/* * Copyright (c) 2019 shchmue * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "keys.h" #include "../config/config.h" #include "../gfx/di.h" #include "../gfx/gfx.h" #include "../gfx/tui.h" #include "../hos/pkg1.h" #include "../hos/pkg2.h" #include "../hos/sept.h" //#include "../libs/fatfs/ff.h" #include "../mem/heap.h" #include "../mem/mc.h" #include "../mem/sdram.h" #include "../sec/se.h" #include "../sec/se_t210.h" #include "../sec/tsec.h" #include "../soc/fuse.h" #include "../soc/smmu.h" #include "../soc/t210.h" #include "../storage/emummc.h" #include "../storage/nx_emmc.h" #include "../storage/sdmmc.h" #include "../utils/btn.h" #include "../utils/list.h" #include "../utils/sprintf.h" #include "../utils/util.h" #include "key_sources.inl" #include "ccrypto.h" #include "XTS_AES.h" #include "../libs/fatfs/diskio.h" #include extern bool sd_mount(); extern void sd_unmount(); extern int sd_save_to_file(void *buf, u32 size, const char *filename); extern hekate_config h_cfg; u32 _key_count = 0; sdmmc_storage_t storage; emmc_part_t *system_part; emmc_part_t *prodinfo_part; u32 start_time, end_time; #define TPRINTF(text) \ end_time = get_tmr_us(); \ gfx_printf(text" done in %d us\n", end_time - start_time); \ start_time = get_tmr_us() #define TPRINTFARGS(text, args...) \ end_time = get_tmr_us(); \ gfx_printf(text" done in %d us\n", args, end_time - start_time); \ start_time = get_tmr_us() #define SAVE_KEY(name, src, len) _save_key(name, src, len, text_buffer) #define SAVE_KEY_FAMILY(name, src, count, len) _save_key_family(name, src, count, len, text_buffer) static u8 temp_key[0x10], bis_key[4][0x20] = {0}, device_key[0x10] = {0}, new_device_key[0x10] = {0}, // sd_seed[0x10] = {0}, // FS-related keys // fs_keys[10][0x20] = {0}, // header_key[0x20] = {0}, // save_mac_key[0x10] = {0}, // other sysmodule sources // es_keys[3][0x10] = {0}, // eticket_rsa_kek[0x10] = {0}, // ssl_keys[2][0x10] = {0}, // ssl_rsa_kek[0x10] = {0}, // keyblob-derived families keyblob[KB_FIRMWARE_VERSION_600+1][0x90] = {0}, keyblob_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, keyblob_mac_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, package1_key[KB_FIRMWARE_VERSION_600+1][0x10] = {0}, // master key-derived families // key_area_key[3][KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, master_kek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, master_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}; // package2_key[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}, // titlekek[KB_FIRMWARE_VERSION_MAX+1][0x10] = {0}; // key functions static bool _key_exists(const void *data) { return memcmp(data, zeros, 0x10); }; // static void _save_key(const char *name, const void *data, const u32 len, char *outbuf); // static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf); static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed); // nca functions //static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len); //static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr); //static void _update_ctr(u8 *ctr, u32 ofs); void dump_keys() { display_backlight_brightness(100, 1000); gfx_clear_partial_grey(0x1B, 0, 1256); gfx_con_setpos(0, 0); gfx_printf("[%kLo%kck%kpi%kck%k_R%kCM%k v%d.