1
0
Fork 0
mirror of https://github.com/Scandal-UK/Incognito_RCM.git synced 2024-11-22 20:06:42 +00:00

certSize hash verification working, calibrationDataSize todo

This commit is contained in:
jimzrt 2019-09-24 09:41:22 +02:00
parent 463d889655
commit 0cca558fe5
4 changed files with 319 additions and 21 deletions

View file

@ -47,6 +47,7 @@
#include "../libs/fatfs/diskio.h"
#include <string.h>
#include "sha256.h"
extern bool sd_mount();
extern void sd_unmount();
@ -374,8 +375,14 @@ void dump_keys() {
se_aes_key_set(8, bis_key[0] + 0x00, 0x10);
se_aes_key_set(9, bis_key[0] + 0x10, 0x10);
readData(0x180, 0x100);
u32 length = 0x18;
u8* buffer = (u8 *)malloc(length);
readData(buffer, 0x250, length);
gfx_hexdump(0, buffer, length);
free(buffer);
verify();
// free(tmp_copy);
@ -593,30 +600,127 @@ static inline u32 _read_le_u32(const void *buffer, u32 offset) {
// ctr[0x10-i-1] = (u8)(ofs & 0xff);
// }
bool readData(u64 offset, u64 length)
bool readData(u8* buffer, u32 offset, u32 length)
{
u32 sector = (offset / NX_EMMC_BLOCKSIZE);
u32 newOffset = (offset % NX_EMMC_BLOCKSIZE);
u64 sector = (offset / NX_EMMC_BLOCKSIZE);
u64 newOffset = (offset % NX_EMMC_BLOCKSIZE);
u8 sectorCount = ((newOffset + length) / NX_EMMC_BLOCKSIZE) + 1;
bool needMultipleSectors = newOffset + length > NX_EMMC_BLOCKSIZE;
// if(length + newOffset > NX_EMMC_BLOCKSIZE * 2){
// EPRINTF("TOO BIG!!");
// }
u8 *tmp = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
disk_read_mod(tmp, sector, 1, &storage, prodinfo_part);
if (!needTwoSectors)
{
gfx_hexdump(0, tmp + newOffset, length);
}
else
{
u64 newLength = (newOffset + length) - NX_EMMC_BLOCKSIZE;
gfx_hexdump(0, tmp + newOffset, newLength);
disk_read_mod(tmp, sector + 1, 1, &storage, prodinfo_part);
gfx_hexdump(0, tmp, length - newLength);
}
//bool needMultipleSectors = newOffset + length > NX_EMMC_BLOCKSIZE;
u8 *tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE);
disk_read_mod(tmp, sector, sectorCount, &storage, prodinfo_part);
// if (!needMultipleSectors)
// {
// gfx_hexdump(0, tmp + newOffset, length);
memcpy(buffer, tmp + newOffset, length);
// }
// else
// {
// u32 newLength = (newOffset + length) - NX_EMMC_BLOCKSIZE;
// memcpy(buffer, tmp + newOffset, newLength);
// disk_read_mod(tmp, sector + 1, 1, &storage, prodinfo_part);
// memcpy(buffer + newLength, tmp, length - newLength);
// }
free(tmp);
return true;
}
}
bool verifyHash(u64 hashOffset, u64 offset, u64 sz)
{
bool result = false;
u8* buffer = (u8 *)malloc(sz);//new u8[sz];
if (!readData(buffer, offset, sz))
{
EPRINTF("error: failed reading calibration data\n");
//printf("error: failed reading calibration data\n");
}
else
{
u8 hash1[0x20];
u8 hash2[0x20];
SHA256_CTX ctx;
sha256_init(&ctx);
sha256_update(&ctx, buffer, sz);
sha256_final(&ctx, hash1);
//se_calc_sha256(hash1, buffer, sz);
//sha256CalculateHash(hash1, buffer, sz);
if (!readData(hash2, hashOffset, sizeof(hash2)))
{
EPRINTF("error: failed reading hash\n");
//printf("error: failed reading hash\n");
}
else
{
if (memcmp(hash1, hash2, sizeof(hash1)))
{
EPRINTF("error: hash verification failed\n");
//printf("error: hash verification failed for %x %d\n", (long)offset, (long)sz);
//print(hash1, 0x20);
//print(hash2, 0x20);
}
else
{
result = true;
}
}
gfx_hexdump(0, hash1, 0x08);
gfx_hexdump(0, hash2, 0x08);
}
free(buffer);
return result;
}
u32 certSize()
{
u32 buffer;
readData((u8 *)&buffer, 0x0AD0, sizeof(buffer));
EPRINTF("certSize");
gfx_hexdump(0, (u8 *)&buffer, sizeof(buffer));
return buffer;
}
u32 calibrationDataSize()
{
u32 buffer;
readData((u8 *)&buffer, 0x08, sizeof(buffer));
EPRINTF("calSize");
gfx_hexdump(0, (u8 *)&buffer, sizeof(buffer));
return buffer;
}
bool verify()
{
bool r = verifyHash(0x12E0, 0x0AE0, certSize()); // client cert hash
r &= verifyHash(0x20, 0x0040, calibrationDataSize()); // calibration hash
return r;
}
// u32 calibrationDataSize()
// {
// return read<u32>(0x08);
// }

View file

@ -20,6 +20,7 @@
#include "../utils/types.h"
void dump_keys();
bool readData(u64 offset, u64 length);
bool readData(u8 *buffer, u32 offset, u32 length);
bool verify();
#endif

158
source/keys/sha256.c Normal file
View file

@ -0,0 +1,158 @@
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian u8 order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "sha256.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/**************************** VARIABLES *****************************/
static const u32 k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CTX *ctx, const u8 data[])
{
u32 a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, const u8 data[], size_t len)
{
u32 i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, u8 hash[])
{
u32 i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian u8 ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}

35
source/keys/sha256.h Normal file
View file

@ -0,0 +1,35 @@
/*********************************************************************
* Filename: sha256.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding SHA1 implementation.
*********************************************************************/
#ifndef SHA256_H
#define SHA256_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
#include "../utils/types.h"
/****************************** MACROS ******************************/
#define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest
/**************************** DATA TYPES ****************************/
//typedef unsigned char BYTE; // 8-bit byte
//typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
u8 data[64];
u32 datalen;
unsigned long long bitlen;
u32 state[8];
} SHA256_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void sha256_init(SHA256_CTX *ctx);
void sha256_update(SHA256_CTX *ctx, const u8 data[], size_t len);
void sha256_final(SHA256_CTX *ctx, u8 hash[]);
#endif // SHA256_H