
return ConvertToSplResult(res);
}
}
armDCacheFlush(g_work_buffer, sizeof(out_size));
std::memcpy(out, g_work_buffer, out_size);
return ResultSuccess;
}
Result SecureMonitorWrapper::SetConfig(SplConfigItem which, u64 value) {
return ConvertToSplResult(SmcWrapper::SetConfig(which, &value, 1));
}
Result SecureMonitorWrapper::GenerateRandomBytesInternal(void *out, size_t size) {
if (!g_drbg.GenerateRandomBytes(out, size)) {
/* We need to reseed. */
{
u8 seed[CtrDrbg::SeedSize];
SmcResult res = SmcWrapper::GenerateRandomBytes(seed, sizeof(seed));
if (res != SmcResult_Success) {
return ConvertToSplResult(res);
}
g_drbg.Reseed(seed);
g_drbg.GenerateRandomBytes(out, size);
}
}
return ResultSuccess;
}
Result SecureMonitorWrapper::GenerateRandomBytes(void *out, size_t size) {
u8 *cur_dst = reinterpret_cast<u8 *>(out);
for (size_t ofs = 0; ofs < size; ofs += CtrDrbg::MaxRequestSize) {
const size_t cur_size = std::min(size - ofs, CtrDrbg::MaxRequestSize);
R_TRY(GenerateRandomBytesInternal(cur_dst, size));
cur_dst += cur_size;
}
return ResultSuccess;
}
Result SecureMonitorWrapper::IsDevelopment(bool *out) {
u64 is_retail;
R_TRY(this->GetConfig(&is_retail, SplConfigItem_IsRetail));
*out = (is_retail == 0);
return ResultSuccess;
}
Result SecureMonitorWrapper::SetBootReason(BootReasonValue boot_reason) {
if (this->IsBootReasonSet()) {
return ResultSplBootReasonAlreadySet;
}
this->boot_reason = boot_reason;
this->boot_reason_set = true;
return ResultSuccess;
}
Result SecureMonitorWrapper::GetBootReason(BootReasonValue *out) {
if (!this->IsBootReasonSet()) {
return ResultSplBootReasonNotSet;
}
*out = GetBootReason();
return ResultSuccess;
}
Result SecureMonitorWrapper::GenerateAesKek(AccessKey *out_access_key, const KeySource &key_source, u32 generation, u32 option) {
return ConvertToSplResult(SmcWrapper::GenerateAesKek(out_access_key, key_source, generation, option));
}
Result SecureMonitorWrapper::LoadAesKey(u32 keyslot, const void *owner, const AccessKey &access_key, const KeySource &key_source) {
R_TRY(ValidateAesKeyslot(keyslot, owner));
return ConvertToSplResult(SmcWrapper::LoadAesKey(keyslot, access_key, key_source));
}
Result SecureMonitorWrapper::GenerateAesKey(AesKey *out_key, const AccessKey &access_key, const KeySource &key_source) {
SmcResult smc_rc;
static const KeySource s_generate_aes_key_source = {
.data = {0x89, 0x61, 0x5E, 0xE0, 0x5C, 0x31, 0xB6, 0x80, 0x5F, 0xE5, 0x8F, 0x3D, 0xA2, 0x4F, 0x7A, 0xA8}
};
ScopedAesKeyslot keyslot_holder(this);
R_TRY(keyslot_holder.Allocate());
smc_rc = SmcWrapper::LoadAesKey(keyslot_holder.GetKeyslot(), access_key, s_generate_aes_key_source);
if (smc_rc == SmcResult_Success) {
smc_rc = DecryptAesBlock(keyslot_holder.GetKeyslot(), out_key, &key_source);
}
return ConvertToSplResult(smc_rc);
}
Result SecureMonitorWrapper::DecryptAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 option) {
static const KeySource s_decrypt_aes_key_source = {
.data = {0x11, 0x70, 0x24, 0x2B, 0x48, 0x69, 0x11, 0xF1, 0x11, 0xB0, 0x0C, 0x47, 0x7C, 0xC3, 0xEF, 0x7E}
};
AccessKey access_key;
R_TRY(GenerateAesKek(&access_key, s_decrypt_aes_key_source, generation, option));
return GenerateAesKey(out_key, access_key, key_source);
}
Result SecureMonitorWrapper::CryptAesCtr(void *dst, size_t dst_size, u32 keyslot, const void *owner, const void *src, size_t src_size, const IvCtr &iv_ctr) {
R_TRY(ValidateAesKeyslot(keyslot, owner));
/* Succeed immediately if there's nothing to crypt. */
if (src_size == 0) {
return ResultSuccess;
}
/* Validate sizes. */
if (src_size > dst_size || src_size % AES_BLOCK_SIZE != 0) {
return ResultSplInvalidSize;
}
/* We can only map 0x400000 aligned buffers for the SE. With that in mind, we have some math to do. */
