1
0
Fork 0
mirror of https://github.com/Scandal-UK/Incognito_RCM.git synced 2024-12-22 18:32:03 +00:00

remove unused libraries

This commit is contained in:
James Tophoven 2019-09-24 15:18:28 +02:00
parent 5c0fdfd4b6
commit 4ce94bc2b1
9 changed files with 1 additions and 1440 deletions

View file

@ -1,434 +0,0 @@
/* ============================================================================================================ *
2012036901 -
1. 0 12 128 AES
2. AES128(...)
3. AddRoundKey rKey는
( )
4. KEY_SIZE, ROUNDKEY_SIZE, BLOCK_SIZE를
( . , 4, 16 KEY_SIZE/4, BLOCK_SIZE로 )
* ============================================================================================================ */
#include <stdio.h>
#include <stdlib.h>
#include "AES128.h"
#define KEY_SIZE 16
#define ROUNDKEY_SIZE 176
#define BLOCK_SIZE 16
/*********************************************** { 구현 0 시작 } ********************************************/
static const uint8_t ori_sbox[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 };
static const uint8_t inv_sbox[256] = {
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D };
static const uint8_t rcon[256] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };
static const uint8_t matrix[16] = {
0x02, 0x03, 0x01, 0x01,
0x01, 0x02, 0x03, 0x01,
0x01, 0x01, 0x02, 0x03,
0x03, 0x01, 0x01, 0x02 };
static const uint8_t inv_matrix[16] = {
0x0E, 0x0B, 0x0D, 0x09,
0x09, 0x0E, 0x0B, 0x0D,
0x0D, 0x09, 0x0E, 0x0B,
0x0B, 0x0D, 0x09, 0x0E };
// Additional Fuction - Galois field mutiplication.
BYTE GF_Mutiplication(uint8_t num,BYTE data){
int i;
BYTE tmp = 0;
BYTE mask = 0x01;
for (i = 0;i < num;i ++){
if (num & mask){
tmp ^= data;
}
if (data & 0x80){
data = (data << 1) ^ 0x1b;
} else {
data <<= 1;
}
mask <<= 1;
}
return tmp;
}// Galois field mutiplication function.
/*********************************************** { 구현 0 종료 } ********************************************/
/* <키스케줄링 함수>
*
* key 16
* roundKey 176
*/
void expandKey(BYTE *key, BYTE *roundKey){
/*********************************************** { 구현 1 시작 } ********************************************/
int i,j,k,roundKey_filled = 0;
BYTE tmp,gkey[4],tmp_key[4][4];
for (i = 0;i < KEY_SIZE/4;i ++){
for (j = 0;j < KEY_SIZE/4;j ++){
tmp_key[i][j] = *(key + i*4 + j);
*(roundKey + (roundKey_filled++)) = tmp_key[i][j];
}
}// The first round key is the original key itself.
for (i = 1;i < ROUNDKEY_SIZE/KEY_SIZE;i ++){
for (j = 0;j < KEY_SIZE/4 ;j ++){
gkey[j] = tmp_key[3][j];
}
tmp = gkey[0];
for (j = 0;j < KEY_SIZE/4 - 1 ;j ++){
gkey[j] = gkey[j + 1];
}
gkey[KEY_SIZE/4 - 1] = tmp;
// Shift left 1 bit.
for (j = 0;j < KEY_SIZE/4 ;j ++){
gkey[j] = ori_sbox[ gkey[j] ];
}// Sub ori_sbox.
gkey[0] ^= rcon[i];
// XOR with rcon matrix.
for (j = 0;j < KEY_SIZE/4 ;j ++){
tmp_key[0][j] ^= gkey[j];
}// XOR gkey.
for (j = 1;j < KEY_SIZE/4 ;j ++){
for (k = 0;k < KEY_SIZE/4 ;k ++){
tmp_key[j][k] ^= tmp_key[j-1][k];
}
}// Make round key.
for (j = 0;j < KEY_SIZE/4 ;j ++){
for (k = 0;k < KEY_SIZE/4 ;k ++){
*(roundKey + (roundKey_filled++)) = tmp_key[j][k];
}
}// Insert calculated key into RoundKey.
}
/*********************************************** { 구현 1 종료 } ********************************************/
}
/* <SubBytes 함수>
*
* block SubBytes 16 .
* mode SubBytes
*/
BYTE* subBytes(BYTE *block, int mode){
/* 필요하다 생각하면 추가 선언 */
int i;
switch(mode){
case ENC:
