1
0
Fork 0
mirror of https://github.com/Atmosphere-NX/Atmosphere.git synced 2024-12-27 20:56:02 +00:00
Atmosphere/libraries/libvapours/source/crypto/impl/crypto_sha1_impl.arch.generic.cpp

225 lines
7.3 KiB
C++

/*
* Copyright (c) Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <vapours.hpp>
namespace ams::crypto::impl {
namespace {
constexpr const u32 RoundConstants[4] = {
0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
};
constexpr ALWAYS_INLINE u32 Choose(u32 x, u32 y, u32 z) {
return (x & y) ^ ((~x) & z);
}
constexpr ALWAYS_INLINE u32 Majority(u32 x, u32 y, u32 z) {
return (x & y) ^ (x & z) ^ (y & z);
}
constexpr ALWAYS_INLINE u32 Parity(u32 x, u32 y, u32 z) {
return x ^ y ^ z;
}
}
void Sha1Impl::Initialize() {
/* Reset buffered bytes/bits. */
m_buffered_bytes = 0;
m_bits_consumed = 0;
/* Set intermediate hash. */
m_intermediate_hash[0] = 0x67452301;
m_intermediate_hash[1] = 0xEFCDAB89;
m_intermediate_hash[2] = 0x98BADCFE;
m_intermediate_hash[3] = 0x10325476;
m_intermediate_hash[4] = 0xC3D2E1F0;
/* Set state. */
m_state = State_Initialized;
}
void Sha1Impl::Update(const void *data, size_t size) {
/* Verify we're in a state to update. */
AMS_ASSERT(m_state == State_Initialized);
/* Advance our input bit count. */
m_bits_consumed += BITSIZEOF(u8) * (((m_buffered_bytes + size) / BlockSize) * BlockSize);
/* Process anything we have buffered. */
const u8 *data8 = static_cast<const u8 *>(data);
size_t remaining = size;
if (m_buffered_bytes > 0) {
const size_t copy_size = std::min(BlockSize - m_buffered_bytes, remaining);
std::memcpy(m_buffer + m_buffered_bytes, data8, copy_size);
data8 += copy_size;
remaining -= copy_size;
m_buffered_bytes += copy_size;
/* Process a block, if we filled one. */
if (m_buffered_bytes == BlockSize) {
this->ProcessBlock(m_buffer);
m_buffered_bytes = 0;
}
}
/* Process blocks, while we have any. */
while (remaining >= BlockSize) {
this->ProcessBlock(data8);
data8 += BlockSize;
remaining -= BlockSize;
}
/* Copy any leftover data to our buffer. */
if (remaining > 0) {
m_buffered_bytes = remaining;
std::memcpy(m_buffer, data8, remaining);
}
}
void Sha1Impl::GetHash(void *dst, size_t size) {
/* Verify we're in a state to get hash. */
AMS_ASSERT(m_state == State_Initialized || m_state == State_Done);
AMS_ASSERT(size >= HashSize);
AMS_UNUSED(size);
/* If we need to, process the last block. */
if (m_state == State_Initialized) {
this->ProcessLastBlock();
m_state = State_Done;
}
/* Copy the output hash. */
if constexpr (util::IsLittleEndian()) {
static_assert(HashSize % sizeof(u32) == 0);
u32 *dst_32 = static_cast<u32 *>(dst);
for (size_t i = 0; i < HashSize / sizeof(u32); ++i) {
dst_32[i] = util::LoadBigEndian<u32>(m_intermediate_hash + i);
}
} else {
std::memcpy(dst, m_intermediate_hash, HashSize);
}
}
void Sha1Impl::ProcessBlock(const void *data) {
/* Load work variables. */
u32 a = m_intermediate_hash[0];
u32 b = m_intermediate_hash[1];
u32 c = m_intermediate_hash[2];
u32 d = m_intermediate_hash[3];
u32 e = m_intermediate_hash[4];
u32 tmp;
size_t i;
/* Copy the input. */
u32 w[80];
if constexpr (util::IsLittleEndian()) {
static_assert(BlockSize % sizeof(u32) == 0);
const u32 *src_32 = static_cast<const u32 *>(data);
for (size_t i = 0; i < BlockSize / sizeof(u32); ++i) {
w[i] = util::LoadBigEndian<u32>(src_32 + i);
}
} else {
std::memcpy(w, data, BlockSize);
}
/* Initialize the rest of w. */
for (i = BlockSize / sizeof(u32); i < util::size(w); ++i) {
const u32 *prev = w + (i - BlockSize / sizeof(u32));
w[i] = util::RotateLeft<u32>(prev[0] ^ prev[2] ^ prev[8] ^ prev[13], 1);
}
/* Perform rounds. */
for (i = 0; i < 20; ++i) {
tmp = util::RotateLeft<u32>(a, 5) + Choose(b, c, d) + e + w[i] + RoundConstants[0];
e = d;
d = c;
c = util::RotateLeft<u32>(b, 30);
b = a;
a = tmp;
}
for (/* ... */; i < 40; ++i) {
tmp = util::RotateLeft<u32>(a, 5) + Parity(b, c, d) + e + w[i] + RoundConstants[1];
e = d;
d = c;
c = util::RotateLeft<u32>(b, 30);
b = a;
a = tmp;
}
for (/* ... */; i < 60; ++i) {
tmp = util::RotateLeft<u32>(a, 5) + Majority(b, c, d) + e + w[i] + RoundConstants[2];
e = d;
d = c;
c = util::RotateLeft<u32>(b, 30);
b = a;
a = tmp;
}
for (/* ... */; i < 80; ++i) {
tmp = util::RotateLeft<u32>(a, 5) + Parity(b, c, d) + e + w[i] + RoundConstants[3];
e = d;
d = c;
c = util::RotateLeft<u32>(b, 30);
b = a;
a = tmp;
}
/* Update intermediate hash. */
m_intermediate_hash[0] += a;
m_intermediate_hash[1] += b;
m_intermediate_hash[2] += c;
m_intermediate_hash[3] += d;
m_intermediate_hash[4] += e;
}
void Sha1Impl::ProcessLastBlock() {
/* Setup the final block. */
constexpr const auto BlockSizeWithoutSizeField = BlockSize - sizeof(u64);
/* Increment our bits consumed. */
m_bits_consumed += BITSIZEOF(u8) * m_buffered_bytes;
/* Add 0x80 terminator. */
m_buffer[m_buffered_bytes++] = 0x80;
/* If we can process the size field directly, do so, otherwise set up to process it. */
if (m_buffered_bytes <= BlockSizeWithoutSizeField) {
/* Clear up to size field. */
std::memset(m_buffer + m_buffered_bytes, 0, BlockSizeWithoutSizeField - m_buffered_bytes);
} else {
/* Consume full block */
std::memset(m_buffer + m_buffered_bytes, 0, BlockSize - m_buffered_bytes);
this->ProcessBlock(m_buffer);
/* Clear up to size field. */
std::memset(m_buffer, 0, BlockSizeWithoutSizeField);
}
/* Store the size field. */
util::StoreBigEndian<u64>(reinterpret_cast<u64 *>(m_buffer + BlockSizeWithoutSizeField), m_bits_consumed);
/* Process the final block. */
this->ProcessBlock(m_buffer);
}
}