1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-11-18 01:46:47 +00:00
Atmosphere/exosphere/program/source/secmon_setup.cpp
2022-03-23 09:10:50 -07:00

1289 lines
No EOL
89 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <exosphere.hpp>
#include "secmon_setup.hpp"
#include "secmon_error.hpp"
#include "secmon_map.hpp"
#include "secmon_cpu_context.hpp"
#include "secmon_mariko_fatal_error.hpp"
#include "secmon_interrupt_handler.hpp"
#include "secmon_misc.hpp"
#include "smc/secmon_random_cache.hpp"
#include "smc/secmon_smc_power_management.hpp"
#include "smc/secmon_smc_se_lock.hpp"
namespace ams::secmon {
namespace {
constexpr inline const uintptr_t TIMER = secmon::MemoryRegionVirtualDeviceTimer.GetAddress();
constexpr inline const uintptr_t SYSTEM = secmon::MemoryRegionVirtualDeviceSystem.GetAddress();
constexpr inline const uintptr_t APB_MISC = secmon::MemoryRegionVirtualDeviceApbMisc.GetAddress();
constexpr inline const uintptr_t FLOW_CTLR = secmon::MemoryRegionVirtualDeviceFlowController.GetAddress();
constexpr inline const uintptr_t PMC = secmon::MemoryRegionVirtualDevicePmc.GetAddress();
constexpr inline const uintptr_t MC = secmon::MemoryRegionVirtualDeviceMemoryController.GetAddress();
constexpr inline const uintptr_t EVP = secmon::MemoryRegionVirtualDeviceExceptionVectors.GetAddress();
constexpr inline const uintptr_t CLK_RST = secmon::MemoryRegionVirtualDeviceClkRst.GetAddress();
alignas(8) constinit u8 g_se_aes_key_slot_test_vector[se::AesBlockSize] = {};
struct Carveout {
uintptr_t address;
size_t size;
};
constinit Carveout g_kernel_carveouts[KernelCarveoutCount] = {
{ secmon::MemoryRegionDramDefaultKernelCarveout.GetAddress(), secmon::MemoryRegionDramDefaultKernelCarveout.GetSize(), },
{ 0, 0, },
};
constinit bool g_is_cold_boot = true;
constinit se::StickyBits ExpectedSeStickyBits = {
.se_security = (1 << 0), /* SE_HARD_SETTING */
.tzram_security = 0,
.crypto_security_perkey = (1 << pkg1::AesKeySlot_UserEnd) - 1,
.crypto_keytable_access = {
(0 << 7) | (1 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 0: User keyslot. KEY. KEYUSE, UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. UIVREAD, OIVREAD, KEYREAD disabled. */
(0 << 7) | (1 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 1: User keyslot. KEY. KEYUSE, UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. UIVREAD, OIVREAD, KEYREAD disabled. */
(0 << 7) | (1 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 2: User keyslot. KEY. KEYUSE, UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. UIVREAD, OIVREAD, KEYREAD disabled. */
(0 << 7) | (1 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 3: User keyslot. KEY. KEYUSE, UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. UIVREAD, OIVREAD, KEYREAD disabled. */
(0 << 7) | (1 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 4: User keyslot. KEY. KEYUSE, UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. UIVREAD, OIVREAD, KEYREAD disabled. */
(0 << 7) | (1 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 5: User keyslot. KEY. KEYUSE, UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. UIVREAD, OIVREAD, KEYREAD disabled. */
(1 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 6: Unused keyslot. KEK. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
(1 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 7: Unused keyslot. KEK. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
(0 << 7) | (0 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 8: Temp keyslot. KEY. UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. KEYUSE, UIVREAD, OIVREAD, KEYREAD disabled. */
(0 << 7) | (0 << 6) | (1 << 5) | (0 << 4) | (1 << 3) | (0 << 2) | (1 << 1) | (0 << 0), /* 9: SmcTemp keyslot. KEY. UIVUPDATE, OIVUPDATE, KEYUPDATE enabled. KEYUSE, UIVREAD, OIVREAD, KEYREAD disabled. */
(1 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 10: Wrap1 keyslot. KEK. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
(0 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 11: Wrap2 keyslot. KEY. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
(1 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 12: DMaster keyslot. KEK. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
(1 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 13: Master keyslot. KEK. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
(1 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 14: Unused keyslot. KEK. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
(1 << 7) | (0 << 6) | (0 << 5) | (0 << 4) | (0 << 3) | (0 << 2) | (0 << 1) | (0 << 0), /* 13: Device keyslot. KEK. KEYUSE, UIVUPDATE, UIVREAD, OIVUPDATE, OIVREAD, KEYUPDATE, KEYREAD disabled. */
},
.rsa_security_perkey = 0,
.rsa_keytable_access = {
(0 << 2) | (1 << 1) | (0 << 0), /* KEYUSE/KEYREAD disabled, KEYUPDATE enabled. */
(0 << 2) | (1 << 1) | (0 << 0), /* KEYUSE/KEYREAD disabled, KEYUPDATE enabled. */
},
};
void InitializeConfigurationContext() {
/* Get the global context. */
auto &ctx = ::ams::secmon::impl::GetConfigurationContext();
/* Clear the context to zero. */
std::memset(std::addressof(ctx), 0, sizeof(ctx));
/* If the storage context is valid, we want to copy it to the global context. */
if (const auto &storage_ctx = *MemoryRegionPhysicalDramMonitorConfiguration.GetPointer<const SecureMonitorStorageConfiguration>(); storage_ctx.IsValid()) {
ctx.secmon_cfg.CopyFrom(storage_ctx);
ctx.emummc_cfg = storage_ctx.emummc_cfg;
} else {
/* If we don't have a valid storage context, we can just use the default one. */
ctx.secmon_cfg = DefaultSecureMonitorConfiguration;
}
/* Cache the fuse info for quick access. */
ctx.secmon_cfg.SetFuseInfo();
}
void GenerateSecurityEngineAesKeySlotTestVector(void *dst, size_t size) {
/* Clear the output. */
AMS_ABORT_UNLESS(size == se::AesBlockSize);
std::memset(dst, 0, se::AesBlockSize);
/* Ensure output is seen as cleared by the se. */
hw::FlushDataCache(dst, se::AesBlockSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Declare a block. */
alignas(8) u8 empty_block[se::AesBlockSize];
/* Iteratively transform an empty block. */
#define TRANSFORM_WITH_KEY(key) \
__builtin_memset(empty_block, 0, sizeof(empty_block)); \
se::SetEncryptedAesKey256(pkg1::AesKeySlot_Temporary, key, empty_block, sizeof(empty_block)); \
se::DecryptAes128(dst, se::AesBlockSize, pkg1::AesKeySlot_Temporary, dst, se::AesBlockSize)
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_RandomForUserWrap);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_RandomForKeyStorageWrap);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_Master);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_DeviceMaster);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_Device);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_RandomForUserWrap);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_RandomForKeyStorageWrap);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_Master);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_DeviceMaster);