/*********************************************** { 구현 2 시작 } ********************************************/
for (i = 0;i < BLOCK_SIZE;i ++){
*(block + i) = ori_sbox[ *(block + i) ];
}// SubByte ori_sbox.
/*********************************************** { 구현 2 종료 } ********************************************/
break;
case DEC:
/*********************************************** { 구현 3 시작 } ********************************************/
for (i = 0;i < BLOCK_SIZE;i ++){
*(block + i) = inv_sbox[ *(block + i) ];
}// SubByte inv_sbox.
/*********************************************** { 구현 3 종료 } ********************************************/
break;
default:
fprintf(stderr, "Invalid mode!\n");
exit(1);
}
return block;
}
/* <ShiftRows 함수>
*
* block ShiftRows 16 .
* mode ShiftRows
*/
BYTE* shiftRows(BYTE *block, int mode){
/* 필요하다 생각하면 추가 선언 */
int i,j,rep;
BYTE tmp;
switch(mode){
case ENC:
/*********************************************** { 구현 4 시작 } ********************************************/
for (i = 1; i < BLOCK_SIZE/4;i ++){
for (rep = i;rep >= 1;rep --){
tmp = *(block + i);
for (j = i; j < (i + BLOCK_SIZE - BLOCK_SIZE/4) ;j += 4){
*(block + j) = *(block + j + BLOCK_SIZE/4);
}
*(block + i + BLOCK_SIZE - BLOCK_SIZE/4) = tmp;
}
}
// 1 left Shift 2nd Col, 2 left Shift 3rd Col, 3 left Shift 4th Col.
/*********************************************** { 구현 4 종료 } ********************************************/
break;
case DEC:
/*********************************************** { 구현 5 시작 } ********************************************/
for (i = 1; i < BLOCK_SIZE/4;i ++){
for (rep = i;rep >= 1;rep --){
tmp = *(block + i + BLOCK_SIZE - BLOCK_SIZE/4);
for (j = i + BLOCK_SIZE - BLOCK_SIZE/4; j >= i ;j -= 4){
*(block + j) = *(block + j - BLOCK_SIZE/4);
}
*(block + i) = tmp;
}
}
// 1 right Shift 2nd Col, 2 right Shift 3rd Col, 3 right Shift 4th Col.
/*********************************************** { 구현 5 종료 } ********************************************/
break;
default:
fprintf(stderr, "Invalid mode!\n");
exit(1);
}
return block;
}
/* <MixColumns 함수>
*
* block MixColumns을 16 .
* mode MixColumns의
*/
BYTE* mixColumns(BYTE *block, int mode){
/* 필요하다 생각하면 추가 선언 */
int i,j,k;
BYTE tmp[16] = {0,};
BYTE tmp2[4][4];
for (i=0;i<4;i++){ for (j=0;j<4;j++){ tmp2[i][j] = *(block+i*4+j); } }
for (i=0;i<4;i++){ for (j=0;j<4;j++){ *(block+i*4+j) = tmp2[j][i]; } }
switch(mode){
case ENC:
/*********************************************** { 구현 6 시작 } ********************************************/
for (i = 0;i < BLOCK_SIZE/4 ;i ++){
for (j = 0;j < BLOCK_SIZE/4 ;j ++){
for (k = 0;k < BLOCK_SIZE/4 ;k ++){
tmp[ i*4 +j ] ^= GF_Mutiplication(matrix[ i*4 + k ],*(block + k*4 + j));
}
}
}// Galois field mutiplication data with matirx.
/*********************************************** { 구현 6 종료 } ********************************************/
break;
case DEC:
/*********************************************** { 구현 7 시작 } ********************************************/
for (i = 0;i < BLOCK_SIZE/4 ;i ++){
for (j = 0;j < BLOCK_SIZE/4 ;j ++){
for (k = 0;k < BLOCK_SIZE/4 ;k ++){
tmp[ i*4 +j ] ^= GF_Mutiplication(inv_matrix[ i*4 + k],*(block + k*4 + j));
}
}
}// Galois field mutiplication data with inv_matirx.
/*********************************************** { 구현 7 종료 } ********************************************/
break;
default:
fprintf(stderr, "Invalid mode!\n");
exit(1);
}
