1
0
Fork 0
mirror of https://github.com/Scandal-UK/Incognito_RCM.git synced 2024-11-26 13:52:29 +00:00

replace external sha256 library with internal and change order of menu points

This commit is contained in:
jimzrt 2019-10-04 01:27:43 +02:00
parent 148ace3108
commit a055defc92
6 changed files with 44 additions and 268 deletions

View file

@ -9,9 +9,9 @@ include $(DEVKITARM)/base_rules
################################################################################ ################################################################################
IPL_LOAD_ADDR := 0x40003000 IPL_LOAD_ADDR := 0x40003000
LPVERSION_MAJOR := 1 LPVERSION_MAJOR := 0
LPVERSION_MINOR := 0 LPVERSION_MINOR := 0
LPVERSION_BUGFX := 0 LPVERSION_BUGFX := 2
################################################################################ ################################################################################

View file

@ -6,6 +6,8 @@ It is heavily based on [Lockpick_RCM](https://github.com/shchmue/Lockpick_RCM) a
Massive Thanks to CTCaer, shchmue and blawar! Massive Thanks to CTCaer, shchmue and blawar!
This project is in early stage, so have a nand backup!! There is not much of error handling going on.
Usage Usage
= =
* Launch Incoginito_RCM.bin using your favorite payload injector * Launch Incoginito_RCM.bin using your favorite payload injector

View file

@ -45,7 +45,6 @@
#include "../libs/fatfs/diskio.h" #include "../libs/fatfs/diskio.h"
#include <string.h> #include <string.h>
#include "sha256.h"
extern bool sd_mount(); extern bool sd_mount();
extern void sd_unmount(); extern void sd_unmount();
@ -431,7 +430,19 @@ bool readData(u8 *buffer, u32 offset, u32 length, u8 enc)
u8 *tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE); u8 *tmp = (u8 *)malloc(sectorCount * NX_EMMC_BLOCKSIZE);
disk_read_prod(tmp, sector, sectorCount, enc); u32 clusterOffset = sector % 32;
u32 sectorOffset = 0;
while (clusterOffset + sectorCount > 32)
{
u32 sectorToRead = 32 - clusterOffset;
disk_read_prod(tmp + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorToRead, enc);
sector += sectorToRead;
sectorCount -= sectorToRead;
clusterOffset = 0;
sectorOffset += sectorToRead;
}
disk_read_prod(tmp + (sectorOffset * NX_EMMC_BLOCKSIZE), sector, sectorCount, enc);
memcpy(buffer, tmp + newOffset, length); memcpy(buffer, tmp + newOffset, length);
@ -499,41 +510,10 @@ bool writeData(u8 *buffer, u32 offset, u32 length, u8 enc)
bool writeHash(u32 hashOffset, u32 offset, u32 sz) bool writeHash(u32 hashOffset, u32 offset, u32 sz)
{ {
u8 *buffer = (u8 *)malloc(NX_EMMC_BLOCKSIZE); u8 *buffer = (u8 *)malloc(sz);
readData(buffer, offset, sz, ENCRYPTED);
SHA256_CTX ctx;
sha256_init(&ctx);
u32 newOffset = offset % NX_EMMC_BLOCKSIZE;
if (newOffset > 0 && newOffset + sz >= NX_EMMC_BLOCKSIZE)
{
u32 toRead = NX_EMMC_BLOCKSIZE - newOffset;
readData(buffer, offset, toRead, ENCRYPTED);
sha256_update(&ctx, buffer, toRead);
sz -= toRead;
offset += toRead;
}
while (sz > NX_EMMC_BLOCKSIZE)
{
readData(buffer, offset, NX_EMMC_BLOCKSIZE, ENCRYPTED);
sha256_update(&ctx, buffer, NX_EMMC_BLOCKSIZE);
sz -= NX_EMMC_BLOCKSIZE;
offset += NX_EMMC_BLOCKSIZE;
}
if (sz > 0)
{
readData(buffer, offset, sz, ENCRYPTED);
sha256_update(&ctx, buffer, sz);
}
u8 hash[0x20]; u8 hash[0x20];
sha256_final(&ctx, hash); se_calc_sha256(hash, buffer, sz);
writeData(hash, hashOffset, 0x20, ENCRYPTED); writeData(hash, hashOffset, 0x20, ENCRYPTED);
@ -541,44 +521,30 @@ bool writeHash(u32 hashOffset, u32 offset, u32 sz)
return true; return true;
} }
// void test(){
// u32 size = 32768;
// u8 *buffer = (u8 *)malloc(NX_EMMC_BLOCKSIZE);
// u8* bigBuffer = (u8 *)malloc(size);
// u32 offset = 0;
// readData(bigBuffer, 0, size, ENCRYPTED);
// while(size > NX_EMMC_BLOCKSIZE){
// readData(buffer, offset, NX_EMMC_BLOCKSIZE, ENCRYPTED);
// if(memcmp(buffer, bigBuffer + offset, NX_EMMC_BLOCKSIZE) != 0){
// gfx_printf("arry mismatch on offset %d", offset);
// }
// size -= NX_EMMC_BLOCKSIZE;
// offset += NX_EMMC_BLOCKSIZE;
// }
// }
bool verifyHash(u32 hashOffset, u32 offset, u32 sz) bool verifyHash(u32 hashOffset, u32 offset, u32 sz)
{ {
bool result = false; bool result = false;
u8 *buffer = (u8 *)malloc(NX_EMMC_BLOCKSIZE); u8 *buffer = (u8 *)malloc(sz);
readData(buffer, offset, sz, ENCRYPTED);
SHA256_CTX ctx;
sha256_init(&ctx);
u32 newOffset = offset % NX_EMMC_BLOCKSIZE;
if (newOffset > 0 && sz >= NX_EMMC_BLOCKSIZE)
{
u32 toRead = NX_EMMC_BLOCKSIZE - newOffset;
readData(buffer, offset, toRead, ENCRYPTED);
sha256_update(&ctx, buffer, toRead);
sz -= toRead;
offset += toRead;
}
while (sz > NX_EMMC_BLOCKSIZE)
{
readData(buffer, offset, NX_EMMC_BLOCKSIZE, ENCRYPTED);
sha256_update(&ctx, buffer, NX_EMMC_BLOCKSIZE);
sz -= NX_EMMC_BLOCKSIZE;
offset += NX_EMMC_BLOCKSIZE;
}
if (sz > 0)
{
readData(buffer, offset, sz, ENCRYPTED);
sha256_update(&ctx, buffer, sz);
}
u8 hash1[0x20]; u8 hash1[0x20];
sha256_final(&ctx, hash1); se_calc_sha256(hash1, buffer, sz);
u8 hash2[0x20]; u8 hash2[0x20];