TRANSFORM_WITH_KEY(pkg1::AesKeySlot_Device);
/* Ensure output is seen correctly by the cpu. */
hw::FlushDataCache(dst, se::AesBlockSize);
hw::DataSynchronizationBarrierInnerShareable();
/* Clear the temporary key slot. */
se::ClearAesKeySlot(pkg1::AesKeySlot_Temporary);
}
void VerifySecurityEngineStickyBits() {
/* On mariko, an extra sticky bit is set. */
if (GetSocType() == fuse::SocType_Mariko) {
ExpectedSeStickyBits.se_security |= (1 << 5);
} else /* if (GetSocType() == fuse::SocType_Erista) */ {
/* Erista does not support DST_KEYTABLE_ONLY, and so all keys will have the bit clear. */
for (size_t i = 0; i < util::size(ExpectedSeStickyBits.crypto_keytable_access); ++i) {
ExpectedSeStickyBits.crypto_keytable_access[i] &= ~(1 << 7);
}
}
if (!se::ValidateStickyBits(ExpectedSeStickyBits)) {
SetError(pkg1::ErrorInfo_InvalidSecurityEngineStickyBits);
AMS_ABORT("Invalid sticky bits");
}
}
void VerifySecurityEngineAesKeySlotTestVector() {
alignas(8) u8 test_vector[se::AesBlockSize];
GenerateSecurityEngineAesKeySlotTestVector(test_vector, sizeof(test_vector));
AMS_ABORT_UNLESS(crypto::IsSameBytes(g_se_aes_key_slot_test_vector, test_vector, se::AesBlockSize));
}
void ClearAesKeySlots() {
/* Clear all non-secure monitor keys. */
for (int i = 0; i < pkg1::AesKeySlot_SecmonStart; ++i) {
se::ClearAesKeySlot(i);
}
/* Clear the secure-monitor temporary keys. */
se::ClearAesKeySlot(pkg1::AesKeySlot_Temporary);
se::ClearAesKeySlot(pkg1::AesKeySlot_Smc);
}
void ClearRsaKeySlots() {
/* Clear all rsa keyslots. */
for (int i = 0; i < se::RsaKeySlotCount; ++i) {
se::ClearRsaKeySlot(i);
}
}
void SetupKernelCarveouts() {
#define MC_ENABLE_CLIENT_ACCESS(INDEX, WHICH) MC_REG_BITS_ENUM(CLIENT_ACCESS##INDEX##_##WHICH, ENABLE)
constexpr u32 ClientAccess0 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(0, PTCR),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAY0A),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAY0AB),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAY0B),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAY0BB),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAY0C),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAY0CB),
MC_ENABLE_CLIENT_ACCESS(0, AFIR),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAYHC),
MC_ENABLE_CLIENT_ACCESS(0, DISPLAYHCB),
MC_ENABLE_CLIENT_ACCESS(0, HDAR),
MC_ENABLE_CLIENT_ACCESS(0, HOST1XDMAR),
MC_ENABLE_CLIENT_ACCESS(0, HOST1XR),
MC_ENABLE_CLIENT_ACCESS(0, NVENCSRD),
MC_ENABLE_CLIENT_ACCESS(0, PPCSAHBDMAR),
MC_ENABLE_CLIENT_ACCESS(0, PPCSAHBSLVR));
constexpr u32 ClientAccess1 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(1, MPCORER),
MC_ENABLE_CLIENT_ACCESS(1, NVENCSWR),
MC_ENABLE_CLIENT_ACCESS(1, AFIW),
MC_ENABLE_CLIENT_ACCESS(1, HDAW),
MC_ENABLE_CLIENT_ACCESS(1, HOST1XW),
MC_ENABLE_CLIENT_ACCESS(1, MPCOREW),
MC_ENABLE_CLIENT_ACCESS(1, PPCSAHBDMAW),
MC_ENABLE_CLIENT_ACCESS(1, PPCSAHBSLVW));
constexpr u32 ClientAccess2 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(2, XUSB_HOSTR),
MC_ENABLE_CLIENT_ACCESS(2, XUSB_HOSTW),
MC_ENABLE_CLIENT_ACCESS(2, XUSB_DEVR),
MC_ENABLE_CLIENT_ACCESS(2, XUSB_DEVW));
constexpr u32 ClientAccess2_100 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(2, XUSB_HOSTR),
MC_ENABLE_CLIENT_ACCESS(2, XUSB_HOSTW),
MC_ENABLE_CLIENT_ACCESS(2, XUSB_DEVR),
MC_ENABLE_CLIENT_ACCESS(2, XUSB_DEVW),
MC_ENABLE_CLIENT_ACCESS(2, TSECSRD),
MC_ENABLE_CLIENT_ACCESS(2, TSECSWR));
constexpr u32 ClientAccess3 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(3, SDMMCRA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCRAA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCRAB),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCWA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCWAA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCWAB),
MC_ENABLE_CLIENT_ACCESS(3, VICSRD),
MC_ENABLE_CLIENT_ACCESS(3, VICSWR),
MC_ENABLE_CLIENT_ACCESS(3, DISPLAYD),
MC_ENABLE_CLIENT_ACCESS(3, APER),
MC_ENABLE_CLIENT_ACCESS(3, APEW),
MC_ENABLE_CLIENT_ACCESS(3, NVJPGSRD),
MC_ENABLE_CLIENT_ACCESS(3, NVJPGSWR));
constexpr u32 ClientAccess3_100 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(3, SDMMCRA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCRAA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCRAB),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCWA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCWAA),
MC_ENABLE_CLIENT_ACCESS(3, SDMMCWAB),
MC_ENABLE_CLIENT_ACCESS(3, VICSRD),
MC_ENABLE_CLIENT_ACCESS(3, VICSWR),
MC_ENABLE_CLIENT_ACCESS(3, DISPLAYD),
MC_ENABLE_CLIENT_ACCESS(3, NVDECSRD),
MC_ENABLE_CLIENT_ACCESS(3, NVDECSWR),
MC_ENABLE_CLIENT_ACCESS(3, APER),
MC_ENABLE_CLIENT_ACCESS(3, APEW),
MC_ENABLE_CLIENT_ACCESS(3, NVJPGSRD),
MC_ENABLE_CLIENT_ACCESS(3, NVJPGSWR));
constexpr u32 ClientAccess4 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(4, SESRD),
MC_ENABLE_CLIENT_ACCESS(4, SESWR));
constexpr u32 ClientAccess4_800 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(4, SESRD),
MC_ENABLE_CLIENT_ACCESS(4, SESWR),
MC_ENABLE_CLIENT_ACCESS(4, TSECRDB),
MC_ENABLE_CLIENT_ACCESS(4, TSECWRB));
constexpr u32 ClientAccess4_100 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(4, SESRD),
MC_ENABLE_CLIENT_ACCESS(4, SESWR));
#undef MC_ENABLE_CLIENT_ACCESS
constexpr u32 ForceInternalAccess0 = reg::Encode(MC_REG_BITS_ENUM(CLIENT_ACCESS0_AVPCARM7R, ENABLE));
constexpr u32 ForceInternalAccess0_100 = 0;
constexpr u32 ForceInternalAccess1 = reg::Encode(MC_REG_BITS_ENUM(CLIENT_ACCESS1_AVPCARM7W, ENABLE));
constexpr u32 ForceInternalAccess1_100 = 0;
constexpr u32 CarveoutConfig = reg::Encode(MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_IS_WPR, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_FORCE_APERTURE_ID_MATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ALLOW_APERTURE_ID_MISMATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_RD_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_WR_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_SEND_CFG_TO_GPU, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_VALUE(SECURITY_CARVEOUT_CFG0_APERTURE_ID, 0),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL3, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL3, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ADDRESS_TYPE, ANY_ADDRESS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_LOCK_MODE, LOCKED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_PROTECT_MODE, TZ_SECURE));