for (i=0;i<4;i++){ for (j=0;j<4;j++){ tmp2[i][j] = tmp[i*4+j]; } }
for (i = 0;i <BLOCK_SIZE/4 ;i ++){
for (j = 0;j < BLOCK_SIZE/4 ;j ++){
*(block + i*4 + j) = tmp2[j][i];
}
}// change origin block to calculated tmp.
return block;
}
/* <AddRoundKey 함수>
*
* block AddRoundKey를 16 .
* rKey AddRoundKey를 16
*/
BYTE* addRoundKey(BYTE *block, BYTE *rKey){
/*********************************************** { 구현 8 시작 } ********************************************/
int i,j;
for (i = 0 ; i < BLOCK_SIZE/4 ; i++){
for (j = i ; j < BLOCK_SIZE ; j+=4){
*(block + j) ^= *(rKey + j);
}
}// XOR Calculate origin block data with RoundKey.
/*********************************************** { 구현 8 종료 } ********************************************/
return block;
}
/* <128비트 AES 암호화 함수>
*
* plain (16 )
* key 128 (16)
*
* @ret
*/
BYTE* encrypt(BYTE *plain, BYTE *key){
BYTE roundKey[ROUNDKEY_SIZE];
/*********************************************** { 구현 9 시작 } ********************************************/
int round;
for (round = 0; round <= 10; round ++){
if (round == 0){ // initial round of encryption.
expandKey(key,roundKey);
addRoundKey(plain,roundKey);
} else if (round == 10){ // final round of encryption.
subBytes(plain,ENC);
shiftRows(plain,ENC);
addRoundKey(plain,roundKey + round*KEY_SIZE);
} else { // 9 main rounds of encryption.
subBytes(plain,ENC);
shiftRows(plain,ENC);
mixColumns(plain,ENC);
addRoundKey(plain,roundKey + round*KEY_SIZE);
}
}
return plain;
/*********************************************** { 구현 9 종료 } ********************************************/
}
/* <128비트 AES 복호화 함수>
*
* cipher (16 )
* key 128 (16)
*
* @ret
*/
BYTE* decrypt(BYTE *cipher, BYTE *key){
BYTE roundKey[ROUNDKEY_SIZE];
/*********************************************** { 구현 10 시작 } ********************************************/
int round;
for (round = 10; round >=0; round --){
if (round == 0){ // final round of encryption.
shiftRows(cipher,DEC);
subBytes(cipher,DEC);
addRoundKey(cipher,roundKey);
} else if (round == 10){ // initial round of encryption.
expandKey(key,roundKey);
addRoundKey(cipher,roundKey + round*KEY_SIZE);
} else { // 9 main rounds of encryption.
shiftRows(cipher,DEC);
subBytes(cipher,DEC);
addRoundKey(cipher,roundKey + round*KEY_SIZE);
mixColumns(cipher,DEC);
}
}
return cipher;
/*********************************************** { 구현 10 종료 } ********************************************/
}
/* <128비트 AES 암복호화 함수>
*
* mode가 ENC일 , DEC일
*
* [ENC ]
* plain
* cipher () .
* key 128 (16)
*
* [DEC ]
* plain () .
* cipher
* key 128 (16)
*/
void AES128(BYTE *plain, BYTE *cipher, BYTE *key, int mode){
BYTE *tmp;
if(mode == ENC){
tmp = encrypt(plain, key);
/*********************************************** { 구현 11 시작 } ********************************************/
for (int i = 0; i < BLOCK_SIZE ; i ++){
*(cipher + i) = *(tmp + i);
}// copy tmp blocks to ciper blocks.
/*********************************************** { 구현 11 종료 } ********************************************/
}else if(mode == DEC){
tmp = decrypt(cipher, key);
/*********************************************** { 구현 12 시작 } ********************************************/
for (int i = 0; i < BLOCK_SIZE ; i ++){
*(plain + i) = *(tmp + i);
}// copy tmp blocks to plain blocks.
/*********************************************** { 구현 12 종료 } ********************************************/
}else{
fprintf(stderr, "Invalid mode!\n");
exit(1);
}
}