const uintptr_t src_addr = reinterpret_cast<uintptr_t>(src);
const uintptr_t dst_addr = reinterpret_cast<uintptr_t>(dst);
const uintptr_t src_addr_page_aligned = src_addr & ~0xFFFul;
const uintptr_t dst_addr_page_aligned = dst_addr & ~0xFFFul;
const size_t src_size_page_aligned = ((src_addr + src_size + 0xFFFul) & ~0xFFFul) - src_addr_page_aligned;
const size_t dst_size_page_aligned = ((dst_addr + dst_size + 0xFFFul) & ~0xFFFul) - dst_addr_page_aligned;
const u32 src_se_map_addr = CryptAesInMapBase + (src_addr_page_aligned & DeviceAddressSpaceAlignMask);
const u32 dst_se_map_addr = CryptAesOutMapBase + (dst_addr_page_aligned & DeviceAddressSpaceAlignMask);
const u32 src_se_addr = CryptAesInMapBase + (src_addr & DeviceAddressSpaceAlignMask);
const u32 dst_se_addr = CryptAesOutMapBase + (dst_addr & DeviceAddressSpaceAlignMask);
/* Validate aligned sizes. */
if (src_size_page_aligned > CryptAesSizeMax || dst_size_page_aligned > CryptAesSizeMax) {
return ResultSplInvalidSize;
}
/* Helpers for mapping/unmapping. */
DeviceAddressSpaceMapHelper in_mapper(g_se_das_hnd, src_se_map_addr, src_addr_page_aligned, src_size_page_aligned, 1);
DeviceAddressSpaceMapHelper out_mapper(g_se_das_hnd, dst_se_map_addr, dst_addr_page_aligned, dst_size_page_aligned, 2);
/* Setup SE linked list entries. */
SeCryptContext *crypt_ctx = reinterpret_cast<SeCryptContext *>(g_work_buffer);
crypt_ctx->in.num_entries = 0;
crypt_ctx->in.address = src_se_addr;
crypt_ctx->in.size = src_size;
crypt_ctx->out.num_entries = 0;
crypt_ctx->out.address = dst_se_addr;
crypt_ctx->out.size = dst_size;
armDCacheFlush(crypt_ctx, sizeof(*crypt_ctx));
armDCacheFlush(const_cast<void *>(src), src_size);
armDCacheFlush(dst, dst_size);
{
std::scoped_lock<HosMutex> lk(g_async_op_lock);
AsyncOperationKey op_key;
const u32 mode = SmcWrapper::GetCryptAesMode(SmcCipherMode_Ctr, keyslot);
const u32 dst_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, out);
const u32 src_ll_addr = g_se_mapped_work_buffer_addr + offsetof(SeCryptContext, in);
SmcResult res = SmcWrapper::CryptAes(&op_key, mode, iv_ctr, dst_ll_addr, src_ll_addr, src_size);
if (res != SmcResult_Success) {
return ConvertToSplResult(res);
}
if ((res = WaitCheckStatus(op_key)) != SmcResult_Success) {
return ConvertToSplResult(res);
}
}
armDCacheFlush(dst, dst_size);
return ResultSuccess;
}
Result SecureMonitorWrapper::ComputeCmac(Cmac *out_cmac, u32 keyslot, const void *owner, const void *data, size_t size) {
R_TRY(ValidateAesKeyslot(keyslot, owner));
if (size > MaxWorkBufferSize) {
return ResultSplInvalidSize;
}
std::memcpy(g_work_buffer, data, size);
return ConvertToSplResult(SmcWrapper::ComputeCmac(out_cmac, keyslot, g_work_buffer, size));
}
Result SecureMonitorWrapper::AllocateAesKeyslot(u32 *out_keyslot, const void *owner) {
if (GetRuntimeFirmwareVersion() <= FirmwareVersion_100) {
/* On 1.0.0, keyslots were kind of a wild west. */
*out_keyslot = 0;
return ResultSuccess;
}
for (size_t i = 0; i < GetMaxKeyslots(); i++) {
if (this->keyslot_owners[i] == 0) {
this->keyslot_owners[i] = owner;
*out_keyslot = static_cast<u32>(i);
return ResultSuccess;
}
}
g_se_keyslot_available_event->Clear();
return ResultSplOutOfKeyslots;
}
Result SecureMonitorWrapper::ValidateAesKeyslot(u32 keyslot, const void *owner) {
if (keyslot >= GetMaxKeyslots()) {
return ResultSplInvalidKeyslot;
}
if (this->keyslot_owners[keyslot] != owner && GetRuntimeFirmwareVersion() > FirmwareVersion_100) {
return ResultSplInvalidKeyslot;
}
return ResultSuccess;
}
Result SecureMonitorWrapper::FreeAesKeyslot(u32 keyslot, const void *owner) {
if (GetRuntimeFirmwareVersion() <= FirmwareVersion_100) {
/* On 1.0.0, keyslots were kind of a wild west. */