constexpr u32 CarveoutConfig_100 = reg::Encode(MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_IS_WPR, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_FORCE_APERTURE_ID_MATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ALLOW_APERTURE_ID_MISMATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_RD_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_WR_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_SEND_CFG_TO_GPU, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_VALUE(SECURITY_CARVEOUT_CFG0_APERTURE_ID, 0),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL3, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL3, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ADDRESS_TYPE, ANY_ADDRESS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_LOCK_MODE, LOCKED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_PROTECT_MODE, TZ_SECURE));
const u32 target_fw = GetTargetFirmware();
u32 client_access_2;
u32 client_access_3;
u32 client_access_4;
u32 carveout_config;
if (target_fw >= TargetFirmware_8_1_0) {
client_access_2 = ClientAccess2;
client_access_3 = ClientAccess3;
client_access_4 = ClientAccess4;
carveout_config = CarveoutConfig;
} else if (target_fw >= TargetFirmware_8_0_0) {
client_access_2 = ClientAccess2;
client_access_3 = ClientAccess3;
client_access_4 = ClientAccess4_800;
carveout_config = CarveoutConfig;
} else {
client_access_2 = ClientAccess2_100;
client_access_3 = ClientAccess3_100;
client_access_4 = ClientAccess4_100;
carveout_config = CarveoutConfig_100;
}
/* Configure carveout 4. */
reg::Write(MC + MC_SECURITY_CARVEOUT4_BOM, g_kernel_carveouts[0].address >> 0);
reg::Write(MC + MC_SECURITY_CARVEOUT4_BOM_HI, g_kernel_carveouts[0].address >> 32);
reg::Write(MC + MC_SECURITY_CARVEOUT4_SIZE_128KB, g_kernel_carveouts[0].size / 128_KB);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_ACCESS0, ClientAccess0);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_ACCESS1, ClientAccess1);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_ACCESS2, client_access_2);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_ACCESS3, client_access_3);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_ACCESS4, client_access_4);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_FORCE_INTERNAL_ACCESS0, (target_fw >= TargetFirmware_4_0_0) ? ForceInternalAccess0 : ForceInternalAccess0_100);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_FORCE_INTERNAL_ACCESS1, (target_fw >= TargetFirmware_4_0_0) ? ForceInternalAccess1 : ForceInternalAccess1_100);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_FORCE_INTERNAL_ACCESS2, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_FORCE_INTERNAL_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CLIENT_FORCE_INTERNAL_ACCESS4, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT4_CFG0, carveout_config);
/* Configure carveout 5. */
reg::Write(MC + MC_SECURITY_CARVEOUT5_BOM, g_kernel_carveouts[1].address >> 0);
reg::Write(MC + MC_SECURITY_CARVEOUT5_BOM_HI, g_kernel_carveouts[1].address >> 32);
reg::Write(MC + MC_SECURITY_CARVEOUT5_SIZE_128KB, g_kernel_carveouts[1].size / 128_KB);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_ACCESS0, ClientAccess0);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_ACCESS1, ClientAccess1);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_ACCESS2, client_access_2);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_ACCESS3, client_access_3);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_ACCESS4, client_access_4);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_FORCE_INTERNAL_ACCESS0, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_FORCE_INTERNAL_ACCESS1, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_FORCE_INTERNAL_ACCESS2, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_FORCE_INTERNAL_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CLIENT_FORCE_INTERNAL_ACCESS4, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT5_CFG0, carveout_config);
}
void ConfigureSlaveSecurity() {
u32 reg0, reg1, reg2;
if (GetTargetFirmware() > TargetFirmware_1_0_0) {
reg0 = reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(0, SATA_AUX, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, DTV, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, QSPI, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, SE, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, SATA, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, LA, ENABLE));
reg1 = reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(1, SPI1, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI2, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI3, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI5, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI6, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, I2C6, ENABLE));
reg2 = reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(2, SDMMC3, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(2, DDS, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(2, DP2, ENABLE));
const auto hw_type = GetHardwareType();
/* Switch Lite can't use HDMI, so set CEC to secure on hoag. */
if (hw_type == fuse::HardwareType_Hoag) {
reg0 |= reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(0, CEC, ENABLE));
}
/* Icosa, Iowa, and Aula all set I2C4 to be secure. */
if (hw_type == fuse::HardwareType_Icosa && hw_type == fuse::HardwareType_Iowa && hw_type == fuse::HardwareType_Aula) {
reg1 |= reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(1, I2C4, ENABLE));
}
/* Hoag additionally sets UART_B to secure. */
if (hw_type == fuse::HardwareType_Hoag) {
reg1 |= reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(1, UART_B, ENABLE));
}
/* Copper and Calcio lack a lot of hardware, so set the corresponding registers to secure for them. */
if (hw_type == fuse::HardwareType_Calcio || hw_type == fuse::HardwareType_Copper) {
reg1 |= reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(1, UART_B, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, UART_C, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI4, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, I2C2, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, I2C3, ENABLE));
/* Copper/Calcio have no gamecard reader, and thus set SDMMC2 as secure. */
reg2 |= reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(2, SDMMC2, ENABLE));
}
/* Mariko hardware types (not Icosa or Copper) additionally set mariko-only mmio (SE2, PKA1, FEK) as secure. */
if (hw_type != fuse::HardwareType_Icosa && hw_type != fuse::HardwareType_Copper) {
reg2 |= reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(2, SE2, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(2, PKA1, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(2, FEK, ENABLE));
}
} else {
reg0 = reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(0, SATA_AUX, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, DTV, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, QSPI, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, SATA, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(0, LA, ENABLE));