View file

@ -1,10 +0,0 @@
// 암호화 모드
#define ENC 1
// 복호화 모드
#define DEC 0
typedef unsigned char BYTE;
// 128비트 AES 암복호화 인터페이스
void AES128(BYTE *plain, BYTE *cipher, BYTE *key, int mode);

View file

@ -1,171 +0,0 @@
/* ============================================================================================================ *
2012036901 -
1. 13 14 128 AES
2. AES.c를 ,
3.
4.
5. AES.h에 AES128(...)
6. XTS_AES128(...)
* ============================================================================================================ */
#include <stdio.h>
#include <stdlib.h>
#include "XTS_AES.h"
#include "AES128.h"
/*********************************************** { 구현 13 시작 } ********************************************/
#define KEY_SIZE 16
#define BLOCK_SIZE 16
extern uint8_t iv[];
uint8_t iv2[BLOCK_SIZE];
// Additional Generator function in GF(2^128) to make tweakable variable.
void GF_Mutiplication_xts(uint8_t *T){
uint32_t x;
uint8_t t, tt;
for (x = t = 0;x < BLOCK_SIZE;x ++) {
tt = *(T + x) >> 7;
*(T + x) = ((*(T + x) << 1) | t) & 0xFF;
t = tt;
}
if (tt) {
*(T) ^= 0x87;
}
}
// Generator function in GF(2^128).
/*********************************************** { 구현 13 종료 } ********************************************/
/* <128비트 XTS_AES 암복호화 함수>
*
* mode가 ENC일 , DEC일
*
* [ENC ]
* plain
* cipher () .
* size ( )
* key 256 (32). 16 key1, 16 key2
*
* [DEC ]
* plain () .
* cipher
* size ( )
* key 256 (32). 16 key1, 16 key2
*/
void XTS_AES128(BYTE *plain, BYTE *cipher, unsigned int size, BYTE* key, int mode){
/*********************************************** { 구현 14 시작 } ********************************************/
int i,j,tmp = 0;
BYTE *T = (BYTE *)malloc(sizeof(BYTE)*BLOCK_SIZE);
BYTE *T2 = (BYTE *)malloc(sizeof(BYTE)*BLOCK_SIZE);
BYTE *PP = (BYTE *)malloc(sizeof(BYTE)*BLOCK_SIZE);
BYTE *CC = (BYTE *)malloc(sizeof(BYTE)*BLOCK_SIZE);
for (i = 0;i < BLOCK_SIZE;i ++){
*(iv2 + i) = *(iv + i);
} // copy initial vector to use ENC / DEC.
AES128(iv2,T,key + KEY_SIZE,ENC);
// create initial T with iv. ( ∂(0) == E(key2)(iv,T) )
if(mode == ENC){
for (i = 0;i < size/BLOCK_SIZE;i ++){
for (j = 0;j < BLOCK_SIZE;j ++){
*(PP + j) = plain[ i*BLOCK_SIZE + j ] ^ *(T + j);
}// create PP blocks.
AES128(PP,CC,key,ENC);
// create CC blocks.
for (j = 0;j < BLOCK_SIZE;j ++){
cipher[ i*BLOCK_SIZE + j ] = *(CC + j) ^ *(T + j);
}// create ciper blocks.
GF_Mutiplication_xts(T);
// create tweakable block.
}// when plain text is 16 multiples, it's over.
if (size%BLOCK_SIZE != 0){
// cipertext stealing.
for (j = 0;j < (size%BLOCK_SIZE);j ++){
cipher[ i*BLOCK_SIZE + j ] = cipher[ (i-1)*16 + j ];
*(PP + j) = *(T + j) ^ plain[ i*BLOCK_SIZE + j ];
}// shift and XOR.
for (j = size%BLOCK_SIZE;j < BLOCK_SIZE;j ++){
*(PP + j) = *(T + j) ^ cipher[ (i-1)*BLOCK_SIZE + j ];
}// create Additional PP blocks.
AES128(PP,CC,key,ENC);
// create Additional CC blocks.
for (j = 0;j < BLOCK_SIZE;j ++){
cipher[ (i-1)*BLOCK_SIZE + j ] = *(T + j) ^ *(CC + j);
}// create Additional ciper blocks.
}// when plain text length is not 16 multiples, it's done.
}else if(mode == DEC){
int check = (size%BLOCK_SIZE==0) ? 0 : 1;
// judge variable that size%BLOCK_SIZE is 0 or is not 0.
// check == 0 is size%BLOCK_SIZE == 0.
// check == 1 is size%BLOCK_SIZE != 0.
for (i = 0;i < size/BLOCK_SIZE;i ++){
if (i == size/BLOCK_SIZE - 1 && check) {
tmp = size/BLOCK_SIZE - 1;
break;
}
// when ciper text length is not 16 multiples.
for (j = 0;j < BLOCK_SIZE;j ++){
*(CC + j) = cipher[ i*BLOCK_SIZE + j ] ^ *(T + j);
}// create PP blocks.
AES128(PP,CC,key,DEC);
// create CC blocks.
for (j = 0;j < BLOCK_SIZE;j ++){
plain[ i*BLOCK_SIZE + j ] = *(PP + j) ^ *(T + j);
}// create plain blocks.
GF_Mutiplication_xts(T);
// create tweakable block.
}
if (check) {
// when ciper text length is not 16 multiples.
// cipertext stealing.
for (j = 0;j < BLOCK_SIZE;j ++){
*(T2 + j) = *(T + j);
}// copy tweakable block to tmp array.
GF_Mutiplication_xts(T);
// create tweakable block.
for (j = 0;j < BLOCK_SIZE;j ++){
*(CC + j) = *(T + j) ^ cipher[ tmp*BLOCK_SIZE + j ];
}// create Additional ciper blocks.
AES128(PP,CC,key,DEC);
// create CC blocks.
for (j = 0;j < size%BLOCK_SIZE;j ++){
plain[ (tmp + 1)*BLOCK_SIZE + j ] = *(T + j) ^ *(PP + j);
*(CC + j) = *(T2 + j) ^ cipher[ (tmp + 1)*BLOCK_SIZE + j ];
}// shift and XOR.
for (j = size%BLOCK_SIZE;j < BLOCK_SIZE;j ++){
*(CC + j) = *(T2 + j) ^ *(T + j) ^ *(PP + j);
}// create Additional ciper blocks.
AES128(PP,CC,key,DEC);
for (j = 0;j < BLOCK_SIZE;j ++){
plain[ tmp*BLOCK_SIZE + j ] = *(T2 + j) ^ *(PP + j);
}// create Additional PP blocks.
}
}else{
fprintf(stderr, "Invalid mode!\n");
exit(1);
}
free(T);
free(T2);
free(PP);
free(CC);
/*********************************************** { 구현 14 종료 } ********************************************/
}

