1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-30 07:42:13 +00:00
Atmosphere/exosphere/program/source/smc/secmon_smc_power_management.cpp
2020-08-17 14:39:18 -07:00

549 lines
26 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "../secmon_cache.hpp"
#include "../secmon_cpu_context.hpp"
#include "../secmon_error.hpp"
#include "../secmon_misc.hpp"
#include "secmon_smc_power_management.hpp"
#include "secmon_smc_se_lock.hpp"
#include "sc7fw_bin.h"
namespace ams::secmon {
/* Declare assembly functionality. */
void *GetCoreExceptionStackVirtual();
}
namespace ams::secmon::smc {
/* Declare assembly power-management functionality. */
void PivotStackAndInvoke(void *stack, void (*function)());
void FinalizePowerOff();
namespace {
constexpr inline const uintptr_t PMC = MemoryRegionVirtualDevicePmc.GetAddress();
constexpr inline const uintptr_t APB_MISC = MemoryRegionVirtualDeviceApbMisc.GetAddress();
constexpr inline const uintptr_t GPIO = MemoryRegionVirtualDeviceGpio.GetAddress();
constexpr inline const uintptr_t CLK_RST = MemoryRegionVirtualDeviceClkRst.GetAddress();
constexpr inline const uintptr_t EVP = secmon::MemoryRegionVirtualDeviceExceptionVectors.GetAddress();
constexpr inline const uintptr_t FLOW_CTLR = MemoryRegionVirtualDeviceFlowController.GetAddress();
constexpr inline const uintptr_t AHB_ARBC = MemoryRegionVirtualDeviceSystem.GetAddress();
constexpr inline uintptr_t CommonSmcStackTop = MemoryRegionVirtualTzramVolatileData.GetEndAddress() - (0x80 * (NumCores - 1));
enum PowerStateType {
PowerStateType_StandBy = 0,
PowerStateType_PowerDown = 1,
};
enum PowerStateId {
PowerStateId_Sc7 = 27,
};
/* http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf Page 46 */
struct SuspendCpuPowerState {
using StateId = util::BitPack32::Field< 0, 16, PowerStateId>;
using StateType = util::BitPack32::Field<16, 1, PowerStateType>;
using PowerLevel = util::BitPack32::Field<24, 2, u32>;
};
constinit bool g_charger_hi_z_mode_enabled = false;
constinit const reg::BitsMask CpuPowerGateStatusMasks[NumCores] = {
PMC_REG_BITS_MASK(PWRGATE_STATUS_CE0),
PMC_REG_BITS_MASK(PWRGATE_STATUS_CE1),
PMC_REG_BITS_MASK(PWRGATE_STATUS_CE2),
PMC_REG_BITS_MASK(PWRGATE_STATUS_CE3),
};
constinit const APBDEV_PMC_PWRGATE_TOGGLE_PARTID CpuPowerGateTogglePartitionIds[NumCores] = {
APBDEV_PMC_PWRGATE_TOGGLE_PARTID_CE0,
APBDEV_PMC_PWRGATE_TOGGLE_PARTID_CE1,
APBDEV_PMC_PWRGATE_TOGGLE_PARTID_CE2,
APBDEV_PMC_PWRGATE_TOGGLE_PARTID_CE3,
};
bool IsCpuPoweredOn(const reg::BitsMask mask) {
return reg::HasValue(PMC + APBDEV_PMC_PWRGATE_STATUS, REG_BITS_VALUE_FROM_MASK(mask, APBDEV_PMC_PWRGATE_STATUS_STATUS_ON));
}
void PowerOnCpu(const reg::BitsMask mask, u32 toggle_partid) {
/* If the cpu is already on, we have nothing to do. */
if (IsCpuPoweredOn(mask)) {
return;
}
/* Wait until nothing is being powergated. */
int timeout = 5000;
while (true) {
if (reg::HasValue(PMC + APBDEV_PMC_PWRGATE_TOGGLE, PMC_REG_BITS_ENUM(PWRGATE_TOGGLE_START, DISABLE))) {
break;
}
util::WaitMicroSeconds(1);
if ((--timeout) < 0) {
/* NOTE: Nintendo doesn't do any error handling here... */
return;
}
}
/* Toggle on the cpu partition. */
reg::Write(PMC + APBDEV_PMC_PWRGATE_TOGGLE, PMC_REG_BITS_ENUM (PWRGATE_TOGGLE_START, ENABLE),
PMC_REG_BITS_VALUE(PWRGATE_TOGGLE_PARTID, toggle_partid));
/* Wait up to 5000 us for the powergate to complete. */
timeout = 5000;
while (true) {
if (IsCpuPoweredOn(mask)) {
break;
}
util::WaitMicroSeconds(1);
if ((--timeout) < 0) {