reg1 = reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(1, SPI1, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI2, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI3, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI5, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, SPI6, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, I2C6, ENABLE));
reg2 = reg::Encode(SLAVE_SECURITY_REG_BITS_ENUM(2, DDS, ENABLE),
REG_BITS_VALUE(5, 1, 1), /* Note: Bit 5 is not documented in TRM. */
REG_BITS_VALUE(4, 1, 1)); /* Note: Bit 4 is not documented in TRM. */
}
reg::Write(APB_MISC + APB_MISC_SECURE_REGS_APB_SLAVE_SECURITY_ENABLE_REG0_0, reg0);
reg::Write(APB_MISC + APB_MISC_SECURE_REGS_APB_SLAVE_SECURITY_ENABLE_REG1_0, reg1);
reg::Write(APB_MISC + APB_MISC_SECURE_REGS_APB_SLAVE_SECURITY_ENABLE_REG2_0, reg2);
}
void SetupSecureRegisters() {
/* Configure timers 5-8 and watchdog timers 0-3 as secure. */
reg::Write(TIMER + TIMER_SHARED_TIMER_SECURE_CFG, TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_TMR5, ENABLE),
TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_TMR6, ENABLE),
TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_TMR7, ENABLE),
TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_TMR8, ENABLE),
TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_WDT0, ENABLE),
TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_WDT1, ENABLE),
TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_WDT2, ENABLE),
TIMER_REG_BITS_ENUM(SHARED_TIMER_SECURE_CFG_WDT3, ENABLE));
/* Lock cluster switching, to prevent usage of the A53 cores. */
reg::Write(FLOW_CTLR + FLOW_CTLR_BPMP_CLUSTER_CONTROL, FLOW_REG_BITS_ENUM(BPMP_CLUSTER_CONTROL_ACTIVE_CLUSTER_LOCK, ENABLE),
FLOW_REG_BITS_ENUM(BPMP_CLUSTER_CONTROL_CLUSTER_SWITCH_ENABLE, DISABLE),
FLOW_REG_BITS_ENUM(BPMP_CLUSTER_CONTROL_ACTIVE_CLUSTER, FAST));
/* Enable flow controller debug qualifier for legacy FIQs. */
reg::Write(FLOW_CTLR + FLOW_CTLR_FLOW_DBG_QUAL, FLOW_REG_BITS_ENUM(FLOW_DBG_QUAL_FIQ2CCPLEX_ENABLE, ENABLE));
/* Configure the PMC to disable deep power-down. */
reg::Write(PMC + APBDEV_PMC_DPD_ENABLE, PMC_REG_BITS_ENUM(DPD_ENABLE_TSC_MULT_EN, DISABLE),
PMC_REG_BITS_ENUM(DPD_ENABLE_ON, DISABLE));
/* Configure the video protect region. */
reg::Write(MC + MC_VIDEO_PROTECT_GPU_OVERRIDE_0, 1);
reg::Write(MC + MC_VIDEO_PROTECT_GPU_OVERRIDE_1, 0);
reg::Write(MC + MC_VIDEO_PROTECT_BOM, 0);
reg::Write(MC + MC_VIDEO_PROTECT_SIZE_MB, 0);
reg::Write(MC + MC_VIDEO_PROTECT_REG_CTRL, MC_REG_BITS_ENUM(VIDEO_PROTECT_REG_CTRL_VIDEO_PROTECT_ALLOW_TZ_WRITE, DISABLED),
MC_REG_BITS_ENUM(VIDEO_PROTECT_REG_CTRL_VIDEO_PROTECT_WRITE_ACCESS, DISABLED));
/* Configure the SEC carveout. */
reg::Write(MC + MC_SEC_CARVEOUT_BOM, 0);
reg::Write(MC + MC_SEC_CARVEOUT_SIZE_MB, 0);
reg::Write(MC + MC_SEC_CARVEOUT_REG_CTRL, MC_REG_BITS_ENUM(SEC_CARVEOUT_REG_CTRL_SEC_CARVEOUT_WRITE_ACCESS, DISABLED));
/* Configure the MTS carveout. */
reg::Write(MC + MC_MTS_CARVEOUT_BOM, 0);
reg::Write(MC + MC_MTS_CARVEOUT_SIZE_MB, 0);
reg::Write(MC + MC_MTS_CARVEOUT_ADR_HI, 0);
reg::Write(MC + MC_MTS_CARVEOUT_REG_CTRL, MC_REG_BITS_ENUM(MTS_CARVEOUT_REG_CTRL_MTS_CARVEOUT_WRITE_ACCESS, DISABLED));
/* Configure the security carveout. */
reg::Write(MC + MC_SECURITY_CFG0, MC_REG_BITS_VALUE(SECURITY_CFG0_SECURITY_BOM, 0));
reg::Write(MC + MC_SECURITY_CFG1, MC_REG_BITS_VALUE(SECURITY_CFG1_SECURITY_SIZE, 0));
reg::Write(MC + MC_SECURITY_CFG3, MC_REG_BITS_VALUE(SECURITY_CFG3_SECURITY_BOM_HI, 3));
/* Configure security carveout 1. */
reg::Write(MC + MC_SECURITY_CARVEOUT1_BOM, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_BOM_HI, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_SIZE_128KB, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_ACCESS0, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_ACCESS1, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_ACCESS2, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_ACCESS4, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_FORCE_INTERNAL_ACCESS0, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_FORCE_INTERNAL_ACCESS1, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_FORCE_INTERNAL_ACCESS2, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_FORCE_INTERNAL_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CLIENT_FORCE_INTERNAL_ACCESS4, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT1_CFG0, MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_IS_WPR, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_FORCE_APERTURE_ID_MATCH, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ALLOW_APERTURE_ID_MISMATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_RD_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_WR_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_SEND_CFG_TO_GPU, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_VALUE(SECURITY_CARVEOUT_CFG0_APERTURE_ID, 0),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL3, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL0, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL3, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL0, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ADDRESS_TYPE, UNTRANSLATED_ONLY),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_LOCK_MODE, LOCKED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_PROTECT_MODE, LOCKBIT_SECURE));
/* Security carveout 2 will be configured later by SetupGpuCarveout, after magic values are written to configure gpu/tsec. */
/* Configure carveout 3. */
reg::Write(MC + MC_SECURITY_CARVEOUT3_BOM, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_BOM_HI, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_SIZE_128KB, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_ACCESS0, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_ACCESS1, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_ACCESS2, MC_REG_BITS_ENUM (CLIENT_ACCESS2_GPUSRD, ENABLE),
MC_REG_BITS_ENUM (CLIENT_ACCESS2_GPUSWR, ENABLE));
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_ACCESS4, MC_REG_BITS_ENUM (CLIENT_ACCESS4_GPUSRD2, ENABLE),
MC_REG_BITS_ENUM (CLIENT_ACCESS4_GPUSWR2, ENABLE));