View file

@ -1,10 +0,0 @@
// 암호화 모드
#define ENC 1
// 복호화 모드
#define DEC 0
typedef unsigned char BYTE;
// 128비트 XTS_AES 암복호화 인터페이스
void XTS_AES128(BYTE *plain, BYTE *cipher, unsigned int size, BYTE* key, int mode);

View file

@ -1,570 +0,0 @@
/*
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
For AES192/256 the key size is proportionally larger.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <stdint.h>
#include <string.h> // CBC mode, for memset
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define Nr 14
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define Nr 12
#else
#define Nk 4 // The number of 32 bit words in a key.
#define Nr 10 // The number of rounds in AES Cipher.
#endif
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
/*
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
{
k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
}
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
#if defined(AES256) && (AES256 == 1)
if (i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
#endif
j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round,state_t* state,uint8_t* RoundKey)
{
uint8_t i,j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for (round = 1; round < Nr; ++round)
{
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes(state);
ShiftRows(state);
AddRoundKey(Nr, state, RoundKey);
}
static void InvCipher(state_t* state,uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for (round = (Nr - 1); round > 0; --round)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
InvMixColumns(state);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(0, state, RoundKey);
}
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)
void AES_ECB_encrypt(struct AES_ctx *ctx,const uint8_t* buf)
{
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher((state_t*)buf, ctx->RoundKey);
}
void AES_ECB_decrypt(struct AES_ctx* ctx,const uint8_t* buf)
{
// The next function call decrypts the PlainText with the Key using AES algorithm.
InvCipher((state_t*)buf, ctx->RoundKey);
}
#endif // #if defined(ECB) && (ECB == 1)
#if defined(CBC) && (CBC == 1)
static void XorWithIv(uint8_t* buf, uint8_t* Iv)
{
uint8_t i;
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx,uint8_t* buf, uint32_t length)
{
uintptr_t i;
uint8_t *Iv = ctx->Iv;
for (i = 0; i < length; i += AES_BLOCKLEN)
{
XorWithIv(buf, Iv);
Cipher((state_t*)buf, ctx->RoundKey);
Iv = buf;
buf += AES_BLOCKLEN;
//printf("Step %d - %d", i/16, i);
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
uintptr_t i;
uint8_t storeNextIv[AES_BLOCKLEN];
for (i = 0; i < length; i += AES_BLOCKLEN)
{
memcpy(storeNextIv, buf, AES_BLOCKLEN);
InvCipher((state_t*)buf, ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
buf += AES_BLOCKLEN;
}
}
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length)
{
uint8_t buffer[AES_BLOCKLEN];
unsigned i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
{
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
{
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t*)buffer,ctx->RoundKey);
/* Increment Iv and handle overflow */
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
{
/* inc will owerflow */
if (ctx->Iv[bi] == 255)
{
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}
#endif // #if defined(CTR) && (CTR == 1)