%d.%d%k]\n\n", colors[0], colors[1], colors[2], colors[3], colors[4], colors[5], 0xFFFF00FF, LP_VER_MJ, LP_VER_MN, LP_VER_BF, 0xFFCCCCCC); start_time = get_tmr_us(); u32 begin_time = get_tmr_us(); u32 retries = 0; u32 color_idx = 0; tsec_ctxt_t tsec_ctxt; sdmmc_t sdmmc; emummc_storage_init_mmc(&storage, &sdmmc); TPRINTFARGS("%kMMC init... ", colors[(color_idx++) % 6]); // Read package1. u8 *pkg1 = (u8 *)malloc(0x40000); emummc_storage_set_mmc_partition(&storage, 1); emummc_storage_read(&storage, 0x100000 / NX_EMMC_BLOCKSIZE, 0x40000 / NX_EMMC_BLOCKSIZE, pkg1); const pkg1_id_t *pkg1_id = pkg1_identify(pkg1); if (!pkg1_id) { EPRINTF("Unknown pkg1 version."); goto out_wait; } bool found_tsec_fw = false; for (const u32 *pos = (const u32 *)pkg1; (u8 *)pos < pkg1 + 0x40000; pos += 0x100 / sizeof(u32)) { if (*pos == 0xCF42004D) { tsec_ctxt.fw = (u8 *)pos; found_tsec_fw = true; break; } } if (!found_tsec_fw) { EPRINTF("Failed to locate TSEC firmware."); goto out_wait; } tsec_key_data_t *key_data = (tsec_key_data_t *)(tsec_ctxt.fw + TSEC_KEY_DATA_ADDR); tsec_ctxt.pkg1 = pkg1; tsec_ctxt.size = 0x100 + key_data->blob0_size + key_data->blob1_size + key_data->blob2_size + key_data->blob3_size + key_data->blob4_size; u32 MAX_KEY = 6; if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620) { MAX_KEY = pkg1_id->kb + 1; } if (pkg1_id->kb >= KB_FIRMWARE_VERSION_700) { // sd_mount(); // if (!f_stat("sd:/sept/payload.bak", NULL)) { // f_unlink("sd:/sept/payload.bin"); // f_rename("sd:/sept/payload.bak", "sd:/sept/payload.bin"); // } // if (!h_cfg.sept_run) { // // bundle lp0 fw for sept instead of loading it from SD as hekate does // sdram_lp0_save_params(sdram_get_params_patched()); // FIL fp; // if (f_stat("sd:/sept", NULL)) { // EPRINTF("On firmware 7.x+ but Sept missing.\nSkipping new key derivation..."); // goto get_tsec; // } // // backup post-reboot payload // if (!f_stat("sd:/sept/payload.bin", NULL)) // f_rename("sd:/sept/payload.bin", "sd:/sept/payload.bak"); // // write self to payload.bin to run again when sept finishes // f_open(&fp, "sd:/sept/payload.bin", FA_CREATE_NEW | FA_WRITE); // u32 payload_size = *(u32 *)(IPL_LOAD_ADDR + 0x84) - IPL_LOAD_ADDR; // f_write(&fp, (u8 *)IPL_LOAD_ADDR, payload_size, NULL); // f_close(&fp); // gfx_printf("%k\nFirmware 7.x or higher detected.\n%kRenamed /sept/payload.bin", colors[(color_idx) % 6], colors[(color_idx + 1) % 6]); // color_idx += 2; // gfx_printf("\n%k to /sept/payload.bak\n%kCopied self to /sept/payload.bin", colors[(color_idx) % 6], colors[(color_idx + 1) % 6]); // color_idx += 2; // sdmmc_storage_end(&storage); // if (!reboot_to_sept((u8 *)tsec_ctxt.fw, tsec_ctxt.size, pkg1_id->kb)) // goto out_wait; // } else { se_aes_key_read(12, master_key[KB_FIRMWARE_VERSION_MAX], 0x10); // } } //get_tsec: ; u8 tsec_keys[0x10 * 2] = {0}; if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) { u8 *tsec_paged = (u8 *)page_alloc(3); memcpy(tsec_paged, (void *)tsec_ctxt.fw, tsec_ctxt.size); tsec_ctxt.fw = tsec_paged; } int res = 0; mc_disable_ahb_redirect(); while (tsec_query(tsec_keys, pkg1_id->kb, &tsec_ctxt) < 0) { memset(tsec_keys, 0x00, 0x20); retries++; if (retries > 15) { res = -1; break; } } free(pkg1); mc_enable_ahb_redirect(); if (res < 0) { EPRINTFARGS("ERROR %x dumping TSEC.