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_FORCE_INTERNAL_ACCESS0, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_FORCE_INTERNAL_ACCESS1, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_FORCE_INTERNAL_ACCESS2, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_FORCE_INTERNAL_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CLIENT_FORCE_INTERNAL_ACCESS4, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT3_CFG0, MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_IS_WPR, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_FORCE_APERTURE_ID_MATCH, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ALLOW_APERTURE_ID_MISMATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_RD_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_WR_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_SEND_CFG_TO_GPU, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_VALUE(SECURITY_CARVEOUT_CFG0_APERTURE_ID, 3),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL3, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL2, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL0, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL3, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL2, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL1, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ADDRESS_TYPE, UNTRANSLATED_ONLY),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_LOCK_MODE, LOCKED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_PROTECT_MODE, LOCKBIT_SECURE));
/* If we're cold-booting and on 1.0.0, alter the default carveout size. */
if (g_is_cold_boot && GetTargetFirmware() <= TargetFirmware_1_0_0) {
g_kernel_carveouts[0].size = 200 * 128_KB;
}
/* NOTE: Here Nintendo configures the two kernel carveouts; we will do this later, to allow fusee to continue using AVP_CACHE. */
/* SetupKernelCarveouts(); */
/* Configure slave register security. */
ConfigureSlaveSecurity();
}
void SetupSmmu() {
/* Turn on SMMU translation for all devices. */
reg::Write(MC + MC_SMMU_TRANSLATION_ENABLE_0, ~0u);
reg::Write(MC + MC_SMMU_TRANSLATION_ENABLE_1, ~0u);
reg::Write(MC + MC_SMMU_TRANSLATION_ENABLE_2, ~0u);
reg::Write(MC + MC_SMMU_TRANSLATION_ENABLE_3, ~0u);
reg::Write(MC + MC_SMMU_TRANSLATION_ENABLE_4, ~0u);
/* On modern firmware, configure ASIDs 1-3 as secure, and all others as non-secure. */
if (GetTargetFirmware() >= TargetFirmware_4_0_0) {
reg::Write(MC + MC_SMMU_ASID_SECURITY, MC_REG_BITS_ENUM(SMMU_ASID_SECURITY_SECURE_ASIDS_1, SECURE),
MC_REG_BITS_ENUM(SMMU_ASID_SECURITY_SECURE_ASIDS_2, SECURE),
MC_REG_BITS_ENUM(SMMU_ASID_SECURITY_SECURE_ASIDS_3, SECURE));
} else {
/* Legacy firmware accesses the MC directly, though, and so correspondingly we must allow ASIDs to be edited by non-secure world. */
reg::Write(MC + MC_SMMU_ASID_SECURITY, 0);
}
reg::Write(MC + MC_SMMU_ASID_SECURITY_1, 0);
reg::Write(MC + MC_SMMU_ASID_SECURITY_2, 0);
reg::Write(MC + MC_SMMU_ASID_SECURITY_3, 0);
reg::Write(MC + MC_SMMU_ASID_SECURITY_4, 0);
reg::Write(MC + MC_SMMU_ASID_SECURITY_5, 0);
reg::Write(MC + MC_SMMU_ASID_SECURITY_6, 0);
reg::Write(MC + MC_SMMU_ASID_SECURITY_7, 0);
/* Initialize the PTB registers to zero .*/
reg::Write(MC + MC_SMMU_PTB_ASID, 0);
reg::Write(MC + MC_SMMU_PTB_DATA, 0);
/* Configure the TLB and PTC, then read TLB_CONFIG to ensure configuration takes. */
reg::Write(MC + MC_SMMU_TLB_CONFIG, MC_REG_BITS_ENUM (SMMU_TLB_CONFIG_TLB_HIT_UNDER_MISS, ENABLE),
MC_REG_BITS_ENUM (SMMU_TLB_CONFIG_TLB_ROUND_ROBIN_ARBITRATION, ENABLE),
MC_REG_BITS_VALUE(SMMU_TLB_CONFIG_TLB_ACTIVE_LINES, 0x30));
reg::Write(MC + MC_SMMU_PTC_CONFIG, MC_REG_BITS_ENUM (SMMU_PTC_CONFIG_PTC_CACHE_ENABLE, ENABLE),
MC_REG_BITS_VALUE(SMMU_PTC_CONFIG_PTC_REQ_LIMIT, 8),
MC_REG_BITS_VALUE(SMMU_PTC_CONFIG_PTC_INDEX_MAP, 0x3F));
reg::Read (MC + MC_SMMU_TLB_CONFIG);
/* Flush the entire page table cache, and read TLB_CONFIG to ensure the flush takes. */
reg::Write(MC + MC_SMMU_PTC_FLUSH_0, 0);
reg::Read (MC + MC_SMMU_TLB_CONFIG);
/* Flush the entire translation lookaside buffer, and read TLB_CONFIG to ensure the flush takes. */
reg::Write(MC + MC_SMMU_TLB_FLUSH, 0);
reg::Read (MC + MC_SMMU_TLB_CONFIG);
/* Enable the SMMU, and read TLB_CONFIG to ensure the enable takes. */
reg::Write(MC + MC_SMMU_CONFIG, MC_REG_BITS_ENUM (SMMU_CONFIG_SMMU_ENABLE, ENABLE));
reg::Read (MC + MC_SMMU_TLB_CONFIG);
}
void SetupSecureEl2AndEl1SystemRegisters() {
/* Setup actlr_el2 and actlr_el3. */
{
util::BitPack32 actlr = {};
actlr.Set<hw::ActlrCortexA57::Cpuactlr>(1); /* Enable access to cpuactlr from lower EL. */
actlr.Set<hw::ActlrCortexA57::Cpuectlr>(1); /* Enable access to cpuectlr from lower EL. */
actlr.Set<hw::ActlrCortexA57::L2ctlr>(1); /* Enable access to l2ctlr from lower EL. */
actlr.Set<hw::ActlrCortexA57::L2actlr>(1); /* Enable access to l2actlr from lower EL. */
actlr.Set<hw::ActlrCortexA57::L2ectlr>(1); /* Enable access to l2ectlr from lower EL. */
HW_CPU_SET_ACTLR_EL3(actlr);
HW_CPU_SET_ACTLR_EL2(actlr);
}
/* Setup hcr_el2. */
{
util::BitPack64 hcr = {};
hcr.Set<hw::HcrEl2::Rw>(1); /* EL1 is aarch64 mode. */
HW_CPU_SET_HCR_EL2(hcr);
}
/* Configure all domain access permissions as manager. */
HW_CPU_SET_DACR32_EL2(~0u);
/* Setup sctlr_el1. */
{
util::BitPack64 sctlr = { hw::SctlrEl1::Res1 };
sctlr.Set<hw::SctlrEl1::M>(0); /* Globally disable the MMU. */
sctlr.Set<hw::SctlrEl1::A>(0); /* Disable alignment fault checking. */
sctlr.Set<hw::SctlrEl1::C>(0); /* Globally disable the data and unified caches. */
sctlr.Set<hw::SctlrEl1::Sa>(1); /* Enable stack alignment checking. */
sctlr.Set<hw::SctlrEl1::Sa0>(1); /* Enable el0 stack alignment checking. */
sctlr.Set<hw::SctlrEl1::Cp15BEn>(1); /* Enable cp15 barrier operations. */
sctlr.Set<hw::SctlrEl1::Thee>(0); /* Disable ThumbEE. */
sctlr.Set<hw::SctlrEl1::Itd>(0); /* Enable itd instructions. */
sctlr.Set<hw::SctlrEl1::Sed>(0); /* Enable setend instruction. */
sctlr.Set<hw::SctlrEl1::Uma>(0); /* Disable el0 interrupt mask access. */
sctlr.Set<hw::SctlrEl1::I>(0); /* Globally disable the instruction cache. */
sctlr.Set<hw::SctlrEl1::Dze>(0); /* Disable el0 access to dc zva instruction. */
sctlr.Set<hw::SctlrEl1::Ntwi>(1); /* wfi instructions in el0 trap. */
sctlr.Set<hw::SctlrEl1::Ntwe>(1); /* wfe instructions in el0 trap. */
sctlr.Set<hw::SctlrEl1::Wxn>(0); /* Do not force writable pages to be ExecuteNever. */
sctlr.Set<hw::SctlrEl1::E0e>(0); /* Data accesses in el0 are little endian. */
sctlr.Set<hw::SctlrEl1::Ee>(0); /* Exceptions should be little endian. */
sctlr.Set<hw::SctlrEl1::Uci>(0); /* Disable el0 access to dc cvau, dc civac, dc cvac, ic ivau. */
HW_CPU_SET_SCTLR_EL1(sctlr);
}
/* Setup sctlr_el2. */
{
util::BitPack64 sctlr = { hw::SctlrEl2::Res1 };
sctlr.Set<hw::SctlrEl2::M>(0); /* Globally disable the MMU. */
sctlr.Set<hw::SctlrEl2::A>(0); /* Disable alignment fault checking. */
sctlr.Set<hw::SctlrEl2::C>(0); /* Globally disable the data and unified caches. */
sctlr.Set<hw::SctlrEl2::Sa>(1); /* Enable stack alignment checking. */
sctlr.Set<hw::SctlrEl2::I>(0); /* Globally disable the instruction cache. */
sctlr.Set<hw::SctlrEl2::Wxn>(0); /* Do not force writable pages to be ExecuteNever. */
sctlr.Set<hw::SctlrEl2::Ee>(0); /* Exceptions should be little endian. */
HW_CPU_SET_SCTLR_EL2(sctlr);
}
/* Ensure instruction consistency. */
hw::InstructionSynchronizationBarrier();
}
void SetupNonSecureSystemRegisters(u32 tsc_frequency) {
/* Set cntfrq_el0. */
HW_CPU_SET_CNTFRQ_EL0(tsc_frequency);
/* Set cnthctl_el2. */