return ResultSuccess;
}
R_TRY(ValidateAesKeyslot(keyslot, owner));
/* Clear the keyslot. */
{
AccessKey access_key = {};
KeySource key_source = {};
SmcWrapper::LoadAesKey(keyslot, access_key, key_source);
}
this->keyslot_owners[keyslot] = nullptr;
g_se_keyslot_available_event->Signal();
return ResultSuccess;
}
Result SecureMonitorWrapper::DecryptRsaPrivateKey(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
struct DecryptRsaPrivateKeyLayout {
u8 data[RsaPrivateKeySize + RsaPrivateKeyMetaSize];
};
DecryptRsaPrivateKeyLayout *layout = reinterpret_cast<DecryptRsaPrivateKeyLayout *>(g_work_buffer);
/* Validate size. */
if (src_size < RsaPrivateKeyMetaSize || src_size > sizeof(DecryptRsaPrivateKeyLayout)) {
return ResultSplInvalidSize;
}
std::memcpy(layout->data, src, src_size);
armDCacheFlush(layout, sizeof(*layout));
SmcResult smc_res;
size_t copy_size = 0;
if (GetRuntimeFirmwareVersion() >= FirmwareVersion_500) {
copy_size = std::min(dst_size, src_size - RsaPrivateKeyMetaSize);
smc_res = SmcWrapper::DecryptOrImportRsaPrivateKey(layout->data, src_size, access_key, key_source, SmcDecryptOrImportMode_DecryptRsaPrivateKey);
} else {
smc_res = SmcWrapper::DecryptRsaPrivateKey(&copy_size, layout->data, src_size, access_key, key_source, option);
copy_size = std::min(dst_size, copy_size);
}
armDCacheFlush(layout, sizeof(*layout));
if (smc_res == SmcResult_Success) {
std::memcpy(dst, layout->data, copy_size);
}
return ConvertToSplResult(smc_res);
}
Result SecureMonitorWrapper::ImportSecureExpModKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
struct ImportSecureExpModKeyLayout {
u8 data[RsaPrivateKeyMetaSize + 2 * RsaPrivateKeySize + 0x10];
};
ImportSecureExpModKeyLayout *layout = reinterpret_cast<ImportSecureExpModKeyLayout *>(g_work_buffer);
/* Validate size. */
if (src_size > sizeof(ImportSecureExpModKeyLayout)) {
return ResultSplInvalidSize;
}
std::memcpy(layout, src, src_size);
armDCacheFlush(layout, sizeof(*layout));
SmcResult smc_res;
if (GetRuntimeFirmwareVersion() >= FirmwareVersion_500) {
smc_res = SmcWrapper::DecryptOrImportRsaPrivateKey(layout->data, src_size, access_key, key_source, option);
} else {
smc_res = SmcWrapper::ImportSecureExpModKey(layout->data, src_size, access_key, key_source, option);
}
return ConvertToSplResult(smc_res);
}
Result SecureMonitorWrapper::SecureExpMod(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size, u32 option) {
struct SecureExpModLayout {
u8 base[0x100];
u8 mod[0x100];
};
SecureExpModLayout *layout = reinterpret_cast<SecureExpModLayout *>(g_work_buffer);
/* Validate sizes. */
if (base_size > sizeof(layout->base)) {
return ResultSplInvalidSize;
}
if (mod_size > sizeof(layout->mod)) {
return ResultSplInvalidSize;
}
if (out_size > MaxWorkBufferSize) {
return ResultSplInvalidSize;
}
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout->base) - base_size;
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
std::memset(layout, 0, sizeof(*layout));
std::memcpy(layout->base + base_ofs, base, base_size);
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock<HosMutex> lk(g_async_op_lock);
AsyncOperationKey op_key;
SmcResult res = SmcWrapper::SecureExpMod(&op_key, layout->base, layout->mod, option);
if (res != SmcResult_Success) {
return ConvertToSplResult(res);
}
if ((res = WaitGetResult(g_work_buffer, out_size, op_key)) != SmcResult_Success) {
return ConvertToSplResult(res);
}
}
armDCacheFlush(g_work_buffer, sizeof(out_size));
std::memcpy(out, g_work_buffer, out_size);
return ResultSuccess;
}
Result SecureMonitorWrapper::ImportSslKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
return ImportSecureExpModKey(src, src_size, access_key, key_source, SmcDecryptOrImportMode_ImportSslKey);