/* NOTE: Nintendo doesn't do any error handling here... */
return;
}
}
}
void ResetCpu(int which_core) {
reg::Write(CLK_RST + CLK_RST_CONTROLLER_RST_CPUG_CMPLX_SET, REG_BITS_VALUE(which_core + 0x00, 1, 1), /* CPURESETn */
REG_BITS_VALUE(which_core + 0x10, 1, 1)); /* CORERESETn */
}
void StartCpu(int which_core) {
reg::Write(CLK_RST + CLK_RST_CONTROLLER_RST_CPUG_CMPLX_CLR, REG_BITS_VALUE(which_core + 0x00, 1, 1), /* CPURESETn */
REG_BITS_VALUE(which_core + 0x10, 1, 1)); /* CORERESETn */
}
void PowerOffCpu() {
/* Get the current core id. */
const auto core_id = hw::GetCurrentCoreId();
/* Configure the flow controller to prepare for shutting down the current core. */
flow::SetCpuCsr(core_id, FLOW_CTLR_CPUN_CSR_ENABLE_EXT_POWERGATE_CPU_ONLY);
flow::SetHaltCpuEvents(core_id, false);
flow::SetCc4Ctrl(core_id, 0);
/* Save the core's context for restoration on next power-on. */
SaveDebugRegisters();
SetCoreOff();
/* Ensure there are no pending memory transactions prior to our power-down. */
FlushEntireDataCache();
/* Finalize our powerdown and wait for an interrupt. */
FinalizePowerOff();
}
void ValidateSocStateForSuspend() {
/* Validate that all other cores are off. */
AMS_ABORT_UNLESS(reg::HasValue(PMC + APBDEV_PMC_PWRGATE_STATUS, PMC_REG_BITS_VALUE(PWRGATE_STATUS_CE123, 0)));
/* Validate that the bpmp is appropriately halted. */
const bool jtag = IsJtagEnabled();
AMS_ABORT_UNLESS(reg::Read(FLOW_CTLR + FLOW_CTLR_HALT_COP_EVENTS) == reg::Encode(FLOW_REG_BITS_ENUM (HALT_COP_EVENTS_MODE, FLOW_MODE_STOP),
FLOW_REG_BITS_ENUM_SEL(HALT_COP_EVENTS_JTAG, jtag, ENABLED, DISABLED)));
/* Further validations aren't guaranteed on < 6.0.0. */
if (GetTargetFirmware() < TargetFirmware_6_0_0) {
return;
}
/* Validate that USB2, APB-DMA, AHB-DMA are held in reset. */
AMS_ABORT_UNLESS(reg::HasValue(CLK_RST + CLK_RST_CONTROLLER_RST_DEVICES_H, CLK_RST_REG_BITS_ENUM(RST_DEVICES_H_SWR_USB2_RST, ENABLE),
CLK_RST_REG_BITS_ENUM(RST_DEVICES_H_SWR_APBDMA_RST, ENABLE),
CLK_RST_REG_BITS_ENUM(RST_DEVICES_H_SWR_AHBDMA_RST, ENABLE)));
/* Validate that USBD is held in reset. */
AMS_ABORT_UNLESS(reg::HasValue(CLK_RST + CLK_RST_CONTROLLER_RST_DEVICES_L, CLK_RST_REG_BITS_ENUM(RST_DEVICES_L_SWR_USBD_RST, ENABLE)));
/* Validate that AHB-DMA, USB, USB2, COP are not allowed to arbitrate on the AHB. */
AMS_ABORT_UNLESS(reg::HasValue(AHB_ARBC + AHB_ARBITRATION_DISABLE, AHB_REG_BITS_ENUM(ARBITRATION_DISABLE_COP, DISABLE),
AHB_REG_BITS_ENUM(ARBITRATION_DISABLE_AHBDMA, DISABLE),
AHB_REG_BITS_ENUM(ARBITRATION_DISABLE_USB, DISABLE),
AHB_REG_BITS_ENUM(ARBITRATION_DISABLE_USB2, DISABLE)));
/* Validate that the GPIO controller has clock enabled. */
AMS_ABORT_UNLESS(reg::HasValue(CLK_RST + CLK_RST_CONTROLLER_CLK_OUT_ENB_L, CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_L_CLK_ENB_GPIO, ENABLE)));
/* Validate that both FUSE and KFUSE have clock enabled. */
AMS_ABORT_UNLESS(reg::HasValue(CLK_RST + CLK_RST_CONTROLLER_CLK_OUT_ENB_H, CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_H_CLK_ENB_FUSE, ENABLE),
CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_H_CLK_ENB_KFUSE, ENABLE)));
/* Validate that all of IRAM has clock enabled. */
AMS_ABORT_UNLESS(reg::HasValue(CLK_RST + CLK_RST_CONTROLLER_CLK_OUT_ENB_U, CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_U_CLK_ENB_IRAMA, ENABLE),
CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_U_CLK_ENB_IRAMB, ENABLE),
CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_U_CLK_ENB_IRAMC, ENABLE),
CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_U_CLK_ENB_IRAMD, ENABLE)));
/* Validate that ACTMON has clock enabled. */
AMS_ABORT_UNLESS(reg::HasValue(CLK_RST + CLK_RST_CONTROLLER_CLK_OUT_ENB_V, CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_V_CLK_ENB_ACTMON, ENABLE)));
/* Validate that ENTROPY has clock enabled. */
AMS_ABORT_UNLESS(reg::HasValue(CLK_RST + CLK_RST_CONTROLLER_CLK_OUT_ENB_W, CLK_RST_REG_BITS_ENUM(CLK_OUT_ENB_W_CLK_ENB_ENTROPY, ENABLE)));
}
void GenerateCryptographicallyRandomBytes(void * const dst, int size) {
/* Flush the region we're about to fill to ensure consistency with the SE. */
hw::FlushDataCache(dst, size);
hw::DataSynchronizationBarrierInnerShareable();
/* Generate random bytes. */
se::GenerateRandomBytes(dst, size);
hw::DataSynchronizationBarrierInnerShareable();
/* Flush to ensure the CPU sees consistent data for the region. */
hw::FlushDataCache(dst, size);
hw::DataSynchronizationBarrierInnerShareable();
}
void SaveSecureContextForErista() {
/* Generate a random key source. */
util::AlignedBuffer<hw::DataCacheLineSize, se::AesBlockSize> key_source;
GenerateCryptographicallyRandomBytes(key_source, se::AesBlockSize);
const u32 * const key_source_32 = reinterpret_cast<const u32 *>(static_cast<u8 *>(key_source));
/* Ensure that the key source registers are not locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_KeySourceReadWrite) != pmc::LockState::Locked);
/* Write the key source, lock writes to the key source, and verify that the key source is write-locked. */
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH24, key_source_32[0]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH25, key_source_32[1]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH26, key_source_32[2]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH27, key_source_32[3]);
pmc::LockSecureRegister(pmc::SecureRegister_KeySourceWrite);
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_KeySourceWrite) == pmc::LockState::Locked);
/* Verify the key source is correct in registers, and read-lock the key source registers. */
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH24) == key_source_32[0]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH25) == key_source_32[1]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH26) == key_source_32[2]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH27) == key_source_32[3]);
pmc::LockSecureRegister(pmc::SecureRegister_KeySourceRead);
/* Ensure that the key source registers are locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_KeySourceReadWrite) == pmc::LockState::Locked);
/* Generate a random kek into keyslot 2. */
se::SetRandomKey(pkg1::AesKeySlot_TzramSaveKek);
/* Verify that the se is in a validate state, context save, and validate again. */
{
se::ValidateErrStatus();
ON_SCOPE_EXIT { se::ValidateErrStatus(); };
{
/* Transition to non-secure mode for the duration of the context save operation. */
se::SetSecure(false);
ON_SCOPE_EXIT { se::SetSecure(true); };
/* Get a pointer to the context storage. */
se::Context * const context = MemoryRegionVirtualDramSecureDataStoreSecurityEngineState.GetPointer<se::Context>();
static_assert(MemoryRegionVirtualDramSecureDataStoreSecurityEngineState.GetSize() == sizeof(*context));
/* Save the context. */
se::SaveContext(context);
/* Ensure that the cpu sees consistent data. */
hw::FlushDataCache(context, sizeof(*context));
hw::DataSynchronizationBarrierInnerShareable();