\n", res); goto out_wait; } TPRINTFARGS("%kTSEC key(s)... ", colors[(color_idx++) % 6]); // Master key derivation if (pkg1_id->kb == KB_FIRMWARE_VERSION_620 && _key_exists(tsec_keys + 0x10)) { se_aes_key_set(8, tsec_keys + 0x10, 0x10); // mkek6 = unwrap(mkeks6, tsecroot) se_aes_crypt_block_ecb(8, 0, master_kek[6], master_kek_sources[0]); se_aes_key_set(8, master_kek[6], 0x10); // mkey = unwrap(mkek, mks) se_aes_crypt_block_ecb(8, 0, master_key[6], master_key_source); } if (pkg1_id->kb >= KB_FIRMWARE_VERSION_620) { // derive all lower master keys in case keyblobs are bad if (_key_exists(master_key[pkg1_id->kb])) { for (u32 i = pkg1_id->kb; i > 0; i--) { se_aes_key_set(8, master_key[i], 0x10); se_aes_crypt_block_ecb(8, 0, master_key[i-1], mkey_vectors[i]); } se_aes_key_set(8, master_key[0], 0x10); se_aes_crypt_block_ecb(8, 0, temp_key, mkey_vectors[0]); if (_key_exists(temp_key)) { EPRINTFARGS("Failed to derive master key. kb = %d", pkg1_id->kb); } } else if (_key_exists(master_key[KB_FIRMWARE_VERSION_MAX])) { // handle sept version differences for (u32 kb = KB_FIRMWARE_VERSION_MAX; kb >= KB_FIRMWARE_VERSION_620; kb--) { for (u32 i = kb; i > 0; i--) { se_aes_key_set(8, master_key[i], 0x10); se_aes_crypt_block_ecb(8, 0, master_key[i-1], mkey_vectors[i]); } se_aes_key_set(8, master_key[0], 0x10); se_aes_crypt_block_ecb(8, 0, temp_key, mkey_vectors[0]); if (!_key_exists(temp_key)) { break; } memcpy(master_key[kb-1], master_key[kb], 0x10); memcpy(master_key[kb], zeros, 0x10); } if (_key_exists(temp_key)) { EPRINTF("Failed to derive master key."); } } } u8 *keyblob_block = (u8 *)calloc(NX_EMMC_BLOCKSIZE, 1); u8 keyblob_mac[0x10] = {0}; u32 sbk[4] = {FUSE(FUSE_PRIVATE_KEY0), FUSE(FUSE_PRIVATE_KEY1), FUSE(FUSE_PRIVATE_KEY2), FUSE(FUSE_PRIVATE_KEY3)}; se_aes_key_set(8, tsec_keys, 0x10); se_aes_key_set(9, sbk, 0x10); for (u32 i = 0; i <= KB_FIRMWARE_VERSION_600; i++) { se_aes_crypt_block_ecb(8, 0, keyblob_key[i], keyblob_key_source[i]); // temp = unwrap(kbks, tsec) se_aes_crypt_block_ecb(9, 0, keyblob_key[i], keyblob_key[i]); // kbk = unwrap(temp, sbk) se_aes_key_set(7, keyblob_key[i], 0x10); se_aes_crypt_block_ecb(7, 0, keyblob_mac_key[i], keyblob_mac_key_source); // kbm = unwrap(kbms, kbk) if (i == 0) { se_aes_crypt_block_ecb(7, 0, device_key, per_console_key_source); // devkey = unwrap(pcks, kbk0) se_aes_crypt_block_ecb(7, 0, new_device_key, per_console_key_source_4x); } // verify keyblob is not corrupt emummc_storage_read(&storage, 0x180000 / NX_EMMC_BLOCKSIZE + i, 1, keyblob_block); se_aes_key_set(3, keyblob_mac_key[i], 0x10); se_aes_cmac(3, keyblob_mac, 0x10, keyblob_block + 0x10, 