{
util::BitPack32 cnthctl = {};
cnthctl.Set<hw::CnthctlEl2::El1PctEn>(1); /* Do not trap accesses to cntpct_el0. */
cnthctl.Set<hw::CnthctlEl2::El1PcEn>(1); /* Do not trap accesses to cntp_ctl_el0, cntp_cval_el0, and cntp_tval_el0. */
cnthctl.Set<hw::CnthctlEl2::EvntEn>(0); /* Disable the event stream. */
cnthctl.Set<hw::CnthctlEl2::EvntDir>(0); /* Trigger events on 0 -> 1 transition. */
cnthctl.Set<hw::CnthctlEl2::EvntI>(0); /* Select bit0 of cntpct_el0 as the event stream trigger. */
HW_CPU_SET_CNTHCTL_EL2(cnthctl);
}
/* Ensure instruction consistency. */
hw::InstructionSynchronizationBarrier();
}
void SetupGpuCarveout() {
/* Configure carveout 2. */
reg::Write(MC + MC_SECURITY_CARVEOUT2_BOM, static_cast<u32>(MemoryRegionDramGpuCarveout.GetAddress() >> 0));
reg::Write(MC + MC_SECURITY_CARVEOUT2_BOM_HI, static_cast<u32>(MemoryRegionDramGpuCarveout.GetAddress() >> BITSIZEOF(u32)));
reg::Write(MC + MC_SECURITY_CARVEOUT2_SIZE_128KB, MemoryRegionDramGpuCarveout.GetSize() / 128_KB);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_ACCESS0, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_ACCESS1, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_ACCESS2, MC_REG_BITS_ENUM (CLIENT_ACCESS2_GPUSRD, ENABLE),
MC_REG_BITS_ENUM (CLIENT_ACCESS2_GPUSWR, ENABLE),
MC_REG_BITS_ENUM (CLIENT_ACCESS2_TSECSRD, ENABLE));
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_ACCESS4, MC_REG_BITS_ENUM (CLIENT_ACCESS4_GPUSRD2, ENABLE),
MC_REG_BITS_ENUM (CLIENT_ACCESS4_GPUSWR2, ENABLE));
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_FORCE_INTERNAL_ACCESS0, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_FORCE_INTERNAL_ACCESS1, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_FORCE_INTERNAL_ACCESS2, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_FORCE_INTERNAL_ACCESS3, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CLIENT_FORCE_INTERNAL_ACCESS4, 0);
reg::Write(MC + MC_SECURITY_CARVEOUT2_CFG0, MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_IS_WPR, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_FORCE_APERTURE_ID_MATCH, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ALLOW_APERTURE_ID_MISMATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_RD_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_WR_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_SEND_CFG_TO_GPU, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_VALUE(SECURITY_CARVEOUT_CFG0_APERTURE_ID, 2),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL3, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL2, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL0, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL3, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL2, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL1, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ADDRESS_TYPE, UNTRANSLATED_ONLY),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_LOCK_MODE, LOCKED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_PROTECT_MODE, LOCKBIT_SECURE));
}
void DisableArc() {
/* Configure IRAM top/bottom to point to memory ends (disabling redirection). */
reg::Write(MC + MC_IRAM_BOM, MC_REG_BITS_VALUE(IRAM_BOM_IRAM_BOM, (~0u)));
reg::Write(MC + MC_IRAM_TOM, MC_REG_BITS_VALUE(IRAM_TOM_IRAM_TOM, ( 0u)));
/* Lock the IRAM aperture. */
reg::ReadWrite(MC + MC_IRAM_REG_CTRL, MC_REG_BITS_ENUM(IRAM_REG_CTRL_IRAM_CFG_WRITE_ACCESS, DISABLED));
/* Disable the ARC clock gate override. */
reg::ReadWrite(CLK_RST + CLK_RST_CONTROLLER_LVL2_CLK_GATE_OVRD, CLK_RST_REG_BITS_ENUM(LVL2_CLK_GATE_OVRD_ARC_CLK_OVR_ON, OFF));
/* Read IRAM REG CTRL to make sure our writes take. */
reg::Read(MC + MC_IRAM_REG_CTRL);
}
void DisableUntranslatedDeviceMemoryAccess() {
/* If we can (mariko only), disable GMMU accesses that bypass the SMMU. */
/* Additionally, force all untranslated acccesses to hit one of the carveouts. */
if (GetSocType() == fuse::SocType_Mariko) {
reg::Write(MC + MC_UNTRANSLATED_REGION_CHECK, MC_REG_BITS_ENUM(UNTRANSLATED_REGION_CHECK_UNTRANSLATED_REGION_CHECK_ACCESS, DISABLED),
MC_REG_BITS_ENUM(UNTRANSLATED_REGION_CHECK_REQUIRE_UNTRANSLATED_CLIENTS_HIT_CARVEOUT, ENABLED),
MC_REG_BITS_ENUM(UNTRANSLATED_REGION_CHECK_REQUIRE_UNTRANSLATED_GPU_HIT_CARVEOUT, ENABLED));
}
}
void FinalizeCarveoutSecureScratchRegisters() {
/* Define carveout scratch values. */
constexpr uintptr_t WarmbootCarveoutAddress = MemoryRegionDram.GetAddress();
constexpr size_t WarmbootCarveoutSize = 128_KB;
#define MC_ENABLE_CLIENT_ACCESS(INDEX, WHICH) MC_REG_BITS_ENUM(CLIENT_ACCESS##INDEX##_##WHICH, ENABLE)
constexpr u32 WarmbootCarveoutClientAccess0 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(0, AVPCARM7R),
MC_ENABLE_CLIENT_ACCESS(0, PPCSAHBSLVR));
constexpr u32 WarmbootCarveoutClientAccess1 = reg::Encode(MC_ENABLE_CLIENT_ACCESS(1, AVPCARM7W));
#undef MC_ENABLE_CLIENT_ACCESS
constexpr u32 WarmbootCarveoutForceInternalAccess0 = reg::Encode(MC_REG_BITS_ENUM(CLIENT_ACCESS0_AVPCARM7R, ENABLE),
MC_REG_BITS_ENUM(CLIENT_ACCESS0_PPCSAHBSLVR, ENABLE));
constexpr u32 WarmbootCarveoutForceInternalAccess1 = reg::Encode(MC_REG_BITS_ENUM(CLIENT_ACCESS1_AVPCARM7W, ENABLE));
constexpr u32 WarmbootCarveoutConfig = reg::Encode(MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_IS_WPR, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_FORCE_APERTURE_ID_MATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ALLOW_APERTURE_ID_MISMATCH, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_RD_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_TZ_GLOBAL_WR_EN, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_SEND_CFG_TO_GPU, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_WRITE_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL3, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL2, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL1, ENABLE_CHECKS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_DISABLE_READ_CHECK_ACCESS_LEVEL0, ENABLE_CHECKS),
MC_REG_BITS_VALUE(SECURITY_CARVEOUT_CFG0_APERTURE_ID, 0),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL3, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_WRITE_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL3, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL2, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL1, DISABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_READ_ACCESS_LEVEL0, ENABLED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_ADDRESS_TYPE, ANY_ADDRESS),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_LOCK_MODE, UNLOCKED),
MC_REG_BITS_ENUM (SECURITY_CARVEOUT_CFG0_PROTECT_MODE, LOCKBIT_SECURE));
/* Save the carveout values into secure scratch. */
/* Save MC_SECURITY_CARVEOUT4_BOM. */
reg::ReadWrite(PMC + APBDEV_PMC_SECURE_SCRATCH51, REG_BITS_VALUE( 0, 15, WarmbootCarveoutAddress >> 17));