View file

@ -1,90 +0,0 @@
#ifndef _AES_H_
#define _AES_H_
#include <stdint.h>
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#ifndef CTR
#define CTR 1
#endif
#define AES128 1
//#define AES192 1
//#define AES256 1
#define AES_BLOCKLEN 16 //Block length in bytes AES is 128b block only
#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16 // Key length in bytes
#define AES_keyExpSize 176
#endif
struct AES_ctx
{
uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
uint8_t Iv[AES_BLOCKLEN];
#endif
};
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif
#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes;
// you need only AES_init_ctx as IV is not used in ECB
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(struct AES_ctx* ctx, const uint8_t* buf);
void AES_ECB_decrypt(struct AES_ctx* ctx, const uint8_t* buf);
#endif // #if defined(ECB) && (ECB == !)
#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
// Same function for encrypting as for decrypting.
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length);
#endif // #if defined(CTR) && (CTR == 1)
#endif //_AES_H_

View file

@ -1,61 +0,0 @@
#define ECB 1
#define CBC 0
#define CTR 0
#include "ccrypto.h"
#include "aes.h"
void
aes_xtsn_decrypt(u8 *buffer, u64 len, u8 *key, u8 *tweakin, u64 sectoroffsethi, u64 sectoroffsetlo, u32 sector_size) {
u64 i;
struct AES_ctx _key, _tweak;
AES_init_ctx(&_key, key);
AES_init_ctx(&_tweak, tweakin);
u64 position[2] = {sectoroffsetlo, sectoroffsethi};
for (i = 0; i < (len / (u64) sector_size); i++) {
union bigint128 tweak = geniv(position);
AES_ECB_encrypt(&_tweak, tweak.value8);
unsigned int j;
for (j = 0; j < sector_size / 16; j++) {
xor128((u64 *) buffer, tweak.value64);
AES_ECB_decrypt(&_key, buffer);
xor128((u64 *) buffer, tweak.value64);
int flag = tweak.value8[15] & 0x80;
shift128(tweak.value8);
if (flag) tweak.value8[0] ^= 0x87;
buffer += 16;
}
if (position[0] > (position[0] + 1LLU)) position[1] += 1LLU; //if overflow, we gotta
position[0] += 1LLU;
}
}
void
aes_xtsn_encrypt(u8 *buffer, u64 len, u8 *key, u8 *tweakin, u64 sectoroffsethi, u64 sectoroffsetlo, u32 sector_size) {
u64 i;
struct AES_ctx _key, _tweak;
AES_init_ctx(&_key, key);
AES_init_ctx(&_tweak, tweakin);
u64 position[2] = {sectoroffsetlo, sectoroffsethi};
for (i = 0; i < (len / (u64) sector_size); i++) {
union bigint128 tweak = geniv(position);
AES_ECB_encrypt(&_tweak, tweak.value8);
unsigned int j;
for (j = 0; j < sector_size / 16; j++) {
xor128((u64 *) buffer, tweak.value64);
AES_ECB_encrypt(&_key, buffer);
xor128((u64 *) buffer, tweak.value64);
int flag = tweak.value8[15] & 0x80;
shift128(tweak.value8);
if (flag) tweak.value8[0] ^= 0x87;
buffer += 16;
}
if (position[0] > (position[0] + 1LLU)) position[1] += 1LLU; //if overflow, we gotta
position[0] += 1LLU;
}
}