/* Write the context pointer to pmc scratch, so that the bootrom will restore it on wake. */
reg::Write(PMC + APBDEV_PMC_SCRATCH43, MemoryRegionPhysicalDramSecureDataStoreSecurityEngineState.GetAddress());
}
}
/* Clear keyslot 3, and then derive the save key. */
se::ClearAesKeySlot(pkg1::AesKeySlot_TzramSaveKey);
se::SetEncryptedAesKey256(pkg1::AesKeySlot_TzramSaveKey, pkg1::AesKeySlot_TzramSaveKek, key_source, se::AesBlockSize);
/* Declare a temporary block to be used as both iv and mac. */
u32 temp_block[se::AesBlockSize / sizeof(u32)] = {};
/* Ensure that the SE sees consistent data for tzram. */
const void * const tzram_save_src = MemoryRegionVirtualTzramReadOnlyAlias.GetPointer<u8>() + MemoryRegionVirtualTzramVolatileData.GetSize() + MemoryRegionVirtualTzramVolatileStack.GetSize();
void * const tzram_save_dst = MemoryRegionVirtualIramSc7Work.GetPointer<void>();
constexpr size_t TzramSaveSize = MemoryRegionVirtualDramSecureDataStoreTzram.GetSize();
hw::FlushDataCache(tzram_save_src, TzramSaveSize);
hw::FlushDataCache(tzram_save_dst, TzramSaveSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Encrypt tzram using our random key. */
se::EncryptAes256Cbc(tzram_save_dst, TzramSaveSize, pkg1::AesKeySlot_TzramSaveKey, tzram_save_src, TzramSaveSize, temp_block, se::AesBlockSize);
hw::FlushDataCache(tzram_save_dst, TzramSaveSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Copy the data from work space to the secure storage destination. */
void * const tzram_store_dst = MemoryRegionVirtualDramSecureDataStoreTzram.GetPointer<void>();
std::memcpy(tzram_store_dst, tzram_save_dst, TzramSaveSize);
hw::FlushDataCache(tzram_store_dst, TzramSaveSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Compute cmac of tzram into our temporary block. */
se::ComputeAes256Cmac(temp_block, se::AesBlockSize, pkg1::AesKeySlot_TzramSaveKey, tzram_save_src, TzramSaveSize);
/* Ensure that the cmac registers are not locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_CmacReadWrite) != pmc::LockState::Locked);
/* Write the cmac, lock writes to the cmac, and verify that the cmac is write-locked. */
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH112, temp_block[0]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH113, temp_block[1]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH114, temp_block[2]);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH115, temp_block[3]);
pmc::LockSecureRegister(pmc::SecureRegister_CmacWrite);
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_CmacWrite) == pmc::LockState::Locked);
/* Verify the key source is correct in registers, and read-lock the key source registers. */
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH112) == temp_block[0]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH113) == temp_block[1]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH114) == temp_block[2]);
AMS_ABORT_UNLESS(reg::Read(PMC + APBDEV_PMC_SECURE_SCRATCH115) == temp_block[3]);
pmc::LockSecureRegister(pmc::SecureRegister_CmacRead);
/* Ensure that the key source registers are locked. */
AMS_ABORT_UNLESS(pmc::GetSecureRegisterLockState(pmc::SecureRegister_CmacReadWrite) == pmc::LockState::Locked);
}
void SaveSecureContextForMariko() {
/* Save security engine context to TZRAM SE carveout (inaccessible to cpu). */
se::SaveContextAutomatic();
/* Save TZRAM to shadow-TZRAM in always-on power domain. */
se::SaveTzramAutomatic();
}
void SaveSecureContext() {
const auto soc_type = GetSocType();