/* Save MC_SECURITY_CARVEOUT4_BOM_HI. */
reg::ReadWrite(PMC + APBDEV_PMC_SECURE_SCRATCH16, REG_BITS_VALUE(30, 2, WarmbootCarveoutAddress >> 32));
/* Save MC_SECURITY_CARVEOUT4_SIZE_128KB. */
reg::ReadWrite(PMC + APBDEV_PMC_SECURE_SCRATCH55, REG_BITS_VALUE(12, 12, WarmbootCarveoutSize / 128_KB));
/* Save MC_SECURITY_CARVEOUT4_CLIENT_ACCESS. */
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH74, WarmbootCarveoutClientAccess0);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH75, WarmbootCarveoutClientAccess1);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH76, 0);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH77, 0);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH78, 0);
/* Save MC_SECURITY_CARVEOUT4_FORCE_INTERNAL_ACCESS. */
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH99, WarmbootCarveoutForceInternalAccess0);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH100, WarmbootCarveoutForceInternalAccess1);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH101, 0);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH102, 0);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH103, 0);
/* Save MC_SECURITY_CARVEOUT4_CFG0. */
reg::ReadWrite(PMC + APBDEV_PMC_SECURE_SCRATCH39, REG_BITS_VALUE(0, 27, WarmbootCarveoutConfig));
}
void EnableBpmpSmmu() {
/* Define the ASID contents. */
constexpr int BpmpAsid = 1;
constexpr uintptr_t BpmpAsidPde = MemoryRegionPhysicalDeviceSecurityEngine.GetAddress();
/* Configure the ASID. */
reg::Write(MC + MC_SMMU_PTB_ASID, MC_REG_BITS_VALUE(SMMU_PTB_ASID_CURRENT_ASID, BpmpAsid));
reg::Write(MC + MC_SMMU_PTB_DATA, MC_REG_BITS_VALUE(SMMU_PTB_DATA_ASID_PDE_BASE, BpmpAsidPde / 4_KB),
MC_REG_BITS_ENUM (SMMU_PTB_DATA_ASID_NONSECURE, DISABLE),
MC_REG_BITS_ENUM (SMMU_PTB_DATA_ASID_WRITABLE, DISABLE),
MC_REG_BITS_ENUM (SMMU_PTB_DATA_ASID_READABLE, DISABLE));
/* Configure the BPMP and PPCS1 to use the asid. */
reg::Write(MC + MC_SMMU_AVPC_ASID, MC_REG_BITS_ENUM(SMMU_AVPC_ASID_AVPC_SMMU_ENABLE, ENABLE), MC_REG_BITS_VALUE(SMMU_AVPC_ASID_AVPC_ASID, BpmpAsid));
reg::Write(MC + MC_SMMU_PPCS1_ASID, MC_REG_BITS_ENUM(SMMU_PPCS1_ASID_PPCS1_SMMU_ENABLE, ENABLE), MC_REG_BITS_VALUE(SMMU_PPCS1_ASID_PPCS1_ASID, BpmpAsid));
/* Flush the entire page table cache, and read TLB_CONFIG to ensure the flush takes. */
reg::Write(MC + MC_SMMU_PTC_FLUSH_0, 0);
reg::Read (MC + MC_SMMU_TLB_CONFIG);
/* Flush the entire translation lookaside buffer, and read TLB_CONFIG to ensure the flush takes. */
reg::Write(MC + MC_SMMU_TLB_FLUSH, 0);
reg::Read (MC + MC_SMMU_TLB_CONFIG);
}
void ValidateResetExpected() {
/* We're coming out of reset, so check that we expected to come out of reset. */
if (!IsResetExpected()) {
secmon::SetError(pkg1::ErrorInfo_UnexpectedReset);
AMS_ABORT("unexpected reset");
}
SetResetExpected(false);
}
void ActmonInterruptHandler() {
SetError(pkg1::ErrorInfo_ActivityMonitorInterrupt);
AMS_ABORT("actmon observed bpmp wakeup");
}
void ExitChargerHiZMode() {
/* Setup I2c-1. */
pinmux::SetupI2c1();
clkrst::EnableI2c1Clock();
/* Initialize I2c-1. */
i2c::Initialize(i2c::Port_1);
/* Exit Hi-Z mode. */
charger::ExitHiZMode();
/* Disable clock to I2c-1. */
clkrst::DisableI2c1Clock();
}
bool IsExitLp0() {
return reg::Read(MC + MC_SECURITY_CFG3) == 0;
}
void SetupLogForBoot() {
log::Initialize(secmon::GetLogPort(), secmon::GetLogBaudRate(), secmon::GetLogFlags());
log::SendText("OHAYO\n", 6);
log::Flush();
}
void LogExitLp0() {
/* NOTE: Nintendo only does this on dev, but we will always do it. */
if (true /* !pkg1::IsProduction() */) {
SetupLogForBoot();
}
}
void SetupForLp0Exit() {
/* Exit HiZ mode in charger, if we need to. */
const auto target_fw = GetTargetFirmware();
const bool force_exit_hiz_mode = (target_fw < TargetFirmware_4_0_0) || (target_fw < TargetFirmware_8_0_0 && fuse::GetHardwareType() == fuse::HardwareType_Icosa);
if (force_exit_hiz_mode || smc::IsChargerHiZModeEnabled()) {
ExitChargerHiZMode();
}
/* Refill the random cache, which is volatile and thus wiped on warmboot. */
smc::FillRandomCache();
/* Unlock the security engine. */
secmon::smc::UnlockSecurityEngine();
}
}
void Setup1() {
/* Load the global configuration context. */
InitializeConfigurationContext();
/* Initialize uart for logging. */
SetupLogForBoot();
/* Initialize the security engine. */
se::Initialize();
/* Initialize the gic. */
gic::InitializeCommon();
}
void Setup1ForWarmboot() {
/* Initialize the security engine. */
se::Initialize();
/* Initialize the gic. */
gic::InitializeCommon();
}
void SaveSecurityEngineAesKeySlotTestVector() {
GenerateSecurityEngineAesKeySlotTestVector(g_se_aes_key_slot_test_vector, sizeof(g_se_aes_key_slot_test_vector));
}
void SetupSocSecurity() {
/* Set the fuse visibility. */
clkrst::SetFuseVisibility(true);
/* Set fuses as only secure-writable. */
fuse::SetWriteSecureOnly();
/* Lockout the fuses. */
fuse::Lockout();
/* Set the security engine to secure mode. */
se::SetSecure(true);
/* Verify the security engine's sticky bits. */
VerifySecurityEngineStickyBits();
/* Verify the security engine's Aes slots contain correct contents. */
VerifySecurityEngineAesKeySlotTestVector();
/* Clear aes keyslots. */
ClearAesKeySlots();
/* Clear rsa keyslots. */
ClearRsaKeySlots();
/* Overwrite keys that we want to be random with random contents. */
se::InitializeRandom();
se::ConfigureAutomaticContextSave();
se::SetRandomKey(pkg1::AesKeySlot_Temporary);
se::GenerateSrk();
se::SetRandomKey(pkg1::AesKeySlot_TzramSaveKek);
/* Initialize pmc secure scratch. */
if (GetSocType() == fuse::SocType_Erista) {
pmc::InitializeRandomScratch();
}
pmc::LockSecureRegister(pmc::SecureRegister_Srk);
/* Setup secure registers. */
SetupSecureRegisters();
/* Setup the smmu. */
SetupSmmu();
/* Clear the cpu reset vector. */
reg::Write(EVP + EVP_CPU_RESET_VECTOR, 0);
/* Configure the SB registers to our start address. */
constexpr u32 ResetVectorLow = static_cast<u32>((PhysicalTzramProgramResetVector >> 0));
constexpr u32 ResetVectorHigh = static_cast<u32>((PhysicalTzramProgramResetVector >> BITSIZEOF(u32)));
/* Write our reset vector to the secure boot registers. */
reg::Write(secmon::MemoryRegionVirtualDeviceSystem.GetAddress() + SB_AA64_RESET_LOW, ResetVectorLow | 1);
reg::Write(secmon::MemoryRegionVirtualDeviceSystem.GetAddress() + SB_AA64_RESET_HIGH, ResetVectorHigh);
/* Disable non-secure writes to the reset vector. */
reg::Write(secmon::MemoryRegionVirtualDeviceSystem.GetAddress() + SB_CSR, SB_REG_BITS_ENUM(CSR_NS_RST_VEC_WR_DIS, DISABLE));
/* Read back SB_CSR to make sure our non-secure write disable takes. */
reg::Read(secmon::MemoryRegionVirtualDeviceSystem.GetAddress() + SB_CSR);
/* Write our reset vector to scratch registers used by warmboot, and lock those scratch registers. */
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH34, ResetVectorLow);
reg::Write(PMC + APBDEV_PMC_SECURE_SCRATCH35, ResetVectorHigh);