0xa0); if (memcmp(keyblob_block, keyblob_mac, 0x10)) { EPRINTFARGS("Keyblob %x corrupt.", i); gfx_hexdump(i, keyblob_block, 0x10); gfx_hexdump(i, keyblob_mac, 0x10); continue; } // decrypt keyblobs se_aes_key_set(2, keyblob_key[i], 0x10); se_aes_crypt_ctr(2, keyblob[i], 0x90, keyblob_block + 0x20, 0x90, keyblob_block + 0x10); memcpy(package1_key[i], keyblob[i] + 0x80, 0x10); memcpy(master_kek[i], keyblob[i], 0x10); se_aes_key_set(7, master_kek[i], 0x10); se_aes_crypt_block_ecb(7, 0, master_key[i], master_key_source); } free(keyblob_block); TPRINTFARGS("%kMaster keys... ", colors[(color_idx++) % 6]); /* key = unwrap(source, wrapped_key): key_set(ks, wrapped_key), block_ecb(ks, 0, key, source) -> final key in key */ u32 key_generation = 0; if (pkg1_id->kb >= KB_FIRMWARE_VERSION_500) { if ((fuse_read_odm(4) & 0x800) && fuse_read_odm(0) == 0x8E61ECAE && fuse_read_odm(1) == 0xF2BA3BB2) { key_generation = fuse_read_odm(2) & 0x1F; } } if (_key_exists(device_key)) { if (key_generation) { se_aes_key_set(8, new_device_key, 0x10); se_aes_crypt_block_ecb(8, 0, temp_key, new_device_key_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]); se_aes_key_set(8, master_key[0], 0x10); se_aes_unwrap_key(8, 8, new_device_keygen_sources[pkg1_id->kb - KB_FIRMWARE_VERSION_400]); se_aes_crypt_block_ecb(8, 0, temp_key, temp_key); } else memcpy(temp_key, device_key, 0x10); se_aes_key_set(8, temp_key, 0x10); se_aes_unwrap_key(8, 8, retail_specific_aes_key_source); // kek = unwrap(rsaks, devkey) se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x00, bis_key_source[0] + 0x00); // bkey = unwrap(bkeys, kek) se_aes_crypt_block_ecb(8, 0, bis_key[0] + 0x10, bis_key_source[0] + 0x10); // kek = generate_kek(bkeks, devkey, aeskek, aeskey) _generate_kek(8, bis_kek_source, temp_key, aes_kek_generation_source, aes_key_generation_source); se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x00, bis_key_source[1] + 0x00); // bkey = unwrap(bkeys, kek) se_aes_crypt_block_ecb(8, 0, bis_key[1] + 0x10, bis_key_source[1] + 0x10); se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x00, bis_key_source[2] + 0x00); se_aes_crypt_block_ecb(8, 0, bis_key[2] + 0x10, bis_key_source[2] + 0x10); memcpy(bis_key[3], bis_key[2], 0x20); } // Dump package2. // u8 *pkg2 = NULL; // pkg2_kip1_info_t *ki = NULL; emummc_storage_set_mmc_partition(&storage, 0); // Parse eMMC GPT. LIST_INIT(gpt); nx_emmc_gpt_parse(&gpt, &storage); // Find package2 partition. prodinfo_part = nx_emmc_part_find(&gpt, "PRODINFO"); if (!prodinfo_part) { EPRINTF("Failed to locate PRODINFO."); goto dismount; } // Read in package2 header and get package2 real size. // u8 *tmp_copy = (u8 *)malloc(NX_EMMC_BLOCKSIZE*2); // nx_emmc_part_read(&storage, prodinfo_part, 0, 2, tmp); // memcpy(tmp_copy, tmp, NX_EMMC_BLOCKSIZE*2); // gfx_hexdump(0, tmp + 0x250, 0x18); // aes_xtsn_decrypt(tmp_copy, NX_EMMC_BLOCKSIZE*2, bis_key[0], bis_key[0] + 0x10, pkg2_part->lba_end, pkg2_part->lba_start, NX_EMMC_BLOCKSIZE); // gfx_hexdump(0, tmp_copy + 0x250, 0x18); // memcpy(tmp_copy, tmp, NX_EMMC_BLOCKSIZE*2); se_aes_key_set(8, bis_key[0] + 