if (soc_type == fuse::SocType_Erista) {
SaveSecureContextForErista();
} else /* if (soc_type == fuse::SocType_Mariko) */ {
SaveSecureContextForMariko();
}
}
void LoadAndStartSc7BpmpFirmware() {
/* Set BPMP reset. */
reg::Write(CLK_RST + CLK_RST_CONTROLLER_RST_DEV_L_SET, CLK_RST_REG_BITS_ENUM(RST_DEV_L_SET_SET_COP_RST, ENABLE));
/* Set the PMC as insecure, so that the BPMP firmware can access it. */
reg::ReadWrite(APB_MISC + APB_MISC_SECURE_REGS_APB_SLAVE_SECURITY_ENABLE_REG0_0, SLAVE_SECURITY_REG_BITS_ENUM(0, PMC, DISABLE));
/* Set the exception vectors for the bpmp. RESET should point to RESET, all others should point to generic exception/panic. */
constexpr const u32 Sc7FirmwareResetVector = static_cast<u32>(MemoryRegionPhysicalIramSc7Firmware.GetAddress() + 0x0);
constexpr const u32 Sc7FirmwarePanicVector = static_cast<u32>(MemoryRegionPhysicalIramSc7Firmware.GetAddress() + 0x4);
reg::Write(EVP + EVP_COP_RESET_VECTOR, Sc7FirmwareResetVector);
reg::Write(EVP + EVP_COP_UNDEF_VECTOR, Sc7FirmwarePanicVector);
reg::Write(EVP + EVP_COP_SWI_VECTOR, Sc7FirmwarePanicVector);
reg::Write(EVP + EVP_COP_PREFETCH_ABORT_VECTOR, Sc7FirmwarePanicVector);
reg::Write(EVP + EVP_COP_DATA_ABORT_VECTOR, Sc7FirmwarePanicVector);
reg::Write(EVP + EVP_COP_RSVD_VECTOR, Sc7FirmwarePanicVector);
reg::Write(EVP + EVP_COP_IRQ_VECTOR, Sc7FirmwarePanicVector);
reg::Write(EVP + EVP_COP_FIQ_VECTOR, Sc7FirmwarePanicVector);
/* Disable activity monitor bpmp monitoring, so that we don't panic upon bpmp wake. */
actmon::StopMonitoringBpmp();
/* Load the bpmp firmware. */
void * const sc7fw_load_address = MemoryRegionVirtualIramSc7Firmware.GetPointer<void>();
std::memcpy(sc7fw_load_address, sc7fw_bin, sc7fw_bin_size);
hw::FlushDataCache(sc7fw_load_address, sc7fw_bin_size);
hw::DataSynchronizationBarrierInnerShareable();
/* Ensure that the bpmp firmware was loaded. */
AMS_ABORT_UNLESS(crypto::IsSameBytes(sc7fw_load_address, sc7fw_bin, sc7fw_bin_size));
/* Clear BPMP reset. */
reg::Write(CLK_RST + CLK_RST_CONTROLLER_RST_DEV_L_CLR, CLK_RST_REG_BITS_ENUM(RST_DEV_L_CLR_CLR_COP_RST, ENABLE));
/* Start the bpmp. */
reg::Write(FLOW_CTLR + FLOW_CTLR_HALT_COP_EVENTS, FLOW_REG_BITS_ENUM(HALT_COP_EVENTS_MODE, FLOW_MODE_NONE));
}
void SaveSecureContextAndSuspend() {
/* Ensure there are no pending memory transactions before we continue */
FlushEntireDataCache();
hw::DataSynchronizationBarrierInnerShareable();
/* Save all secure context (security engine state + tzram). */
SaveSecureContext();
/* Load and start the sc7 firmware on the bpmp. */
if (GetTargetFirmware() >= TargetFirmware_2_0_0) {
LoadAndStartSc7BpmpFirmware();
}
/* Log our suspension. */
/* NOTE: Nintendo only does this on dev, but we will always do it. */
if (true /* !pkg1::IsProduction() */) {
log::SendText("OYASUMI\n", 8);
}
/* If we're on erista, configure the bootrom to allow our custom warmboot firmware. */
if (GetSocType() == fuse::SocType_Erista) {
reg::Write(PMC + APBDEV_PMC_SCRATCH31, 0x2202E012);
reg::Write(PMC + APBDEV_PMC_SCRATCH32, 0x6001DC28);
}
/* Finalize our powerdown and wait for an interrupt. */
FinalizePowerOff();
}
SmcResult SuspendCpuImpl(SmcArguments &args) {
/* Decode arguments. */
const util::BitPack32 power_state = { static_cast<u32>(args.r[1]) };
const uintptr_t entry_point = args.r[2];
const uintptr_t context_id = args.r[3];
const auto state_type = power_state.Get<SuspendCpuPowerState::StateType>();
const auto state_id = power_state.Get<SuspendCpuPowerState::StateId>();