}
Result SecureMonitorWrapper::SslExpMod(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
return SecureExpMod(out, out_size, base, base_size, mod, mod_size, SmcSecureExpModMode_Ssl);
}
Result SecureMonitorWrapper::ImportEsKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
if (GetRuntimeFirmwareVersion() >= FirmwareVersion_500) {
return ImportSecureExpModKey(src, src_size, access_key, key_source, SmcDecryptOrImportMode_ImportEsKey);
} else {
struct ImportEsKeyLayout {
u8 data[RsaPrivateKeyMetaSize + 2 * RsaPrivateKeySize + 0x10];
};
ImportEsKeyLayout *layout = reinterpret_cast<ImportEsKeyLayout *>(g_work_buffer);
/* Validate size. */
if (src_size > sizeof(ImportEsKeyLayout)) {
return ResultSplInvalidSize;
}
std::memcpy(layout, src, src_size);
armDCacheFlush(layout, sizeof(*layout));
return ConvertToSplResult(SmcWrapper::ImportEsKey(layout->data, src_size, access_key, key_source, option));
}
}
Result SecureMonitorWrapper::UnwrapEsRsaOaepWrappedKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation, EsKeyType type) {
struct UnwrapEsKeyLayout {
u8 base[0x100];
u8 mod[0x100];
};
UnwrapEsKeyLayout *layout = reinterpret_cast<UnwrapEsKeyLayout *>(g_work_buffer);
/* Validate sizes. */
if (base_size > sizeof(layout->base)) {
return ResultSplInvalidSize;
}
if (mod_size > sizeof(layout->mod)) {
return ResultSplInvalidSize;
}
if (label_digest_size > LabelDigestSizeMax) {
return ResultSplInvalidSize;
}
/* Copy data into work buffer. */
const size_t base_ofs = sizeof(layout->base) - base_size;
const size_t mod_ofs = sizeof(layout->mod) - mod_size;
std::memset(layout, 0, sizeof(*layout));
std::memcpy(layout->base + base_ofs, base, base_size);
std::memcpy(layout->mod + mod_ofs, mod, mod_size);
/* Do exp mod operation. */
armDCacheFlush(layout, sizeof(*layout));
{
std::scoped_lock<HosMutex> lk(g_async_op_lock);
AsyncOperationKey op_key;
SmcResult res = SmcWrapper::UnwrapTitleKey(&op_key, layout->base, layout->mod, label_digest, label_digest_size, SmcWrapper::GetUnwrapEsKeyOption(type, generation));
if (res != SmcResult_Success) {
return ConvertToSplResult(res);
}
if ((res = WaitGetResult(g_work_buffer, sizeof(*out_access_key), op_key)) != SmcResult_Success) {
return ConvertToSplResult(res);
}
}
armDCacheFlush(g_work_buffer, sizeof(*out_access_key));
std::memcpy(out_access_key, g_work_buffer, sizeof(*out_access_key));
return ResultSuccess;
}
Result SecureMonitorWrapper::UnwrapTitleKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
return UnwrapEsRsaOaepWrappedKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, EsKeyType_TitleKey);
}
Result SecureMonitorWrapper::UnwrapCommonTitleKey(AccessKey *out_access_key, const KeySource &key_source, u32 generation) {
return ConvertToSplResult(SmcWrapper::UnwrapCommonTitleKey(out_access_key, key_source, generation));
}
Result SecureMonitorWrapper::ImportDrmKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source) {
return ImportSecureExpModKey(src, src_size, access_key, key_source, SmcDecryptOrImportMode_ImportDrmKey);
}
Result SecureMonitorWrapper::DrmExpMod(void *out, size_t out_size, const void *base, size_t base_size, const void *mod, size_t mod_size) {
return SecureExpMod(out, out_size, base, base_size, mod, mod_size, SmcSecureExpModMode_Drm);
}
Result SecureMonitorWrapper::UnwrapElicenseKey(AccessKey *out_access_key, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size, u32 generation) {
return UnwrapEsRsaOaepWrappedKey(out_access_key, base, base_size, mod, mod_size, label_digest, label_digest_size, generation, EsKeyType_ElicenseKey);
}
Result SecureMonitorWrapper::LoadElicenseKey(u32 keyslot, const void *owner, const AccessKey &access_key) {