0x00, 0x10); se_aes_key_set(9, bis_key[0] + 0x10, 0x10); readData(0x180, 0x100); // free(tmp_copy); // pkg2_done: // // free(pkg2); // // free(ki); // TPRINTFARGS("%kFS keys... ", colors[(color_idx++) % 6]); // // DIR dir; // // FILINFO fno; // // FIL fp; // // f_closedir(&dir); // // f_close(&fp); // TPRINTFARGS("%kSD Seed... ", colors[(color_idx++) % 6]); dismount: nx_emmc_gpt_free(&gpt); emummc_storage_end(&storage); //key_output: ; // __attribute__ ((aligned (16))) char text_buffer[0x3000] = {0}; // SAVE_KEY("aes_kek_generation_source", aes_kek_generation_source, 0x10); // SAVE_KEY("aes_key_generation_source", aes_key_generation_source, 0x10); // SAVE_KEY("bis_kek_source", bis_kek_source, 0x10); // SAVE_KEY_FAMILY("bis_key", bis_key, 4, 0x20); // SAVE_KEY_FAMILY("bis_key_source", bis_key_source, 3, 0x20); // SAVE_KEY("device_key", device_key, 0x10); // SAVE_KEY("eticket_rsa_kek", eticket_rsa_kek, 0x10); // SAVE_KEY("eticket_rsa_kek_source", es_keys[0], 0x10); // SAVE_KEY("eticket_rsa_kekek_source", es_keys[1], 0x10); // SAVE_KEY("header_kek_source", fs_keys[0], 0x10); // SAVE_KEY("header_key", header_key, 0x20); // SAVE_KEY("header_key_source", fs_keys[1], 0x20); // SAVE_KEY_FAMILY("key_area_key_application", key_area_key[0], MAX_KEY, 0x10); // SAVE_KEY("key_area_key_application_source", fs_keys[2], 0x10); // SAVE_KEY_FAMILY("key_area_key_ocean", key_area_key[1], MAX_KEY, 0x10); // SAVE_KEY("key_area_key_ocean_source", fs_keys[3], 0x10); // SAVE_KEY_FAMILY("key_area_key_system", key_area_key[2], MAX_KEY, 0x10); // SAVE_KEY("key_area_key_system_source", fs_keys[4], 0x10); // SAVE_KEY_FAMILY("keyblob", keyblob, 6, 0x90); // SAVE_KEY_FAMILY("keyblob_key", keyblob_key, 6, 0x10); // SAVE_KEY_FAMILY("keyblob_key_source", keyblob_key_source, 6, 0x10); // SAVE_KEY_FAMILY("keyblob_mac_key", keyblob_mac_key, 6, 0x10); // SAVE_KEY("keyblob_mac_key_source", keyblob_mac_key_source, 0x10); // SAVE_KEY_FAMILY("master_kek", master_kek, MAX_KEY, 0x10); // SAVE_KEY("master_kek_source_06", master_kek_sources[0], 0x10); // SAVE_KEY("master_kek_source_07", master_kek_sources[1], 0x10); // SAVE_KEY("master_kek_source_08", master_kek_sources[2], 0x10); // SAVE_KEY("master_kek_source_09", master_kek_sources[3], 0x10); // SAVE_KEY_FAMILY("master_key", master_key, MAX_KEY, 0x10); // SAVE_KEY("master_key_source", master_key_source, 0x10); // SAVE_KEY_FAMILY("package1_key", package1_key, 6, 0x10); // SAVE_KEY_FAMILY("package2_key", package2_key, MAX_KEY, 0x10); // SAVE_KEY("package2_key_source", package2_key_source, 0x10); // SAVE_KEY("per_console_key_source", per_console_key_source, 0x10); // SAVE_KEY("retail_specific_aes_key_source", retail_specific_aes_key_source, 0x10); // for (u32 i = 0; i < 0x10; i++) // temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_03[i]; // SAVE_KEY("rsa_oaep_kek_generation_source", temp_key, 0x10); // for (u32 i = 0; i < 0x10; i++) // temp_key[i] = aes_kek_generation_source[i] ^ aes_kek_seed_01[i]; // SAVE_KEY("rsa_private_kek_generation_source", temp_key, 