View file

@ -1,158 +0,0 @@
/*********************************************************************
* Filename: sha256.c
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Implementation of the SHA-256 hashing algorithm.
SHA-256 is one of the three algorithms in the SHA2
specification. The others, SHA-384 and SHA-512, are not
offered in this implementation.
Algorithm specification can be found here:
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
This implementation uses little endian u8 order.
*********************************************************************/
/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "sha256.h"
/****************************** MACROS ******************************/
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
/**************************** VARIABLES *****************************/
static const u32 k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
/*********************** FUNCTION DEFINITIONS ***********************/
void sha256_transform(SHA256_CTX *ctx, const u8 data[])
{
u32 a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, const u8 data[], size_t len)
{
u32 i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
void sha256_final(SHA256_CTX *ctx, u8 hash[])
{
u32 i;
i = ctx->datalen;
// Pad whatever data is left in the buffer.
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
// Append to the padding the total message's length in bits and transform.
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian u8 ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}

View file

@ -1,35 +0,0 @@
/*********************************************************************
* Filename: sha256.h
* Author: Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details: Defines the API for the corresponding SHA1 implementation.
*********************************************************************/
#ifndef SHA256_H
#define SHA256_H
/*************************** HEADER FILES ***************************/
#include <stddef.h>
#include "../utils/types.h"
/****************************** MACROS ******************************/
#define SHA256_BLOCK_SIZE 32 // SHA256 outputs a 32 byte digest
/**************************** DATA TYPES ****************************/
//typedef unsigned char BYTE; // 8-bit byte
//typedef unsigned int WORD; // 32-bit word, change to "long" for 16-bit machines
typedef struct {
u8 data[64];
u32 datalen;
unsigned long long bitlen;
u32 state[8];
} SHA256_CTX;
/*********************** FUNCTION DECLARATIONS **********************/
void sha256_init(SHA256_CTX *ctx);
void sha256_update(SHA256_CTX *ctx, const u8 data[], size_t len);
void sha256_final(SHA256_CTX *ctx, u8 hash[]);
#endif // SHA256_H

View file

@ -255,11 +255,12 @@ void restore_emunand()
btn_wait(); btn_wait();
} }
ment_t ment_top[] = { ment_t ment_top[] = {
MDEF_HANDLER("Incognito (SysNAND)", incognito_sysnand, COLOR_ORANGE),
MDEF_HANDLER("Incognito (emuMMC)", incognito_emunand, COLOR_ORANGE),
MDEF_CAPTION("", COLOR_YELLOW),
MDEF_HANDLER("Backup (SysNAND)", backup_sysnand, COLOR_ORANGE), MDEF_HANDLER("Backup (SysNAND)", backup_sysnand, COLOR_ORANGE),
MDEF_HANDLER("Backup (emuMMC)", backup_emunand, COLOR_ORANGE), MDEF_HANDLER("Backup (emuMMC)", backup_emunand, COLOR_ORANGE),
MDEF_CAPTION("", COLOR_YELLOW),
MDEF_HANDLER("Incognito (SysNAND)", incognito_sysnand, COLOR_ORANGE),
MDEF_HANDLER("Incognito (emuMMC)", incognito_emunand, COLOR_ORANGE),
MDEF_CAPTION("", COLOR_YELLOW), MDEF_CAPTION("", COLOR_YELLOW),
MDEF_HANDLER("Restore (SysNAND)", restore_sysnand, COLOR_ORANGE), MDEF_HANDLER("Restore (SysNAND)", restore_sysnand, COLOR_ORANGE),
MDEF_HANDLER("Restore (emuMMC)", restore_emunand, COLOR_ORANGE), MDEF_HANDLER("Restore (emuMMC)", restore_emunand, COLOR_ORANGE),