/* Right now, this is just literally the same function as LoadTitleKey in N's impl. */
return LoadTitleKey(keyslot, owner, access_key);
}
Result SecureMonitorWrapper::ImportLotusKey(const void *src, size_t src_size, const AccessKey &access_key, const KeySource &key_source, u32 option) {
if (GetRuntimeFirmwareVersion() >= FirmwareVersion_500) {
option = SmcDecryptOrImportMode_ImportLotusKey;
}
return ImportSecureExpModKey(src, src_size, access_key, key_source, option);
}
Result SecureMonitorWrapper::DecryptLotusMessage(u32 *out_size, void *dst, size_t dst_size, const void *base, size_t base_size, const void *mod, size_t mod_size, const void *label_digest, size_t label_digest_size) {
/* Validate sizes. */
if (dst_size > MaxWorkBufferSize || label_digest_size != LabelDigestSizeMax) {
return ResultSplInvalidSize;
}
/* Nintendo doesn't check this result code, but we will. */
R_TRY(SecureExpMod(g_work_buffer, 0x100, base, base_size, mod, mod_size, SmcSecureExpModMode_Lotus));
size_t data_size = DecodeRsaOaep(dst, dst_size, label_digest, label_digest_size, g_work_buffer, 0x100);
if (data_size == 0) {
return ResultSplDecryptionFailed;
}
*out_size = static_cast<u32>(data_size);
return ResultSuccess;
}
Result SecureMonitorWrapper::GenerateSpecificAesKey(AesKey *out_key, const KeySource &key_source, u32 generation, u32 which) {
return ConvertToSplResult(SmcWrapper::GenerateSpecificAesKey(out_key, key_source, generation, which));
}
Result SecureMonitorWrapper::LoadTitleKey(u32 keyslot, const void *owner, const AccessKey &access_key) {
R_TRY(ValidateAesKeyslot(keyslot, owner));
return ConvertToSplResult(SmcWrapper::LoadTitleKey(keyslot, access_key));
}
Result SecureMonitorWrapper::GetPackage2Hash(void *dst, const size_t size) {
u64 hash[4];
if (size < sizeof(hash)) {
return ResultSplInvalidSize;
}
SmcResult smc_res;
if ((smc_res = SmcWrapper::GetConfig(hash, 4, SplConfigItem_Package2Hash)) != SmcResult_Success) {
return ConvertToSplResult(smc_res);
}
std::memcpy(dst, hash, sizeof(hash));
return ResultSuccess;
}
Result SecureMonitorWrapper::ReEncryptRsaPrivateKey(void *dst, size_t dst_size, const void *src, size_t src_size, const AccessKey &access_key_dec, const KeySource &source_dec, const AccessKey &access_key_enc, const KeySource &source_enc, u32 option) {
struct ReEncryptRsaPrivateKeyLayout {
u8 data[RsaPrivateKeyMetaSize + 2 * RsaPrivateKeySize + 0x10];
AccessKey access_key_dec;
KeySource source_dec;
AccessKey access_key_enc;
KeySource source_enc;
};
ReEncryptRsaPrivateKeyLayout *layout = reinterpret_cast<ReEncryptRsaPrivateKeyLayout *>(g_work_buffer);
/* Validate size. */
if (src_size < RsaPrivateKeyMetaSize || src_size > sizeof(ReEncryptRsaPrivateKeyLayout)) {
return ResultSplInvalidSize;
}
std::memcpy(layout, src, src_size);
layout->access_key_dec = access_key_dec;
layout->source_dec = source_dec;
layout->access_key_enc = access_key_enc;
layout->source_enc = source_enc;
armDCacheFlush(layout, sizeof(*layout));
SmcResult smc_res = SmcWrapper::ReEncryptRsaPrivateKey(layout->data, src_size, layout->access_key_dec, layout->source_dec, layout->access_key_enc, layout->source_enc, option);
if (smc_res == SmcResult_Success) {
size_t copy_size = std::min(dst_size, src_size);
armDCacheFlush(layout, copy_size);
std::memcpy(dst, layout->data, copy_size);
}
return ConvertToSplResult(smc_res);
}
Result SecureMonitorWrapper::FreeAesKeyslots(const void *owner) {
for (size_t i = 0; i < GetMaxKeyslots(); i++) {
if (this->keyslot_owners[i] == owner) {
FreeAesKeyslot(i, owner);
}
}
return ResultSuccess;
}
Handle SecureMonitorWrapper::GetAesKeyslotAvailableEventHandle() {
return g_se_keyslot_available_event->GetHandle();
}