0x10); // SAVE_KEY("save_mac_kek_source", fs_keys[5], 0x10); // SAVE_KEY("save_mac_key", save_mac_key, 0x10); // SAVE_KEY("save_mac_key_source", fs_keys[6], 0x10); // SAVE_KEY("sd_card_kek_source", fs_keys[7], 0x10); // SAVE_KEY("sd_card_nca_key_source", fs_keys[8], 0x20); // SAVE_KEY("sd_card_save_key_source", fs_keys[9], 0x20); // SAVE_KEY("sd_seed", sd_seed, 0x10); // SAVE_KEY("secure_boot_key", sbk, 0x10); // SAVE_KEY("ssl_rsa_kek", ssl_rsa_kek, 0x10); // SAVE_KEY("ssl_rsa_kek_source_x", es_keys[2], 0x10); // SAVE_KEY("ssl_rsa_kek_source_y", ssl_keys[1], 0x10); // SAVE_KEY_FAMILY("titlekek", titlekek, MAX_KEY, 0x10); // SAVE_KEY("titlekek_source", titlekek_source, 0x10); // SAVE_KEY("tsec_key", tsec_keys, 0x10); // if (pkg1_id->kb == KB_FIRMWARE_VERSION_620) // SAVE_KEY("tsec_root_key", tsec_keys + 0x10, 0x10); //gfx_con.fntsz = 8; gfx_puts(text_buffer); gfx_con.fntsz = 16; end_time = get_tmr_us(); gfx_printf("\n%kFound %d keys.", colors[(color_idx++) % 6], _key_count); _key_count = 0; gfx_printf("\n%kLockpick totally done in %d us", colors[(color_idx++) % 6], end_time - begin_time); gfx_printf("\n%kFound through master_key_%02x\n", colors[(color_idx++) % 6], MAX_KEY - 1); // f_mkdir("sd:/switch"); // char keyfile_path[30] = "sd:/switch/"; // if (!(fuse_read_odm(4) & 3)) // sprintf(&keyfile_path[11], "prod.keys"); // else // sprintf(&keyfile_path[11], "dev.keys"); // if (sd_mount() && !sd_save_to_file(text_buffer, strlen(text_buffer), keyfile_path) && !f_stat(keyfile_path, &fno)) { // gfx_printf("%kWrote %d bytes to %s\n", colors[(color_idx++) % 6], (u32)fno.fsize, keyfile_path); // } else // EPRINTF("Failed to save keys to SD."); h_cfg.emummc_force_disable = emummc_load_cfg(); out_wait: // sd_unmount(); gfx_printf("\n%kPress any key to return to the main menu.", colors[(color_idx) % 6], colors[(color_idx + 1) % 6], colors[(color_idx + 2) % 6]); btn_wait(); } // static void _save_key(const char *name, const void *data, const u32 len, char *outbuf) { // if (!_key_exists(data)) // return; // u32 pos = strlen(outbuf); // pos += sprintf(&outbuf[pos], "%s = ", name); // for (u32 i = 0; i < len; i++) // pos += sprintf(&outbuf[pos], "%02x", *(u8*)(data + i)); // sprintf(&outbuf[pos], "\n"); // _key_count++; // } // static void _save_key_family(const char *name, const void *data, const u32 num_keys, const u32 len, char *outbuf) { // char temp_name[0x40] = {0}; // for (u32 i = 0; i < num_keys; i++) { // sprintf(temp_name, "%s_%02x", name, i); // _save_key(temp_name, data + i * len, len, outbuf); // } // } static void _generate_kek(u32 ks, const void *key_source, void *master_key, const void *kek_seed, const void *key_seed) { if (!_key_exists(key_source) || !_key_exists(master_key) || !