pmc::LockSecureRegister(pmc::SecureRegister_ResetVector);
/* Setup the security engine interrupt. */
constexpr int SecurityEngineInterruptId = 90;
constexpr u8 SecurityEngineInterruptCoreMask = (1 << 3);
gic::SetPriority (SecurityEngineInterruptId, gic::HighestPriority);
gic::SetInterruptGroup(SecurityEngineInterruptId, 0);
gic::SetEnable (SecurityEngineInterruptId, true);
gic::SetSpiTargetCpu (SecurityEngineInterruptId, SecurityEngineInterruptCoreMask);
gic::SetSpiMode (SecurityEngineInterruptId, gic::InterruptMode_Level);
/* Setup the activity monitor interrupt. */
constexpr int ActivityMonitorInterruptId = 77;
constexpr u8 ActivityMonitorInterruptCoreMask = (1 << 3);
gic::SetPriority (ActivityMonitorInterruptId, gic::HighestPriority);
gic::SetInterruptGroup(ActivityMonitorInterruptId, 0);
gic::SetEnable (ActivityMonitorInterruptId, true);
gic::SetSpiTargetCpu (ActivityMonitorInterruptId, ActivityMonitorInterruptCoreMask);
gic::SetSpiMode (ActivityMonitorInterruptId, gic::InterruptMode_Level);
/* Setup the mariko fatal error interrupt. */
constexpr u8 MarikoFatalInterruptCoreMask = 0b1111;
gic::SetPriority (MarikoFatalErrorInterruptId, gic::HighestPriority);
gic::SetInterruptGroup(MarikoFatalErrorInterruptId, 0);
gic::SetEnable (MarikoFatalErrorInterruptId, true);
gic::SetSpiTargetCpu (MarikoFatalErrorInterruptId, 0);
gic::SetSpiMode (MarikoFatalErrorInterruptId, gic::InterruptMode_Level);
/* If we're coldboot, perform one-time setup. */
if (g_is_cold_boot) {
/* Register all interrupt handlers. */
SetInterruptHandler(SecurityEngineInterruptId, SecurityEngineInterruptCoreMask, se::HandleInterrupt);
SetInterruptHandler(ActivityMonitorInterruptId, ActivityMonitorInterruptCoreMask, actmon::HandleInterrupt);
SetInterruptHandler(MarikoFatalErrorInterruptId, MarikoFatalInterruptCoreMask, secmon::HandleMarikoFatalErrorInterrupt);
/* We're expecting the other cores to come out of reset. */
for (int i = 1; i < NumCores; ++i) {
SetResetExpected(i, true);
}
/* We only coldboot once. */
g_is_cold_boot = false;
}
}
void SetupSocSecurityWarmboot() {
/* Check that we're allowed to continue. */
ValidateResetExpected();
/* Unmap the tzram identity mapping. */
UnmapTzram();
/* If we're exiting LP0, there's a little more work for us to do. */
if (IsExitLp0()) {
/* Log that we're exiting LP0. */
LogExitLp0();
/* Perform initial setup. */
Setup1ForWarmboot();
/* Generate a random srk. */
se::GenerateSrk();
/* Setup the Soc security. */
SetupSocSecurity();
/* Set the PMC and MC as secure-only. */
SetupPmcAndMcSecure();
/* Perform Lp0-exit specific init. */
SetupForLp0Exit();
/* Setup the Soc protections. */
SetupSocProtections();
}
/* Perform remaining CPU initialization. */
SetupCpuCoreContext();
SetupCpuSErrorDebug();
}
void SetupSocProtections() {
/* Setup the GPU carveout. */
SetupGpuCarveout();
/* Configure the two kernel carveouts. */
SetupKernelCarveouts();
/* Disable the ARC. */
DisableArc();
/* Disable untranslated memory accesses by devices. */
DisableUntranslatedDeviceMemoryAccess();
/* Further protections aren't applied on <= 1.0.0. */
if (GetTargetFirmware() <= TargetFirmware_1_0_0) {
return;
}
/* Finalize and lock the carveout scratch registers. */
FinalizeCarveoutSecureScratchRegisters();
pmc::LockSecureRegister(pmc::SecureRegister_Carveout);
/* Clear all the BPMP exception vectors to a fixed value. */
constexpr u32 BpmpExceptionVector = 0x7D000000;
reg::Write(EVP + EVP_COP_RESET_VECTOR, BpmpExceptionVector);
reg::Write(EVP + EVP_COP_UNDEF_VECTOR, BpmpExceptionVector);
reg::Write(EVP + EVP_COP_SWI_VECTOR, BpmpExceptionVector);
reg::Write(EVP + EVP_COP_PREFETCH_ABORT_VECTOR, BpmpExceptionVector);
reg::Write(EVP + EVP_COP_DATA_ABORT_VECTOR, BpmpExceptionVector);
reg::Write(EVP + EVP_COP_RSVD_VECTOR, BpmpExceptionVector);
reg::Write(EVP + EVP_COP_IRQ_VECTOR, BpmpExceptionVector);
reg::Write(EVP + EVP_COP_FIQ_VECTOR, BpmpExceptionVector);
/* Disable arbitration for the bpmp. */
reg::ReadWrite(SYSTEM + AHB_ARBITRATION_DISABLE, AHB_REG_BITS_ENUM(ARBITRATION_DISABLE_COP, DISABLE));
/* Turn on the SMMU for the BPMP. */
EnableBpmpSmmu();
/* Wait until the flow controller reports that the BPMP is halted. */
while (!reg::HasValue(FLOW_CTLR + FLOW_CTLR_HALT_COP_EVENTS, FLOW_REG_BITS_ENUM(HALT_COP_EVENTS_MODE, FLOW_MODE_STOP))) {
util::WaitMicroSeconds(1);
}
/* Enable clock to the activity monitor. */
clkrst::EnableActmonClock();
/* If JTAG is disabled, disable JTAG. */
if (!secmon::IsJtagEnabled()) {
reg::Write(FLOW_CTLR + FLOW_CTLR_HALT_COP_EVENTS, FLOW_REG_BITS_ENUM(HALT_COP_EVENTS_MODE, FLOW_MODE_STOP),
FLOW_REG_BITS_ENUM(HALT_COP_EVENTS_JTAG, DISABLED));
/* Turn on the activity monitor to prevent booting up the bpmp. */
actmon::StartMonitoringBpmp(ActmonInterruptHandler);
}
}
void SetupPmcAndMcSecure() {
const auto target_fw = GetTargetFirmware();
if (target_fw >= TargetFirmware_2_0_0) {
/* Set the PMC secure. */
reg::ReadWrite(APB_MISC + APB_MISC_SECURE_REGS_APB_SLAVE_SECURITY_ENABLE_REG0_0, SLAVE_SECURITY_REG_BITS_ENUM(0, PMC, ENABLE));
}
if (target_fw >= TargetFirmware_4_0_0) {
/* Set the MC secure. */
reg::ReadWrite(APB_MISC + APB_MISC_SECURE_REGS_APB_SLAVE_SECURITY_ENABLE_REG1_0, SLAVE_SECURITY_REG_BITS_ENUM(1, MC0, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, MC1, ENABLE),
SLAVE_SECURITY_REG_BITS_ENUM(1, MCB, ENABLE));
}
}
void SetupCpuCoreContext() {
/* Get the tsc frequency. */
const u32 tsc_frequency = reg::Read(MemoryRegionVirtualDeviceSysCtr0.GetAddress() + SYSCTR0_CNTFID0);
/* Setup the secure EL2/EL1 system registers. */
SetupSecureEl2AndEl1SystemRegisters();
/* Setup the non-secure system registers. */
SetupNonSecureSystemRegisters(tsc_frequency);
/* Reset the cpu flow controller registers. */
flow::ResetCpuRegisters(hw::GetCurrentCoreId());
/* Initialize the core unique gic registers. */
gic::InitializeCoreUnique();
/* Configure cpu fiq. */
constexpr int FiqInterruptId = 28;
gic::SetPriority (FiqInterruptId, gic::HighestPriority);
gic::SetInterruptGroup(FiqInterruptId, 0);
gic::SetEnable (FiqInterruptId, true);
/* Restore the cpu's debug registers. */
RestoreDebugRegisters();
}
void SetupCpuSErrorDebug() {
/* Get whether we should enable SError debug. */
const auto &bc_data = secmon::GetBootConfig().data;
const bool enabled = bc_data.IsDevelopmentFunctionEnabled() && bc_data.IsSErrorDebugEnabled();
/* Get and set scr_el3. */
{
util::BitPack32 scr;
HW_CPU_GET_SCR_EL3(scr);
scr.Set<hw::ScrEl3::Ea>(enabled ? 0 : 1);
HW_CPU_SET_SCR_EL3(scr);
}
/* Prevent reordering instructions around this call. */
hw::InstructionSynchronizationBarrier();
}
void SetKernelCarveoutRegion(int index, uintptr_t address, size_t size) {
/* Configure the carveout. */
auto &carveout = g_kernel_carveouts[index];
carveout.address = address;
carveout.size = size;
SetupKernelCarveouts();
}
}