const auto core_id = hw::GetCurrentCoreId();
/* Validate arguments. */
SMC_R_UNLESS(state_type == PowerStateType_PowerDown, PsciDenied);
SMC_R_UNLESS(state_id == PowerStateId_Sc7, PsciDenied);
/* Orchestrate charger transition to Hi-Z mode if needed. */
if (IsChargerHiZModeEnabled()) {
/* Ensure we can do comms over i2c-1. */
clkrst::EnableI2c1Clock();
/* If the charger isn't in hi-z mode, perform a transition. */
if (!charger::IsHiZMode()) {
charger::EnterHiZMode();
/* Wait up to 50ms for the transition to complete. */
const auto start_time = util::GetMicroSeconds();
auto current_time = start_time;
while ((current_time - start_time) <= 50'000) {
if (auto intr_status = reg::Read(GPIO + 0x634); (intr_status & 1) == 0) {
/* Wait 256 us to ensure the transition completes. */
util::WaitMicroSeconds(256);
break;
}
current_time = util::GetMicroSeconds();
}
}
/* Disable i2c-1, since we're done communicating over it. */
clkrst::DisableI2c1Clock();
}
/* Enable wake event detection. */
pmc::EnableWakeEventDetection();
/* Ensure that i2c-5 is usable for communicating with the pmic. */
clkrst::EnableI2c5Clock();
i2c::Initialize(i2c::Port_5);
/* Orchestrate sleep entry with the pmic. */
pmic::EnableSleep();
/* Ensure that the soc is in a state valid for us to suspend. */
if (GetTargetFirmware() >= TargetFirmware_2_0_0) {
ValidateSocStateForSuspend();
}
/* Configure the pmc for sc7 entry. */
pmc::ConfigureForSc7Entry();
/* Configure the flow controller for sc7 entry. */
flow::SetCc4Ctrl(core_id, 0);
flow::SetHaltCpuEvents(core_id, false);
flow::ClearL2FlushControl();
flow::SetCpuCsr(core_id, FLOW_CTLR_CPUN_CSR_ENABLE_EXT_POWERGATE_CPU_TURNOFF_CPURAIL);
/* Save the entry context. */
SetEntryContext(core_id, entry_point, context_id);
/* Configure the cpu context for reset. */
SaveDebugRegisters();
SetCoreOff();
SetResetExpected(true);
/* Switch to use the common smc stack (all other cores are off), and perform suspension. */
PivotStackAndInvoke(reinterpret_cast<void *>(CommonSmcStackTop), SaveSecureContextAndSuspend);
/* This code will never be reached. */
__builtin_unreachable();
}
}
SmcResult SmcPowerOffCpu(SmcArguments &args) {
AMS_UNUSED(args);
/* Get the current core id. */
const auto core_id = hw::GetCurrentCoreId();
/* Note that we're expecting a reset for the current core. */
SetResetExpected(true);
/* If we're on the final core, shut down directly. Otherwise, invoke with special stack. */
if (core_id == NumCores - 1) {
PowerOffCpu();
} else {
PivotStackAndInvoke(GetCoreExceptionStackVirtual(), PowerOffCpu);
}
/* This code will never be reached. */
__builtin_unreachable();
}
SmcResult SmcPowerOnCpu(SmcArguments &args) {
/* Get and validate the core to power on. */
const int which_core = args.r[1];
SMC_R_UNLESS(0 <= which_core && which_core < NumCores, PsciInvalidParameters);
/* Ensure the core isn't already on. */
SMC_R_UNLESS(!IsCoreOn(which_core), PsciAlreadyOn);
/* Save the entry context. */
SetEntryContext(which_core, args.r[2], args.r[3]);
/* Reset the cpu. */
ResetCpu(which_core);
/* Turn on the core. */
PowerOnCpu(CpuPowerGateStatusMasks[which_core], CpuPowerGateTogglePartitionIds[which_core]);
/* Start the core. */
StartCpu(which_core);
return SmcResult::PsciSuccess;
}
SmcResult SmcSuspendCpu(SmcArguments &args) {
return LockSecurityEngineAndInvoke(args, SuspendCpuImpl);
}
bool IsChargerHiZModeEnabled() {
return g_charger_hi_z_mode_enabled;
}
void SetChargerHiZModeEnabled(bool en) {
g_charger_hi_z_mode_enabled = en;
}
}