_key_exists(kek_seed)) return; se_aes_key_set(ks, master_key, 0x10); se_aes_unwrap_key(ks, ks, kek_seed); se_aes_unwrap_key(ks, ks, key_source); if (key_seed && _key_exists(key_seed)) se_aes_unwrap_key(ks, ks, key_seed); } static inline u32 _read_le_u32(const void *buffer, u32 offset) { return (*(u8*)(buffer + offset + 0) ) | (*(u8*)(buffer + offset + 1) << 0x08) | (*(u8*)(buffer + offset + 2) << 0x10) | (*(u8*)(buffer + offset + 3) << 0x18); } // static void *_nca_process(u32 hk_ks1, u32 hk_ks2, FIL *fp, u32 key_offset, u32 len) { // u32 read_bytes = 0, crypt_offset, read_size, num_files, string_table_size, rodata_offset; // u8 *temp_file = (u8*)malloc(0x400), // ctr[0x10] = {0}; // if (f_lseek(fp, 0x200) || f_read(fp, temp_file, 0x400, &read_bytes) || read_bytes != 0x400) // return NULL; // se_aes_xts_crypt(hk_ks1, hk_ks2, 0, 1, temp_file, temp_file, 0x200, 2); // // both 1.x and 2.x use master_key_00 // temp_file[0x20] -= temp_file[0x20] ? 1 : 0; // // decrypt key area and load decrypted key area key // se_aes_key_set(7, key_area_key[temp_file[7]][temp_file[0x20]], 0x10); // se_aes_crypt_block_ecb(7, 0, temp_file + 0x120, temp_file + 0x120); // se_aes_key_set(2, temp_file + 0x120, 0x10); // for (u32 i = 0; i < 8; i++) // ctr[i] = temp_file[0x347 - i]; // crypt_offset = _read_le_u32(temp_file, 0x40) * 0x200 + _read_le_u32(temp_file, 0x240); // read_size = 0x10; // _nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr); // num_files = _read_le_u32(temp_file, 4); // string_table_size = _read_le_u32(temp_file, 8); // if (!memcmp(temp_file + 0x10 + num_files * 0x18, "main.npdm", 9)) // crypt_offset += _read_le_u32(temp_file, 0x18); // crypt_offset += 0x10 + num_files * 0x18 + string_table_size; // read_size = 0x40; // _nca_fread_ctr(2, fp, temp_file, crypt_offset, read_size, ctr); // rodata_offset = _read_le_u32(temp_file, 0x20); // void *buf = malloc(len); // _nca_fread_ctr(2, fp, buf, crypt_offset + rodata_offset + key_offset, len, ctr); // free(temp_file); // return buf; // } // static u32 _nca_fread_ctr(u32 ks, FIL *fp, void *buffer, u32 offset, u32 len, u8 *ctr) { // u32 br; // if (f_lseek(fp, offset) || f_read(fp, buffer, len, &br) || br != len) // return 0; // _update_ctr(ctr, offset); // if (offset % 0x10) { // u8 *temp = (u8*)malloc(ALIGN(br + offset % 0x10, 0x10)); // memcpy(temp + offset % 0x10, buffer, br); // se_aes_crypt_ctr(ks, temp, ALIGN(br + offset % 0x10, 0x10), temp, ALIGN(br + offset % 0x10, 0x10), ctr); // memcpy(buffer, temp + offset % 0x10, br); // free(temp); // return br; // } // se_aes_crypt_ctr(ks, buffer, br, buffer, br, ctr); // return br; // } // static void _update_ctr(u8 *ctr, u32 ofs) { // ofs >>= 4; // for (u32 i = 0; i < 4; i++, ofs >>= 8) // ctr[0x10-i-1] = (u8)(ofs & 0xff); // } bool readData(u64 offset, u64 length) { u64 sector = (offset / NX_EMMC_BLOCKSIZE); u64 newOffset = (offset % NX_EMMC_BLOCKSIZE); bool needMultipleSectors = newOffset + length > NX_EMMC_BLOCKSIZE; u8 *tmp = (u8 *)malloc(NX_EMMC_BLOCKSIZE); disk_read_mod(tmp, sector, 1, &storage, prodinfo_part); if (!needTwoSectors) { gfx_hexdump(0, tmp + newOffset, length); } else { u64 newLength = (newOffset + length) - NX_EMMC_BLOCKSIZE; gfx_hexdump(0, tmp + newOffset, newLength); disk_read_mod(tmp, sector + 1, 1, &storage, prodinfo_part); gfx_hexdump(0, tmp, length - newLength); } free(tmp); return true; }