View file

@ -1,92 +0,0 @@
#ifndef _CCRYPTO_H_
#define _CCRYPTO_H_
//#include <stdlib.h>
//#include <stdio.h>
// #include <inttypes.h>
// #include <stdlib.h>
// #include <string.h>
// #include <stdbool.h>
#include "../utils/types.h"
// typedef uint8_t u8;
// typedef uint16_t u16;
// typedef uint32_t u32;
// typedef uint64_t u64;
// union {
// u16 foo;
// u8 islittle;
// } endian = {.foo = 1};
union bigint128 {
u8 value8[16];
u64 value64[2];
};
inline static union bigint128 geniv(u64 *pos) {
union bigint128 out;
// if (endian.islittle) {
//sacrifice code size for possible speed up
out.value8[15] = ((u8 *) pos)[0];
out.value8[14] = ((u8 *) pos)[1];
out.value8[13] = ((u8 *) pos)[2];
out.value8[12] = ((u8 *) pos)[3];
out.value8[11] = ((u8 *) pos)[4];
out.value8[10] = ((u8 *) pos)[5];
out.value8[9] = ((u8 *) pos)[6];
out.value8[8] = ((u8 *) pos)[7];
out.value8[7] = ((u8 *) pos)[8];
out.value8[6] = ((u8 *) pos)[9];
out.value8[5] = ((u8 *) pos)[10];
out.value8[4] = ((u8 *) pos)[11];
out.value8[3] = ((u8 *) pos)[12];
out.value8[2] = ((u8 *) pos)[13];
out.value8[1] = ((u8 *) pos)[14];
out.value8[0] = ((u8 *) pos)[15];
// } else {
// out.value64[1] = pos[0];
// out.value64[0] = pos[1];
// }
return out;
}
inline static void xor128(u64 *foo, u64 *bar) {
foo[0] ^= bar[0];
foo[1] ^= bar[1];
}
inline static void shift128(u8 *foo) {
// if (endian.islittle) {
//due to little endian order, we can do this
((u64 *) foo)[1] = (((u64 *) foo)[1] << 1) | (((u64 *) foo)[0] >> 63);
((u64 *) foo)[0] = (((u64 *) foo)[0] << 1);
// } else {
// //sacrifice code size for possible speed up
// foo[15] = (foo[15] << 1) | (foo[14] >> 7);
// foo[14] = (foo[14] << 1) | (foo[13] >> 7);
// foo[13] = (foo[13] << 1) | (foo[12] >> 7);
// foo[12] = (foo[12] << 1) | (foo[11] >> 7);
// foo[11] = (foo[11] << 1) | (foo[10] >> 7);
// foo[10] = (foo[10] << 1) | (foo[9] >> 7);
// foo[9] = (foo[9] << 1) | (foo[8] >> 7);
// foo[8] = (foo[8] << 1) | (foo[7] >> 7);
// foo[7] = (foo[7] << 1) | (foo[6] >> 7);
// foo[6] = (foo[6] << 1) | (foo[5] >> 7);
// foo[5] = (foo[5] << 1) | (foo[4] >> 7);
// foo[4] = (foo[4] << 1) | (foo[3] >> 7);
// foo[3] = (foo[3] << 1) | (foo[2] >> 7);
// foo[2] = (foo[2] << 1) | (foo[1] >> 7);
// foo[1] = (foo[1] << 1) | (foo[0] >> 7);
// foo[0] = (foo[0] << 1);
// }
}
void
aes_xtsn_decrypt(u8 *buffer, u64 len, u8 *key, u8 *tweakin, u64 sectoroffsethi, u64 sectoroffsetlo, u32 sector_size);
void
aes_xtsn_encrypt(u8 *buffer, u64 len, u8 *key, u8 *tweakin, u64 sectoroffsethi, u64 sectoroffsetlo, u32 sector_size);
#endif

View file

@ -42,8 +42,7 @@
#include "../utils/util.h"
#include "key_sources.inl"
#include "ccrypto.h"
#include "XTS_AES.h"
#include "../libs/fatfs/diskio.h"
#include <string.h>